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Abstract

New results on graph theoretical method of encryption will be presented. The general idea is to
treat vertices of a graph as messages, and walks of a certain length as encryption tools. We will
construct one-time pad algorithms with a certain resistance to attacks when the adversary knows
plaintext and ciphertext. Special linguistic graphs of high girth whose vertices (messages) and walks
(encoding tools) could be both naturally identified with vectors over the finite field, and with the so-
called parallelotopic graphs, which turn out to be efficient tools for symmetric encryption. We will
formulate criteria when parallelotopic graph (or the more general graph of tactical configuration) is
a graph of absolutely optimal encryption scheme, producing asymptotic one-time pad algorithm. We
will show how to convert one-time pads, which are related to geometries of rank 2 of simple groups
of Lie type, to a real-life encryption scheme involving potentially infinite text and flexible passwords.

We will discuss families of linguistic and parallelotopic graphs of increasing girth as the source
for the generation of asymmetric cryptographic functions and related open key algorithms. We will
construct new families of such graphs via group theoretical and geometrical technique.

The software for symmetric and asymmetric encryption (prototype model of the package) is ready
for demonstration.
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I. GENERAL INTRODUCTION

Security of data is one of the most important prob-
lems in Applied Informatics. The current security mar-
ket is not satisfactory to fulfill the demand. In partic-
ular, it is important for geographically remote countries
of the Pacific region to have safe and secure communica-
tion lines to overcome “tyranny of distance”. Security of
data and communication processes need encryption - in-
vertible procedure for converting of initial data which is a
certain string of characters (the plaintext) to unreadable,
chaotic like string (the ciphertext).

The goal of the paper is to present new security algo-
rithms based on the idea to look at what kind of finite
automaton (roughly, graph) we need for encryption. An
assumption first codified by Kerckhoff (one may recall
Kerckhoft’s rules in Physics) is that the encryption algo-
rithm is known and security rests entirely on the security
of key (password).

Proposed iterative nonlinear algorithms are convenient
tools of symmetric encryption, when procedure and its
inverse take same time. They have flexible size of keys,
procedure is robust and compares well with the perfor-
mance of some existing algorithms. If double size of key
is less then length of the plaintext, different keys convert
it into different ciphertext. A prototype model of soft-
ware package is ready for the demonstration. Experiment
support some theoretical conjecture on the resistance of

proposed encryption to attacks when adversary already
knows several plaintext - ciphertext pairs anf trying to
get a password to control the channel of communication.

The procedure can be given by close formula which
is a certain multivariable polynomial. The use of close
formula instead of iteration makes the procedure assy-
metric, decryption is practically much harder then en-
cryption. This idea requires further studies: it may be
used as so called public keys.

II. INTRODUCTION

Security of data is one of the most important issues
to consider in the daily operation of a modern univer-
sity. Confidential data of different format (text, image,
sound) need to be transmitted securely to and from dif-
ferent sections, departments and schools or faculties of
the university. This issue becomes more pressing if the
university operates a distance mode teaching.

Research in security of data is very important and ur-
gently needed for developing countries. The main reason
is that current security software is usually not available
for use in these countries, as it is only recent that in-
ternational cooperation in the area of network security is
becoming possible because certain legal and political bar-
riers have been lifted recently. For example, in Septem-
ber 16, 1999, the US Government relaxed ban for the ex-
port of encryption technology. Thus, such software will



have to be developed locally by university researchers
and computer system developers to cater for the local
needs. This paper reports a first attempt at creating a
local security software.

The work reported in this paper was initially motivated
by security concerns on transmitting data across the Uni-
versity of the South Pacific (USP) intranet, called USP-
Net (http://www.usp.ac.fj), designed and implemented
as an e-commerce application to cater for a distance mode
education and related administrative work. An initial de-
velopment was that of an algorithm for text and image
encryption, which is fast and (like RSA) has strong resis-
tance to attacks by adversaries who may utilized image
data and ciphertext. The algorithm was used at USP as
a private key algorithm. The algorithm is based on the
method which explores the possibilities of a straightfor-
ward approach to look at what kind of finite automaton
(roughly, graph) is needed for encryption. It turns out
that graphs of large girth are effective tools for the en-
cryption of images.

Since 2001, a team of researchers and software de-
velopers from USP, Sultan Quaboos University (SQU,
Oman) and University of Kyiv-Mohyla Academy have
been working on the development of a new version of the
original USP system. The new package contains modi-
fied private key algorithms for the encryption not only
of txt files but other text and image data in other for-
mat - special programs to work with the html, pdf, gif
files as well as universal program to work with any data
in WINDOW'’s 9x/2000 alphabet. The algorithms have
variable sizes of keys, are robust and compare well with
the performance of some existing algorithms. The most
important innovation is an algorithm where special fam-
ilies of graphs will be used for public keys, as well as for
electronic signatures. A prototype model of the software
package is ready for demonstration.

This paper presents a first description of graph theo-
retical approach used in the development of public key
algorithms and some new results on symmetric encryp-
tion.

III. TWO TYPES OF ATTACKS

Agsume that an unencrypted message, plaintext, which
can be image data, is a string of bits. It is to be trans-
formed into an encrypted string or ciphertext, by means
of a cryptographic algorithm and a key. In order for the
recipient to read the message, encryption must be invert-
ible.

