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Abstract

This paper presents a method for solving the findpath problem. Commonly known as the second or
direct method of Liapunov, the method is used to solve this geometric problem of finding collision-
free trajectories of moving solid objects amongst other fized and moving solid objects. A Liapunov
function is proposed for a n-point dynamical system in three-space. Computer simulations are carried
out to show the effectiveness of the proposed Liapunov function-based feedback controllers.
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I. GENERAL INTRODUCTION

In this paper, the problem of generating collision-free
trajectories of point objects moving to their targets in
a cluttered environment is considered. This problem is
known as the findpath problem, also referred to as the
robot path planning problem, since robotics is the most
prevalent practical application of findpath problem. The
use of robots is significantly increasing in the manufac-
turing systems, not only for productivity enhancement
but also for greater efficiency and versatility. In robotic
research, if a workspace is cluttered with fixed and mov-
ing obstacles, a collision-free, optimal (smoothest, fastest
and safest) trajectory is desired as a solution of findpath
problem, that can lead the mobile robot to its designated
target (Vanualailai and Ha, 1998). Motion planning in
dynamic environments is difficult but is more interesting
than problems from static situations. We have to govern
the position and velocity components of a object simul-
taneously for every time ¢ > 0 from start to the end of
an assigned task.

II. INTRODUCTION

Two major lines of research have been done over
the years to solve the findpath problem (Giinther and
Azarm, 1993; Sheu and Xue, 1993):

1. Graph Search Techniques include algorithms that
employ some kind of technique for graph searching.
The method decomposes free space, into simple re-
gions called cells. Then, a collision-free path is gen-
erated by constructing and searching a non-direct
graph that connect the origin and destination via
the vertices of solid obstacles, or via patches of cells.
Various methods have been used over the years to
construct these connectivity graphs. Although the
graph search techniques are elegant theoretically,

they tend to be computationally intensive in prac-
tice.

2. Potential Field Techniques include algorithms that
employ some kind of physical analogy. Commonly
known as the potential field method, it uses arti-
ficial potential fields with repulsive and attractive
poles applied to the obstacles and targets. It then
utilises the resulting fields to influence the path of
the point masses. This technique is easier to im-
plement.

III. THE SECOND METHOD OF LIAPUNOV

Liapunov’s second method falls under the latter cate-
gory. The first ever attempt to use the Liapunov method
in the study of findpath problem was by Stonier in 1990.
He constructed Liapunov-like functions to provide non-
linear analytic forms of control laws for the movement of
point masses. In his research, he made a “right of way”
assumption which controlled the movement of the point
masses to avoid collision. However, his research findings
had two major drawbacks. Firstly, it was difficult to jus-
tify the use of position vector components as constants
in the Liapunov-like function. Secondly, his assumption
could not be justified in systems of more than two moving
objects. Vanualailai (1994) solved the two problems, by
removing the “right-of-way” assumption and using func-
tions that showed that the moving obstacles could be
avoided at ease from variable distances. Also a single
Liapunov-like function was constructed for the entire sys-
tem instead of separate ones for different moving objects.
Vanualailai and Ha (1998) added another vital compo-
nent to the scalar function that guaranteed the function
to be zero at the equilibrium points, hence the birth of a
complete Liapunov function.

The aim of this paper is to address the findpath prob-
lem but in three-space and propose a solution to the sys-



tem of n-point objects using an ameliorated version of the
Liapunov function used by Vanualailai and Ha (1998).
Feedback controllers will also be constructed for control-
ling the trajectory of the i-th object.

IV. STABILITY

Let us first look at the concept of stability via the
Liapunov function. Consider the autonomous (time in-
variant) nonlinear system

C;_at:: (23), m(tO):mOa to 207 (1)
where f : Q@ ¢ R — R" is assumed to be smooth
enough to guarantee existence, uniqueness and continu-
ous dependence of solutions x(t) = x(t,to, xo) of (1) in
2, an open set in R™. For the purpose of considering sta-
bility concepts in the sense of Liapunov, we assume that
f(e) = 0so that (t) = e is the equilibrium state of the
system (1) passing through (tg, o) in € for all ¢ > tg.

Definition 1 The equilibrium state x(t) = e of (1) is
said to be stable at time to if, for each € > 0, there exists
a §(to,€) > 0 such that

|z (to)|] < (o, €) = |lz(t)|| <€, ¥ t > to.

