Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Structural decline of soils, assessment and prevention

WW Emerson

Australian Journal of Soil Research 29(6) 905 - 921
Published: 1991

Abstract

Two extreme textural types of cultivated surface soils are mainly considered here, non-shrinking red-brown earths and highly shrinking cracking clays. Total porosity is used to assess the structural status of the former. Values are compared with the highest and lowest values found in the field. For the latter, the criterion used is the porosity of dry aggregates or clods. Values here are taken from the literature. To find out why inter-particle bonding in soil aggregates is insufficient to stop structural decline, a scheme has been developed which includes a modified version of Emerson's (1967) classification of soil aggregates. Slaking is carefully assessed. The bulk density of a cube made from soil at 'field capacity' is measured as well as testing another for dispersion. Class 3 is now divided into 3a and 3b, according to the degree of dispersion of remoulded soil in water. Also apart from soils which disperse spontaneously from dry, classes 1 and 2, the dispersion of all soils is assessed after remoulding at 'field capacity'. It has been found that the red-brown earth site which had the best visual structure also had the largest total porosity and aggregates in class 4. At the worst site, aggregates were in class 3a and the porosity had been reduced to that of the soil cube. For cracking clays, porosity is appreciably higher where the aggregates are in class 4 rather than class 3a. Water content/dispersion curves are presented for the clays showing the extent of the increase in OD apparently associated with the presence of carbonate. Dispersion of sheared, class 3a soil immersed in water is only an outward sign of the structural damage caused when the soil is sheared too wet. If the soil is dried instead, porosity is still lost. Mechanisms are suggested by which the structure of class 3a clay soils are improved by adding carbonate. The slumping of red-brown earths and the use of surface dressings of gypsum to prevent severe dispersion after cultivation wet are discussed. The structural stability of aggregates in the other five classes is briefly considered. Classes 1 and 2 require an ameliorant to be added, the rest pose few problems.

Keywords: Soil Structure; Aggregate Stability; Slaking; Dispersion; Tillage; Bulk Density;

https://doi.org/10.1071/SR9910905

© CSIRO 1991

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (33) Get Permission

View Dimensions