Conventional wisdom holds that in order to defy easy
decryption, a cryptographic algorithm should produce a
seemingly chaotic pattern: that is, the ciphertext should
look chaotic. In theory, an eavesdropper should not be
able to determine any significant information from an
intercepted ciphertext. Broadly speaking, attacks to a
cryptosystem fall into 2 categories: passive attacks, in
which adversary monitors the communication channel
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and active attacks, in which the adversary may trans-
mit messages to obtain information (e.g. ciphertext of
chosen plaintext).

Passive attacks are easier to mount, but yields less.
Attackers hope to determine the plaintext from the ci-
phertext they capture; an even more successful attack
will determine the key and thus compromise the whole
set of messages.

An assumption first codified by Kerckhoffs in the nine-
teenth century is that the algorithm is known and the
security of algorithm rests entirely on the security of the
key.

Cryptographers have been improving their algorithms
to resist the following list of increasingly aggressive at-
tacks:

i) ciphertext only — the adversary has access to the
encrypted communications;

ii) known plaintext — the adversary has some plaintext
and its corresponding ciphertext.

IV. BASIC APPROACH

One of the classical models of the procedure for en-
coding data is to present the information to be sent as
a variety of n-tuples over the finite Galois field GF(q).
We have to “encode” our message x by taking an affine
transformation y = Az + b, where A is a certain matrix
and b is another n-tuple.

Our proposal is based on the combinatorial method of
construction of linear and nonlinear codes, which has a
certain similarity with the classical scheme above. It is
different from graph theoretical tools used in [5], [9].

Let T’ be a k-regular graph and V(T') is the set of its
vertices. Let us refer to the sequence p = (vy,v2, -+ ,Up),
where v; € V(T) , v; # g2, ¢ = 1,5+ ,up_a, and
vil'viy1, 2 =1,---,n—1, and v, = v, as encoding se-
quence and encoded vertex of v = v;. Clearly for u = v,
there is sequence p of length s such that u, = v. We
refer to p1 as decoding sequence for v, and write p = p~*.

In the case of vertex transitive graphs set of all encod-
ing sequences of certain length starting from the chosen
vertex vy may be considered as the set of possible keys.
To apply the key p from this set to the vertex v means
taking the last vertex of walk p9 where g is the graph
automorphism moving vy to v. In case of parallelotopic
graphs defined below there exists a combinatorial way of
description keys in a uniform way, which does not depend
on starting vertex (or message).

The girth ¢ = ¢g(T") of a graph T is the length of the
shortest cycle in the graph.

If the length of the encoding sequence p of the k-regular
graph [ of girth g = ¢(T') is less then g, then v, # v for
any vertex v.

If one knows the length ¢t < g/2 of the decoding se-
quence the probability of generating the correct message
applying the encoding sequence at random is 1/(k(k —



1)!71). In this case the algorithm is k(k — 1) secure. We
will use the term graph encryption scheme for the pair
(T, t).

V. ON GRAPH THEORETICAL ONE-TIME
PADS

The revolutionary classical result on private key algo-
rithm was obtained by C. Shannon at the end of the 1940s
(see [23]). He constructed the so-called one-time pads,
whose keys and strings of random bits at least as long as
a message itself, achieved the seemingly impossible: an
eavesdropper was not able to determine any significant
information from an intersected ciphertext. The simplest
classical example is as follows: if p; is the i-th bit of the
plaintext, k; is the i-th bit of the key, and ¢; is the first bit
of the ciphertext, then ¢; = p; + k;, where + is exclusive
or, often written XOR, and is simply addition modulo 2.
One-time pads must be used exactly once: if a key is ever
reused, the system becomes highly vulnerable.

It is clear that the encryption scheme above cannot re-
sist attacks of type (ii) - one simply subtracts p; from c;
and gets the key. The construction of Shannon’s one-time
pad is theoretically sound. In practice, however, we have
a size of information which is exponentially larger than
the size of the key. Also, a one-time usage of the pass-
word is impossible because it makes communication ex-
pensive. Nevertheless construction of new one-time pad
is important to show the possibility of the chosen method
of encryption.

Theoretically, if we have a family of one-time pad p(n)
for the encryption of the text of the length n, we can
use it safely c¢(n) times, where ¢(n) > 1 is bounded by
a constant independent from n, according to Shannon’s
result. Such an encryption schemes may have even a
resistance to attacks with known plaintext and ciphertext
(type (ii)), but again the complexity of breaking key is
bounded above by some constant.

First question: Can we find a graph of girth g such
that for an encryption bypass of length < [g/2], is the
graph a one-time pad?

Examples of such graphs can give us an idea on what
objects are good tools for encryptions in practical situa-
tions where the size of the key is essentially smaller than
the size of the plaintext. Besides, one-time pads can be
used as blocks in real life encryption algorithms.

Let us consider our encryption bypasses of length ¢ <
[g/2] for the graph T of girth g.

If T is a one-time pad then the ratio prey(7)/Pmes(i)
of probabilities prey (i) and pmes(i) to guess the encod-
ing sequence and to guess the message (plaintext) in the
scheme (T';,t;), respectively, equals 1.