The direct method of Liapunov states that this equilib-
rium state & (t) = e is stable if there exists a scalar func-
tion L(x) in the neighborhood of e such that

(i) L(e) =0,
(ii) L(z) > 0 for all = # e,
dL(x)

(iii) — 2

i <O0Oforall e

)

When L(x) successfully meets the above conditions, it is
called the Liapunov function for system (1).

V. DYNAMICS OF MULTIPLE POINT
OBJECTS

A Liapunov function is proposed that will work for n
number of moving objects in three-space with any recog-
nised number of moving and fixed obstacles. Consider
the following system of ordinary differential equations :

Ty =T, Ty = U;,
Vi = Si $; =v; , fori=1,2,....,,n.
Zi:ti, ti:wi.

2)

In the zyz-space, we refer to the point (x;,y:,2:)
as the position of the ith object. Therefore, sys-
tem (2) is a description of the instantaneous velocity
(Zi,9i,2;) = (ri,8:,t;) and instantaneous acceleration
(74, $i,t;) = (us,v;,w;) of the i-th point object.

49

We make the assumption that we can transfer the i-
th object from one point to another in the zyz-space by
manipulating its instantaneous acceleration (u;, v, w;).
By the Liapunov technique, (u;,v;,w;) for ¢ = 1,2, ...n,
are considered as feedback controllers, to be obtained
from the proposed Liapunov function associated with sys-
tem (2).

We shall use the vector notation

X'i = (miariayiasiaziati) € RG,

in the zyz-space to refer to the position and velocity com-
ponents of the i-th object,i = 1,2,...,n. For generality,
we can further state that = (X, X»,..., X,) € R"™.

A. Targets

The targets for system (2) are spherical regions en-
closing a set of fixed points. The i-th target set, with
center (p;1,Pi2,Piz), and radius rp;, is defined as, for
1=1,...,n,

T, = {(m,y,z) € R®: (x —pa)® + (y — pin)?
+(z —pis)® <rpj}

which becomes the fixed target set of the #-th object.

In connotation, the target will then become the Fized
AntiTarget T of all the other moving point objects (j #
i). Mathematically, we can generalise this as :

FAT! =Tj, ihji=1,2,.m, i#j,
where the superscript indicates the point object consid-
ered, and the subscript indicates which fixed obstacle it
is. Hence FAT} = Tj is the jth fixed antitarget of ob-
ject A;.

B. Point Objects

Now, we define the j-th moving point object A; with
center (z;,y;,7;) and radius (rap;), j =1,...,n,

A;j = {(z,y,2) € R [z — ;O] + [y —y;(t)]?
+z = 2 ()] < [rap;]*}

This jth moving point object also becomes a Moving
AntiTarget for all the other moving point objects. Math-
ematically, we can generalise this as:

MAT] = A;,

where the superscript again indicates the point object be-
ing considered. However, this time the subscript denotes
the particular moving antitarget. Therefore, M ATJ? =
A; is the j-th moving antitarget of object A;.



C. Obstacle Avoidance and Target Attraction

In three-dimensional space, the Liapunov function
looks like a parabolic “mirror” pointing upward or of a
“cup” on a table. In our scheme, we consider the cup-
shaped surface as a point object and the bottom of the
cup as the center of our target. The Liapunov function
decreases along the trajectory of the point masses from
the top of the cup to the bottom which is essentially one
of the equilibrium points.

Now, in order to obtain the feedback controllers, we
need to construct a Liapunov function for system (2) to
make attraction to target and avoidance of all fixed and
moving obstacles possible to the i-th object. Accordingly,
we define the following functions for the i-th object:

1. Attraction to Target

For the attraction to the target T;, we consider the
function

1
B [(-Tz —pi)® + (yi — pi2)® + (21 — piz)*

+ri+ s+ ]

Vi) =

which is a measure of the distance from object A; to the
target T;. The function also measures the speed of the
i~th object. The inclusion of the velocity components will
help in the formulation of control law that provides for
a damping capability that determines the rate of conver-
gence of object A; to its target T;.

In the Liapunov function, V;(x) would act as a attrac-
tor by having the i-th object move to its designated target
T;. Note that V;(pi1,0,pi2,0,pi3,0) = 0 and Vi(z) > 0
for all ;é (pi17 Oapi27 Oapi37 0)7 i = 17 27 -

2. Awoidance of Fized Obstacles

For the avoidance of the fixed obstacle FAT} = Tj, we
consider the function

Wi (z) = ; [(i = pj1)? + (ys — pja)?

