Supplementary material for

Effects of plant invaders on rhizosphere microbial attributes depend on plant identity and growth stage

Pantelitsa D. Kapagianni^{A,D}, Ioannis Topalis^A, Dylan Gwynn-Jones^B, Urania Menkissoglu-Spiroudi^C, George P. Stamou^A and Efimia M. Papatheodorou^A

^ADepartment of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.

^BInstitute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DA, UK.

^CPesticide Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.

^DCorresponding author. Email: kapagianni@bio.auth.gr

Table S1 A layout of the properties and metrics referring to the architecture of the network

	D ::	The total of all values divided by the number
	Density	of ties.
		The distance between two nodes is the
	Shortest path	number of ties contained in the shortest patl
Cohesion: Assesses	length	that connects them.
the extent of		
connectivity of the		It measures how much neighbors of each
entire network		node are also neighbors of each other. The
	Clustering	clustering coefficient of a node is the densit
	Coefficient	of its open neighborhood. The overall
		clustering coefficient is the mean of the
		clustering coefficient of all the nodes.
	Small-world	A real network is a small-world network if
		has a similar mean shortest path length but
		greater clustering of nodes than a random
		graph with the same number of nodes and
		average density. It reflects the importance of
Modularity: Assesses		each node
the possibility of		Connections to nodes with higher number of
various nodes to be	E' .	connections contribute more to the score of
grouped together	Eigenvector centrality	the ego node than equal number of
		connections but to nodes with lower number
		of connections
		Connectivity of a node equals to the number
	Neighbor	of nodes directly connected with it.
	connectivity	Neighborhood connectivity is the average
		connectivity of all nodes.

Table S2 The significance of the explanatory power of continuous and categorical variables and their overlaps to the variation in soil enzymes. The lowercase letters a, b, c indicate the fractions of variation and d, e, f, g the overlaps between a and b, b and c, a and c, a and b and c respectively

	F	p
a+b+c+d+e+f+g	4.8	0.002
a	4.1	0.002
b	3.6	0.024
c	2.3	0.068
a+d	3.9	0.002
b+e	3.0	0.028
c+f	4.5	0.002