We will introduce below one-time pads with a certain
resistance to an attack of type (ii), which are bipartite
graphs. These are graphs related to tactical configura-
tions. A tactical configuration, so-termed by E. H. Moore
nearly a century ago, is a rank two incidence structure
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A = A(l,p,a,b) consisting of [ lines and p points in which
each line is incident to a points and each point is inci-
dent to b lines. We denote the incidence graph of A by
I' =T'(A), though when no confusion arise, we may abuse
terminology and refer to I' as a tactical configuration as
well. The incidence graphs of incidence structures are
called bipartite graphs. If structure has a tactical con-
figuration, then the incidence graphs are called biregular
with bidegree a, b.

Graph I'(A) has order v = [ 4+ p (number of vertices),
and size e = la = pb (number of edges). As usual, the
girth of the graph is the length of its minimal cycle.

We will prove the following statement;:

Lemma 1 If the tactical configuration with bidegrees r +
1 and s+1 and parameters P=p, l=I has girth g > 2k+2,
E =p(r+1)=I(s+1), then the following inequalities
hold:

1) Ifk=2t+1, then

14+r+rs+r2s+r2s2 + ... 4 ritlst <p "
1+ s+sr+82r+82r2 - sttpt <1

2) If k = 2t, then

L+r+rs+ris+r2s?+--+rist <p, @)
14+s+sr+82r+r2s2+---+strt <1

Proof: Let us consider a chosen point P. The pass
of length h < k between two chosen vertices is unique.
Thus counting of vertices at distance h can be done by
the branching process. Thus, we have [; = r + 1 lines at
distance 1 from P, p; = (r + 1)s is the number of points
at distance 2 from P ..., I3 = (r + 1)rs is the number of
points at distance 3 from P. Let k = 2t + 1. Then

lopy1 = (r+ l)rhsh and popyo = (r + 1)7“hs'hLl ,
where h =0,1,...,¢.

Obviously Iy + Is + -+ - + l2441 < [ and this inequality
is equivalent to (1).

If we change the points and lines in the computation
above , we will get (2) by branching process starting from
a chosen line L.

The k = 2t inequalities,

po+p2+---+pu <plo+la+...0<Il, (3)
are equivalent to (2).
QED

Ift+1=s+4+1 =k, then the order of the graph is
v = 2p = 2l. The associated inequalities are equivalent
to the well- known Tutte’s inequality

v>20+(k—1)+...(k—1)9=2/? (4)



The well-known transport problem in Operation Re-
search is equivalent to finding the tactical configuration
of given size (number of edges) E with minimal number
of vertices. There is a well-known efficient algorithm to
solve this transport problem. In many cases this algo-
rithm can be modified to solve efficiently the transport
problem with additional restrictions, when one is looking
at the tactical configurations with minimal number of
vertices among graphs satisfying the list of restrictions.
One of the natural list of restrictions is an absence of
cycles of length 4, 6, ...2k — 2. One can notice that the
incidence graph of tactical configuration does not have
cycles of odd length and the last requirement is equiva-
lent to inequality g > 2k.

We refer to a tactical configuration with bidegrees s+1
and r+1 of girth g > 2k and minimal possible order p+1
as a cage configuration.

It is clear that if inequalities (1) and (2) above are in-
stead equalities, then we have a cage configuration. In
this special situation we will use term a perfect cage con-
figuration. Tt is clear that in the case of the perfect cage
configuration g = 2k, we have an example of a one-time
pad.

If t = s, then the cage configuration is a bipartite
“cage” (see [9]) of degree ¢t + 1. A cage is a ¢ + 1-regular
graph of given girth with the minimal number v(k, g) of
vertices. The cage with number of vertices on the Tutte’s
bound above and odd girth is the so-called Moore graph.
The only Moore graphs of degree 2 are 2n + 1-gons. An
m-gon is just a totality of vertices (points) and edges
(lines) of ordinary cycle of length m with the natural
incidence. A Moore graph of degree k¥ > 3 has diameter
2 and k € {3,7,51}.

We are interested in the case of even girth because our
graphs are bipartite and have no odd cycles. In case of
degree 2, a 2n-gon is an example of perfect cage con-
figuration. In fact, the (2, g)-cage is the g-circuit, and
v(g,2) =g.

Let us list some known families of cages of even girth.

i) the (k,4)-cage is the complete bipartite graph Ky,
and v(k,4) = 2k.

If k = ¢+ 1 for a prime power ¢, then

ii) 1) a(k,6)-cageis the incidence graph of a projec-
tive plane PG(2,q), and v(k, g) = 2(¢®>+q+1);
2) a (k,8)-cage is the incidence graph of a gen-
eralized quadrangle CQ(q,q), and v(k,g) =
20¢* + ¢ +q+1);
3) a (k, 12)-cage is the incidence graph of a gener-
alized hexagon GH (q,q), and v(k,q) = 2(q +
D(¢* +¢* +1)

The (3, 8)-cage is the Tutte - Coxeter graph (v = 30)
[22].

One has v(7,6) = 90 and the unique (7,6) cage was
independently found in [9], [5]. Finally, there are 3 dis-
tinct (3,10)- cages, all of them a biparite [10], - and
v(3,10) = 70.
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The problem of determining v(k, g) was posed in 1959
by F. Kartesi who noticed that v(3,5) = 10 was realized
by the Petersen graph. Sachs showed that v(k, g) is finite
and Erdos and Sashs gave the upper bound. This bound
was improved in [11], and for the best known general
bound, see [20]. For the case of bipartite graphs, similar
problem had been considered in [18]. It is clear that a
lower bound was given by Tutte’s formula.