+(zi — pjs)® —rpi”]

which is a measure of the distance between object A; and
the fixed obstacle T;. The function is positive over the

domain {il: € R : (a:l —pj1)2 + (yl —pj2)2 + (ZZ —pj3)2 >
rp;2}.
In three-dimensional space, the surface, for some ¢, j
with i # 7,
c
(i = pj1)? + (yi — pj2)? + (2i — pj3)* —1D;

S; = 9

where ¢ > 0, is a right circular cylinder with radius rp;.
If this cylinder is a part of the Liapunov potential energy
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cup, then the i-th object, will naturally slow down as it
reaches the saddle-like base of this structure and then
avoid the cylinderical structure as it sinks to the bottom
of the cup. Since the point object must inevitably be at-
tracted to the target set which is the inherent advantage
of the Liapunov function, and (z; — pj1)? + (yi — pj2)* +
(zi — pj3)* — rp;? implies an increase in energy, would
initiate movement of the approaching object away from
its fixed obstacle. Hence, object A; will effectively avoid
its fixed obstacle T)j. Also, we cannot have the situation
where (z1 —pa1)2 + (y1 — p22)? + (21 — p23)? = rp22. Con-
sequently for the desired and effective avoidance of the
fixed obstacles, we have function W;;(2) in the denomi-
nator of the Liapunov function.

3. Avwoidance of the Moving Obstacle

For the avoidance of the moving obstacle M AT} = A;,
we consider the function
1

Vij(@) = 3 [ (@i —25)° + (i —y;)*

+(z; — zj)2 — rap? ] ,

which is a measure of the distance from object A; to
the secure avoidance region about object A;. Function
Vi; will also appear in the denominator of the Liapunov
function for avoidance of the moving obstacles. Note
that the function is positive over the domain {z € R%" :

(i — 25)> + (yi — y3)” + (21 — 2;)* > rap;°}.

4. Obstacle Avoidance and Target Attraction

The Liapunov function of system (2) must be exactly
zero at the target center (p;1, pi2, pi3). As a consequence,
we introduce a function

1

Gi(z) = 5 [(xi = pin)* + (i — pia)?

+(Z1,_p1,3)2] 207 v mERﬁna

with G(pi1,0, pi2, 0,pi3,0) = 0, for i« = 1,2,...n. This
function is a measure of distance between centers of ob-
ject A; and its target T;.

D. Liapunov Function

Introducing a;; > 0 and 8;; > 0, which act as the con-
trol parameters for the point objects and using functions
Vi(z), Wij(x), Vij(z) and G;(x) from above, we define a
Liapunov function L(zx) for target attraction and avoid-
ance of fixed and moving obstacles for the i-th object.

The tentative Liapunov function is, for i # j,

L) =S 1+ Z(VO‘V—+€—) e
i=1

i=1 j=1



which is continuous and positive over the domain, for
,j=1,...,n,

D(L) = {x € R* : Vj;(x) > 0, W;;(x) > 0}.

We need to obtain the controllers, (u;,v;, w;) so that ob-
ject A; can be controlled on its path to the target T;
without any collision with the moving and/or fixed anti-
targets. Hence on differentiating the Liapunov function
L(x) we have,

d 1oy H
A G, WyG;
3 3o (- )
i=1 j=1 v
+>°3 B (V—— ‘J/Q )
i=1 j=1 K tj

Differentiating the various components of L(x) and treat-
ing the velocity components separately, we obtain :
dL(x)
dt
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To extract the controllers, we introduce positive con-
stants(convergence parameters) p; > 0,7y; > 0 and v; > 0

o1

ri¥+ Yi 5% +v; ti2), provided the con-

i
2, ....n are as follows :

to get L(2) =—(p
trollers for i = 1,

_ ~ (aij  Bij
ui(®) = —(zi —pin) X 1+; (Wi‘ + W)

= BiiGi
+ 3 Bl ) @)
i=t Vi

~ a;;Gi
+Z e (i — pj1)

j=1 ij

n B;:G
+) ifgj(xj_xi)_piria
j=1 it

. (i Bi

— Bi;Gi
#3020 ) 6
Jj=1 J

"G
+Z = (yi — pj2)
j=1 W'j

2L B:iG
+Z%(yj —Yi) — % Si,
j=1 Jji
and

wi(x) = —(2;i —piz) X 1+Z<%+%>

j=1

= Bi;Gi
T LI ©)
j=1 i

" ;G
+Z%(zi—iﬂjs)
j=1 7]
n
G
+Z%(23‘_2i) —v; b,
j=1 Ji

which gives us the control law as vector, I; = (u;,v;, w;)
for the movement of object A;.