The nontrivial examples of families of cages ( (ii) -
(3)) are special cases of the generalized m-gons, defined
by J. Tits in 1959 (see [21]) as tactical configurations of
bidegrees s + 1 and ¢ + 1 of girth 2m and diameter m.
The pair (s, t) is known as the order of generalized m-gon

The following statement is well-known (see [21]):

Theorem 2 A finite generalized n-gon of order (s,t) has
n € {3,4,6,8,12} unless s =t =1. If s > 1 and t > 1,
then

1)n#12;

2) ifn=4, then s <t%, t < s%;

3) if n =6, then st is a square and s < 3, t < s3;
4) if n =8, then 2st is a square and s < t*, t < s%;

Without the second statement involving the inequalities,
we have the original Feit-Higman theorem.

The known examples are incidence graphs of rank 2
finite simple groups of type Lie. The regular incidence
graphs are cages which have been listed above.

The biregular but not regular generalized n-gons have
parameters s = ¢ and ¢ = ¢°, where ¢ is some prime
power. The list is below.

1)n=4
(i) s = ¢,r = ¢ and q is arbitrary prime power

(i) s = ¢?,r = ¢® and ¢ is arbitrary prime power

2) n==6
s=¢> t=¢% and ¢ = 3%+ k> 1

3)yn=28
s=gq,t=¢q> and ¢ = 22k+!

Theorem 3 Finite generalized polygons are perfect cage
configurations.

Proof: The order of regular generalized m-gons of de-
gree g+1is 14+q+q>+---+¢™ ! and reaches the Tutte’s
bound for graphs of girth m — 2. The finite irregular tac-
tical configurations which are generalized polygons have
to be of even diameter m = 2k . If their degrees are r+1
and s + 1 then the numbers of points p and number of
lines [ can be computed by formulas

p = 1+r+rs+ris+ris® 4 - prksh ppktigh
I = 14+s+8r+82r+- -+ shphtl p ghtlphtl



where k has to be an element of {2,3,4,6}. They are at
the bounds of (1) and (2). Thus finite generalized m-gone
is a perfect cage configuration.

QED

It means that the generalized m—gons, related to sim-
ple Lie groups G(F,) with chosen Dynkin diagramm over
the finite field Fy, ¢ = p™, n > 1, where p is prime, pro-
duce an infinite family of one-time pads. They have a
certain resistance to attacks of type (ii). The best resis-
tance given by the constant of complexity would be in the
case of G(q) = (F1)%(q), ¢ = 22F*'. Here, the problem of
finding the pass between 2 vertices of general position in
generalized octagon is a well-known difficult problem in
Algebraic Combinatorics.

The set of points (lines, respectively) of generalized m-
gon can be considered as a disjoint union of vector spaces
over the Fj. It is convenient to treat elements of Fj as
tuples over the fixed alphabet F},, so we may encrypt
“potentially infinite” text over Fj,. We may consider,
say, a real-life encryption schemes with flexible keys if
we restrict our passes to the set of passes for the m-gon
related to G(F;) where p < t < ¢ is chosen power of
p. We may vary the resistance f(n) of such a scheme to
attacks of type (i) (known ciphertext), or we may let it
be as close to one-time pad as we want, or we may chose
an increasing f(n). However, the resistance to attack of
type (ii) is bounded by some constant.

We need families of increasing girth to construct the-
oretical graph schemes of encryption for the case of in-
creasing resistance to attacks of type (ii).

VI. PARALLELOTOPIC GRAPHS

Let " be a bipartite graph with partition sets P;, ¢ =
1,2 (inputs and outputs) . Let M be a disjoint union of
finite sets M; and M.

We say that ' is a bipartite parallelotopic graph over
(My, Ms) if there exists a function 7 : V(I') = M such
that if p € P;, then 7(p) € M; and for every pair (p, j),
p € P;, 7 € M;, there is a unique neighbor u with given
w(u) =j.

It is clear that the bipartite parallelotopic graph T is
a (|Mi]|,|Ma|) - biregular graph.

So a parallelotopic graph is just a bipartite graph with
special colorings for inputs and outputs into | M| and M-
colors, respectively, such that for each vertex there exists
a unique neighbor of any given color.

We refer also to the function 7 in the definition of bi-
partite parallelotopic graph as a labelling. We will often
omit the term “bipartite”, because all our graphs are bi-
partite. In case of encryption scheme of bipartite graph
we will use one of the partition sets (inputs) as the plain-
text space.

Linguistic graphs:

Let M be the Cartesian product of ¢ copies of the set

M. We say that the graph T’ is a linguistic graph over
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the set M with parameters m, k,r, s if

I’ is a bipartite parallelotopic graph over (Vi,Va),
My = M", My = M? with the set of points I = M™
(inputs) and set of lines O = M* (outputs). (i.e. M™
and MP* are the partition sets of T'). It is clear that
m+r==k+s.

We use the term linguistic coding scheme for a pair
(T',n), where T is linguistic graph and n < g is the length
of encoding sequences.

We choose a bipartite graph in the definition above be-
cause regular trees are infinite bipartite graphs and many
bi-regular finite graphs of high girth can be obtained as
their quotients (homomorphic images).

Using linguistic graphs, our messages and coding tools
are words over the alphabet M and we can use the usual
matching between real information and vertices of our
graph. In case of M = GF(q) the similarity with the
linear coding is stronger, because of our messages and
keys are tuples over the GF(q).

VII. ABSOLUTELY OPTIMAL SCHEMES,
ELEMENTS OF EXTREMAL GRAPH THEORY

One-time pads, whose keys and strings of random bits
at least as long as the message itself, achieve the seem-
ingly impossible: an eavesdropper is not able to deter-
mine any significant information from an intersected ci-
phertext. The simplest classical example is as follows:
if p; is the i-th bit of the plaintext, k; is the i-th bit
of the key, and ¢; is the first bit of the ciphertext, then
c; = p; + k;, where + is exclusive or, often written XOR,
and is simply addition modulo 2. One-time pads must
be used exactly once: if a key is ever reused, the system
becomes highly vulnerable.

It is clear that the encryption scheme above cannot
resist attacks of type (ii).

Families of one-time pads can be constructed for the
case, when the key space and the message space have the
same magnitude. For theoretical studies of cryptographic
properties of graph I', we will always look at encryption
scheme (T',t) , where ¢t = [g/2] and g is the girth of T.

Let T'; be an absolutely optimal family of graphs, i.e.,
family of graphs such that the ratio prey(i)/Pmes(i) of
probabilities prey (i) and pmes(i) to guess the encoding
sequence and to guess the message in the scheme (T';, ¢;),
respectively, goes to 1 when 7 is growing.

The constructions of absolutely optimal families of
schemes of high girth of increasing degree are connected
with studies of some well-known problems in Extremal
Graph Theory (see [2]). Let e = ex(v,n) be, as usual,
the greatest number of edges (size) in a graph on v ver-
tices, which contains no cycles Cs, Cy, ..., C,.

From Erdés’ Even Cycle Theorem and its modifica-
tions [2], it follows that

ex(v,2k) < Cot+t/k (5)

where C' < 90k is a positive constant.



It is easy to see that the magnitude of the extremal
family of regular graphs of given girth and of unbounded
degree have to be on the Erdds upper bound (5). This
bound is known to be sharp precisely when k = 2,3, and
5. Thus the problem of constructing absolutely optimal
families of high girth is a difficult one. It has been shown
in [13] that the incidence graphs of simple groups of Lie
type of rank 2 can be used as absolutely optimal encryp-
tion schemes with certain resistance to attacks of kind
(i), and examples of families of absolutely optimal cod-
ing schemes of parallelotopic graphs of girth 6, 8, 12 were
considered. Let us look at one of them.

Ezample 1

Let P = {(z1,x2,23,24,25)|lz; € GF(q)}, L =
{ly1,Y2,Y3,Y4,Ys]|yi € GF(q)}. Let us define a bipartite
graph I as: (a,b,c,d,e)I[x,y,z,u,v] if and only if

y—b==xa
z—2¢c=—2xb
u— 3d = —3zc

2v — 3e = 3zb — 3yc — ua

Input (a,b,c,d,e) and output [z,y,z,u,v] are con-
nected by edge in graph [ iff the conditions above hold.

From the equations above, it follows that =
(21,22, 73,74, 75)) = 1 and 7([y1,Y2, Y3, Y4, ys]) = 1
is a labelling for the parallelotopic graph I.

It can be shown that for charGF(q) > 3 the girth
of this graph is at least 12. Directly from the equa-
tions above we can get that I defines the linguistic cod-
ing scheme with parameters (1,1, 5, 5) of affine type over
GF(q). It is clear that in case of encoding tuples of length
5, we get Prey = 1/!](1] - 1)47 Pmes = 1/q5 and I = IS(q)
is an absolutely optimal family of linguistic graphs.

In fact, we are working with graphs of tactical config-
uration; in this case, we can get stronger bounds than
those obtained by the Even Cycle Theorem.

Let us consider some corollaries of Lemma 1. Without
loss of generality, we will assume r = a™,s = a, where
m>1

In case of k = 2t, we may omit all terms of the left-
hand-side Of (2) except the highest terms:

a™a < p, ata™ <.

Adding new inequalities, we will get a(™T1Dt < v/2, or
a < (v/2)1/((m+D)

We have l(a+1) = eorla =e—1. Thuse—1 <
l(U/z)l/((mH)t)_

Putting v instead of [, we will get e <
v(v/2)/m+DH) 1y which is equivalent to

e < (1/2)(/ (DD, (1+1/(m+1)1) 4y, (6)

Remark: If m = 1, the magnitude of right-hand-side is
the same as that in the Erdds’ Even Cycle Theorem, but
the constant is better, has monotonic dependence on m,
and always < 1.

If m > 1 then (4) is stronger then Erdds’ inequality in
the sense of magnitude. Of course (4) is applicable only
to bipartite biregular graphs.
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Let us consider the case k = 2t + 1. If we discard
some summations from the left-hand-side of (1) we get
rtst + rttlst < p.