Finally, if we let X., = (pi1,0,pi2,0, pi3,0) € RE, for
i =1,2,..n, then we have z, = (Xe,, Xe,,.-Xe, ) €
R%" as the equilibrium state of system (2).

Properties of the Liapunov Function

(i) L(z) is continuous and has first partial
derivatives in the region D(L) in the neigh-
borhood of the stable equilibrium state, xe,

(ii) L(ze) =0,
(iii) L(z) > 0 Yz € D(L) \ @e,
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TABLE I: Simulation parameters: Example 1

Time Interval, RK4 Step Size

[0,40], 0.01

Targets Centers

(p11,p12,p13) = (50, 50, 200)
(p21, P22, p23) = (150, 130, 200)
(ps1,psa, pss) = (250, 50, 200)

Targets Radii

rpL =Tp2 =Trp3 =>5

Initial positions (z1,y1,21) = (200, 90, 200)
of Objects (z2,y2,22) = (150, 50, 200)
(z3,y3, 23) = (100, 90, 200)

Initial velocities
of Objects

(r1,s1,t1) = (5, 5, 2)
(r2, 82,t2) = (4, 4, 2)
(r3,s3,t3) = (5, 5, 2)

Objects Radii

rapi = rap: = raps = 4

Control Parameters

Q12 = 13 = 21 = 23 = @31 = a3z = 6.0

B12 = P13 = Po1 = Pz = 31 = P32 = 6.0

Convergence Parameters

p1:71=U1=5.0
p2:’)/2=v2=6.0
p3:’Y3=U3=5.0

FIG. 1: Simulation results: trajectories of the three moving objects, where each converges to its target in Example 1.

Hence, the scalar function created is actually a Liapunov
function for system (2) and it guarantees stability of sys-
tem (2) with the following theorem:

Theorem 1 The equilibrium state (xe) of system (2) is
stable provided u;,v; and w; fori=1,2,...n, are defined
as equations (4), (5), and (6), respectively.

VI. SIMULATIONS

The examples below illustrate the collision-avoidance
capabilities of point objects and the optimum trajectories
obtained through appropriate manipulation of control

and convergence parameters. For the numerical integra-
tion of system (2), a fourth-order Range-Kutta method
is utilised.

Example 1 We have a triangular configuration for this
simulation, where targets are situated at the vertices
and the objects start initially at the midpoints. Table I
provides details of the initial state of the system. The
convergence parameters of Object 2 have been increased
which makes it possible for all the moving objects to meet
at one place and hence a three-way avoidance could be
observed. Figure 1 shows the collision-free trajectories of
the moving objects.

Remark 1 In Example 1, we have a trianglular situa-
tion in three-space, where the paths of all moving ob-



TABLE II: Simulation parameters: Example 2

Time Interval, RK4 Step Size

[0,40], 0.01

Targets Centers

(p11,p12,p13) = (100, 100, 150)
(p21,p22,p23) = (190, 100, 150)
(31, ps2, p3s) = (280, 100, 150)
(p41,p42,p43) = (150, 110, 160)

(ps1,ps2, ps3) = (220, 90, 160)

Targets Radii

rpL =TP2 =TP3 =Trps =7Tps =5

Initial positions
of Objects

(z1,y1,21) = (235, 100, 150)
(z2,y2, 22) = (55, 100, 150)
(23,ys, 23) = (145, 100, 150)

Initial velocities
of Objects

(ri,s1,t1) = (4, 1, 6)
(r2, 82,t2) = (4, 1, 6)
(r3,s3,t3) = (4, 1, 6)

Objects Radii

rapy = rap: = raps = 4

Control Parameters

Q12 = 13 = 14 = 15 = a1 = a3 = 6.0
Q24 = Q25 = 31 = (32 = 34 = 35 = 6.0

B12 = P13 = Po1 = Pz = 31 = P32 = 6.0

Convergence Parameters

plz'yl:m:?.o
p2:72=U2=5.0
p3:’)/3=v3=7.0

160

7140

120
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FIG. 2: Simulation results: trajectories of the three moving objects, where each converges to its target in Example 2.

jects meet at a certain place in space. The avoidance
and then convergence to the designated targets are seen.
The paths obtained are optimal for the initial states pro-
vided. Initially, the sizes of the controllers are large which
is because of a large degree of control required to start
the movement of objects on a certain path. After that,
the controllers are reduced to the vicinity of the time

axis, which indicates the asymptotic behaviour of the
controllers.