As we set before, 7 = a™, s = a. Thus ™! (a™+1) <
p.
From I(p+ 1) = p(a™ + 1) = e, we get a™*t(I/p)(a +
I <pora™i(a+ 1)l <p?=1%(a+1)%/(a™ + 1)%

Simplifying the last inequality, we obtain

a™tt(@™ +1)?/(a+1) < .

We can notice that function f(a) = (a™ + 1)?/(a + 1)
is increasing. Thus

fla—1a™*t <] or a™*t (a—-1)2+1] < I

From the last inequality, we get
(a —1)mtH2mtt=l < org—1<el/(mt+m+t—1)).

We know that l(a + 1) = e Solla—1) = e —2]
and multiplication of two sides of the last inequality by
[ produces

e < [1+1/(m(t4+2)+t-1) 4 o]

Finally, substitution of order v instead of [ gives us a

slightly weaker inequality

e < pl /(D +-1) | oy (7)

Remark If m = 1, then the bound above has the same
magnitude with that of Erdos’ bound in the Even Cycle
Theorem, but the constant is better then in (5). In fact,
we can improve the constant by substituting I = v/2 into
inequality (3).

e < (1/2)1+1/(2t+1)v1+1/(2t+1) + (8)

If m > 1 then magnitude of (7) is better than in the
Erd6s’ bound.

A family of graphs of tactic configurations is absolute
optimal, if the magnitude or the size of graphs is same as
in that in right-hand-side of the inequalities (i) and (ii).
It is clear that a linguistic graph cannot be a one-time
pad, but family of linguistic can be absolutely optimal as
in the example above. We may generalize graphs I5(q),
which are special induced subgraphs of the generalized
gexagon related to special induced subgraphs in the in-
group G2(q) in the following way:

Ezample 2. Let the point P and the line L form a
chosen edge of a tactical configuration of generalized m-
gon. We can consider a totality Vp (V) of points (lines,
respectively) at maximal distance d (d = m/2 or d =
[m/2] + 1) with the restriction of incidence relation on
Vp U Vy. It will be a linguistic absolutely optimal family
of graphs.

If the generalized m-gon is a geometry of finite simple
group G(q), ¢ = p", where p is a prime, then we may
treat V}, , Vr and the totality of walks as a vector spaces
over F,, and use them for the encryption of potentially
infinite text.

For known absolutely optimal schemes of high girth
with the resistance to attacks of type (ii), the girth is
< 16, which is the girth of generalized octagon. The



problem of breaking the key during the attack of type
(ii) is equivalent to the solution of a system of nonlin-
ear equations of degree d(g) depending on the girth g.
Graphs with better resistance to attacks of this type will
be considered in the next section.

VIII. OPTIMAL SCHEMES OF UNBOUNDED

GIRTH

It is known that one-time pads are impractical be-
cause in real life we need to deal with large amounts
of information. A reasonable strategy is to consider the
weaker requirement then equality of dimensions diey of
key space and dimension dp of plain text space. Let
us consider the family of graphs I'; of increasing girth g;
such that for corresponding coding scheme (T';, ¢ = [g:/2])
lm (p()key)¢/P(1)mes = 1, ¢ = 0o where ¢ is the constant
which does not depend on 7.

In this situation we say that the schemes of I'; form
an optimal family of schemes. It is easy to check that in
case of the optimal family of schemes corresponding to
graphs of degree [; and unbounded girth g;, we have

gi > vlogy, _q(vi) 9)

The last formula means that I';, ¢ = 1, ... form an infinite
family of graphs of large girth in the sense of N. Biggs

[1]).

A few examples of such families are known (see [1] and
8], [19)).

We have v < 2, because of (1), but no family has been
found for which v = 2. Bigger s correspond to more se-
cure coding schemes. A. Lubotzky (see [11]) conjectured
that v < 4/3.

IX. EXPLICIT CONSTRUCTIONS,
COMPARISON WITH OTHER METHODS

Explicit constructions of optimal families of linguistic
graphs over M = GF(q) with good complexity of com-
putation of walks have been considered in [13], [24].

We are exploring one of them, which is the family
of g-regular linguistic graphs L,(q) such that the input
(x1,22,...,2,) = (z) and the output [y1,¥2,...,yn] =
[y] are neighbors if x;—y; = ()Y, for 2 < i < n, where
k(i) < i, s(i) <i and n can be any number. In fact, the
parallelotopic morphism of L, (q) onto L,,(q), n > m is
induced by canonical projecture of n-dimensional vector
space onto m-dimensional. Each graph L,(q) is similar
to the graph from Example 1 above.

Of course, we are not computing the adjacency matrix,
but we have two affine operators N(«, (x)) and N(a, [y]),
and we compute the neighbor of (z) and [y] with the first
component a.

If n and the dimension d of key space are “sufficiently
large”, then our encryption resists to attack of kind (ii).
Why?
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We have the following argument: Family L, (q), ¢ > 2
is a good approximation of the ¢ regular tree T,. More
precisely Ty is the projective limit of L,(¢). n — oo.
The plaintext p and the ciphertext ¢ are vertices in L, (q)
roughly T}, at a distance d. The key is the uniquely deter-
mined pass between p and ¢. Let hy(d) be the complexity
of the determination of the pass between p and ¢. Then
hg is an increasing function in variable d. So, if the girth
is growing, then we may attain the level security we want.
There is no proof that h, is polynomial function.

Remark. The encryption and decryption procedures,
both depending on key, have the same complexity (sym-
metric encryption), but the key is hard to compute.

Let us compare our encryption with the following pop-
ular scheme of linear encryption:

We treat our message as a polynomial f(x) over GF(q)
(our tuple is an array of coefficients of f(z)). The linear
coding procedure is just a multiplication of our f(z) of
degree n — 1 by a polynomial g(z), deg(g(z)) = ¢, t > 0.
Thus, y is just an array of coefficients of the polynomial
F(z) = f(x)g(z), m =deg F(z) =n+t— 1.

It is clear that this symmetric encoding is cannot resist
attacks of type (ii) and sizes of plaintext and ciphertext
are different. Counting of operation in case of equal di-
mensions of the plaintext and the ciphertext for the clas-
sical scheme as above and our scheme corresponding to
L,(q), where ¢ is a prime, shows that our encryption is
faster.

The development of the prototype model (a fragment
PL/SQL code is shown in Figure 1) allows us to test the
resistance of the algorithm above to attacks of different
time (see Figure.2. Prototype Model, Based on Oracle
Portal 9iAS, Release 1).

Our initial results from such tests show that the results
are encouraging ([4]). Let us consider, for example, the
case of p = 127 (size of ASCII alphabet minus “delete”
character). Let t(k,l) be time (in seconds) we need to
encrypt (or decrypt because of symmetry) file, the size
of which is & kilobytes with a password of length 1 ( key
space roughly 27!)) by a Pentium IV (Linux Red Hat 7.2
Operational System, Oracle Portal 9iAS, PL/SQL lan-
guage). Then some values of t(k,[) can be presented by
the following matrix, represented graphically in Figure 3:

I\ k|1Kb 2Kb 3Kb 3.5Kb

9 ]0.194187 0.3737  0.560048 0.653088
13 [0.276417 0.551537 0.830635 0.966417
17 10.365576 0.731214 1.099837 1.281369
21 {0.454007 0.910893 1.368683 1.596617
25 10.542276 1.090975 1.63913 1.909816
35 [0.766706 1.53664 2.312793 2.697898
95 [1.209971 2.438037 3.656054 4.270853
75 |1.659585 3.331478 5.005951 5.84399

Encryption and Decryption functions were coded by
PL/SQL language too. By using C++ for encryption and
decryption functions, we get faster results for algorithm
evaluation.

The following result was reported recently in [16].



CFEATE OF FEPLACE PROCEDURE p_demo3 is

w_id nunher i=1;
w_plaintext warcharzZ(4000):="'"':
v_pazaw varcharZ (4000):="";
v_time nunber (20,107 ;

cursor demo_cursor is

zelect plaintext, password

from project.demo3l

where id =0

for update of cyphertext, time_ enc

begin
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-- plaintext record in the demod table

nowait;

J."1:‘k1€‘k1€‘8‘1€‘8‘1€‘ﬂ'*‘k*‘k*‘k1:‘ﬂ'1:‘ﬂ'1:‘8‘1:‘k1:‘kCr-&-rpting*‘ﬂ'*‘k*‘k*‘k1:‘ﬂ'1:‘ﬂ'1:‘8‘1:‘k1:‘k1:‘k1€‘k1€‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k’#

for demo_record in dema_cursor loop

dbms output,put line [ FEFETETEEEEEREEASELELET Fropyp Lion TR EEE AR RS ALTEL ) 2

SELECT to_mumber (to_char (systimeatanp,

'SEEESHFFY 1) into v_time from dual;

update project.demod set cyphertext=f cryptoidemo_record.password,
demo_record.plaintext) where current of demo_cursor;

update project.demod set time_enc=(to_number|to_char(systimestanp,
'GERESHFFY 1)-w_time) where current of demo_cursor;

end loop:
END p_demos;
!

FIG. 1: PL/SQL code

Theorem 4 The complexity of the above algorithm for
the encryption of text of length n over some alphabet with
the password of length m is O(nm).

It means that the time of the encryption is Cnm, where
the constant C' depends on chosen alphabet and param-
eters of the computer only.

X. PARALLELOTOPIC GRAPHS OF LARGE
GIRTH AND ASYMMETRIC ALGORITHMS

Let I be a parallelotopic graph without loops and mul-
tiple edges of girth g , i. e., the graph without cycles of
length < g.

We can consider the neighbor w = N,(v) of vertex
v in graph I' such that the color of edge w is a € M.
Let N(z1,2z2,...,2t) = Ngy(Ngy (.. (Ngy, (v))...)) in
variables z; € M, v € V(T'). As before, we will treat
an element v of V(T') as a plaintext, and the sequence
v = v,V1,V2,...,0, where v;I'v;y; as the encryption
tool. If Ny, (v;)=v;s,> then the pass is uniquely defined
by string (or word) ai, as,...,a; over the alphabet of
“colors” M and “inverse” string a;—1,a¢—2, - --,aq. Here,
ag is the color of plaintext defines “decrypting” sequence
of vertices. Thus we identify walks on I with strings over
M.

The RSA algorithm demonstrated that the informa-
tion for encryption (number pq) can be just part of the
information for decryption (at least, numbers p and q).