Example 2 We have injected two extra fixed antitargets
into the workspace. Antitarget Ty is situated infront of
the initial position of object As, while antitarget 75 has
been situated to block the trajectories of object 4; and
object As. Table II provides details of the initial state
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FIG. 3: Simulation results: trajectories of the three moving objects, where each converges to its target in Example 2 from a

different viewpoint.

of the system. Figure 2 and Figure 3 show the collision
free path paths of the moving objects from two different
viewpoints.

Remark 2 In Example 2, we have the targets and the
moving objects spaced out in a line with the extra
fixed antitargets blocking their original trajectories. The
newer paths again lead directly to the target centers.
However, we see that object A; takes a longer time to
reach the target center because it has to avoid antitarget
Ty on its way. Again we see the asymptotic behavior of
the controllers.

VII. PARAMETERS

We will briefly consider the effects of the two main pa-
rameters - the control and convergence parameters, on
the trajectories of the moving objects to their designated
target centers. Through proper manipulation of these
two parameters, better solutions to the findpath prob-
lem can be found. How safe, smooth and quick the tra-
jectory would be, will directly depend on the feedback
controllers, which have these parameters instilled. The
parameters were first put into desirable effects by Vanu-
alailai and Ha (1998).

A. Control Parameter

Because of the makeup of our Liapunov function, we
are at liberty to increase or decrease the control parame-
ters a;; and S35, as much as we pleased to obtain a desired
trajectory. These control parameters allow us to control
the trajectory of a moving point object to its target cen-
ter, hence improving the quality of the solution to the
findpath problem. Since «;; appeared in the Liapunov
function associated with W;;, it takes care of the avoid-
ance of fixed obstacles. While f3;; is associated with V;;,
and thus takes care of the avoidance of moving obstacles.

B. Convergence Parameters

Decreasing the convergence parameters p;, v; and v;
will reduce the time taken by the objects to reach the cen-
ter of the target, however, it will not guarantee increas-
ingly better trajectories. Also, increasing the values of
convergence parameters will result in safer and smoother
trajectories, however, it will make the system very slow
and hence expensive to maintain. Consequently proper
manipulation of the control parameters of the particular
moving object may improve the trajectories.

VIII. SUMMARY AND CONCLUSION

Optimal navigation in an environment cluttered with
fixed and moving obstacles is the ultimate search of re-
searchers. Although various formulations for this prob-
lem have surfaced, the search for the indispensable one
still prevails. Liapunov’s Direct Method has been used
extensively to solve the findpath problem. This research
carries on from where Vanualailai and Ha (1998) left, and
we have tried to get closer to the ideal solution with two
major improvements.

Firstly, the Liapunov method has been successfully
applied to three-dimensional systems. This is more
realistic and less restrictive when compared to the
two-dimensional research, although the functions turn
out to be quite complex. Secondly, researchers in this
field of study have constructed Liapunov functions that
only embrace systems with a maximum of two point
objects. We, in this research, have generalised the
Liapunov function to work for a general n-point system.
Computer simulations have provided necessary evidence
for this. A generalised Liapunov function is indeed
helpful in further research work where a large number of
objects, targets and obstacles are considered.

The applicability of this method has been verified by



copious extraordinary simulations that have shown that
indeed the Liapunov method is indispensable for solving
findpath problems. The theoretical concepts developed
for this system can also be demonstrated by considering
the problem of coordination between n-robotic arms, n-
link robot arm and n mobile robots in a workspace. Also,
getting feasible solutions of the much fancied Highly In-
telligent Vehicle Systems is another possibility. These
will be considered by the team for future research pa-
pers.

However, our Liapunov function can only guarantee
stability of the system. This means that for some initial
conditions the trajectories may cease motion close to but
before reaching the center of their designated targets. We
have used trial-and-error method to obtain certain val-
ues of control and convergence parameters, which engen-
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der asymptotic stability of the system. However, ideally
we should be able to construct a Liapunov function that
guarantees asymptotic stability of a system irrespective
of the initial conditions. This is a problem which will be
taken up in future.
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