Let us consider such a situation (“encryption with se-
cret”) in case of graph encryption.

Let ¢, be the binary relation ¢, = {(u,v)lv =
N(ay,as,...,a:)(v)}, where w is the string a1, as, . . ., a;.
It is clear that for the encryption with the key w, we do

not need the information about our graph I'. We need
only the graph T';, of the binary relation ¢,,. Let N¥(v)
be the operator of taking the neighbor of the vertex v in
the graph I';,. The usual situation is that the complexity
of computation N* is much worse than N if we do not
know the decomposition

N = Ny (Nag -+ (Nay) ). (1)

So we may present the function N, in the form

(V) -),

where word w is a product (concatenation) of words w1,
ws -+ ,ws to make computation of N, faster.

It is clear that to find the decomposition above could
be a hard task even in case where the graph I' is known.

We can give our recipient the “public key”
Nw1 . .N%s. The recipient can encrypt, but can not
decrypt if the computation of the superpositions of
(Nws)=L (Nws=1)=1t . (Nw1)~! is sufficiently difficult.

Let us discuss this approach in case of linguistic graphs
T of rational (polynomial) type over commutative ring
K. In case of such graphs, M = K and the function
N, (v), obtained by taking the neighbor of vertex v =
(y1,y2,...,yt) € IUO, is a polynomial expression from
variables y;, i = 1,k. A degree of polynomial linguistic
graph is the maximum degree of polynomial expressions
for each N, (v) in variables y;.

In this case N*i, i =1,2,...,s are polynomial expres-
sions P; over the commutative field K of degree d;. For
simplicity let us assume that the graph is regular , i.e.,
O = I = K™, and the recipient has polynomial expres-
sion N without its decomposition into smaller expres-
sions. If degN¥ = d then encryption from the given ver-
tex could be done not more than for O((n?) elementary
steps. Thus, if the recipient’s “public key” is given as the

NY = N¥i(Nvz ..
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Lpdate | Celete | Resetl

Id |1
ENC (sec)  [0.392324
DEC (sec)  [0.191141

Encryption Demo

Password|123456759
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Tniversity of California,

Monster and Vertex

Janta Cruz, July 24-23,

O

Chiphertesxt
) Tr] w0 & TEOH

SNOOwF=P~d | ! 3U0"ctgl] SmE3 20=a00NHa) y00W4wm?[@ cO00
. I0hS] *O0ws *0

O'4vH.rO>d snh¥0a) REL("~]Fp..* PD'x

'Ei

€ EOnO0+7{0cC0" y' LOVE6Ne +50000R0]

LI fle

1#

PLAINTEXTZ

2000

Nextl Update | Delete | Fes

"Algebraic Conbinatorics,
Operator Llgebhras™
Tniversity of California,

LI fle

Monster and Vertex

Santa Cruz, July 24-25,

[

etl
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FIG. 2: Prototype Model, Released for Oracle Portal 9iAS, Release 1.

list of coefficients of monomial expressions for N, then
the complexity of encoding procedure for the recipient
will be proportional to size of this list.

In this case, encryption (or decryption) is faster be-
cause the steps N,; are smaller.

What does a recipient need for the decryption of a
given message (b1, ba, ..., b,)? The recipient has to solve
the system of polynomial equations

Nw(l'l,l'g,...,l'n) = (bl,bg,...,bn).

This task is a classical difficult problem in algebra. The
system above can be investigated for dom?) steps, where
d is the maximal degree of polynomials. We can do better
(d°™) if we know that the system is consistent.

If we have a family of polynomial linguistic graph of
bounded degree, we may choose the dimension n such
that the recipient could encrypt but could not decrypt
and use graph encryption in “public key fashion”, be-
cause we would use the gap between computations of

polynomial in a given point and the investigation of a
given system of equations.

XI. CONCLUSION

Security of network and data are important problem
in network learning. Reliable private key algorithm are
needed for the data storage, and public key type algo-
rithms are needed for the exchange of passwords and for
solving authorization problems (digital signatures).

The graph theoretical approach allows us to construct
a family of fast nonlinear algorithms of encryption with
flexible size of keys. Some of the algorithms are faster
then linear or affine encryption methods but have bet-
ter security, in particular they are resistant to attacks
when the adversary knows the plaintext and the cipher-
text both ( p N c attacks).

In the case (theoretical, but not practical) when size



43

Encryption time
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N /x//- —m—2Kb
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20 40 60

Password Lenght (Bytes)

80

FIG. 3: Encryption time.

of key coincides with size of text, we get the absolute
algorithm according to C. Shannon’s definition, with a
certain resistance to pNc attacks (classical examples have
no pNe resistance). In fact, if the size of text is growing
but the size of the key is fixed, pNe security is also grow-
ing. That is why we have good security in case of large
texts (web pages with course descriptions, examination
scripts, image data)

Resistance to p N ¢ attacks allow us to keep a chosen
password for a while, in contrast with “one-time pad” al-
gorithms. Finally we may modified the algorithms based
on linguistic graphs to get the asymmetry and use them
for the exchange of keys (public key case) and digital

signatures.

The prototype model of the package was demonstrated
at the Conference on Multi Agents in Wollongong and
selected for the presentation at the Congress on Network
Learning (Berlin 2001).
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