Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Sexual Health Sexual Health Society
Publishing on sexual health from the widest perspective
RESEARCH ARTICLE

Cervical cancer vaccine development

Ian H. Frazer
+ Author Affiliations
- Author Affiliations

The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Qld 4102, Australia. Email: di.director@uq.edu.au

Sexual Health 7(3) 230-234 https://doi.org/10.1071/SH09132
Submitted: 1 December 2009  Accepted: 16 April 2010   Published: 19 August 2010

Abstract

Cervical cancer is initiated by infection of cervical epithelium with human papillomavirus. Vaccines have been developed, incorporating papillomavirus viral capsids and alum based adjuvants. In extensive clinical trials these vaccines have been shown safe and effective in preventing infection with, and disease caused by, the papillomavirus genotypes they incorporate, in women not already infected. These vaccines have the potential to reduce the global burden of cervical cancer by up to 70%.

Additional keywords: human papillomavirus, papillomaviruses, virus-like particles.


References


[1] Zur Hausen H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr Top Microbiol Immunol 1977; 78 1–30.
PubMed |

[2] Durst M,  Gissmann L,  Ikenberg H,  Zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 1983; 80 3812–5.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[3] Munoz N,  Bosch FX,  de Sanjosé S,  Herrero R,  Castellsague X,  Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003; 348 518–27.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[4] Zhou J,  Sun XY,  Stenzel DJ,  Frazer IH. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 1991; 185 251–7.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[5] Kirnbauer R,  Booy F,  Cheng N,  Lowy DR,  Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 1992; 89 12180–4.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[6] Rose RC,  Bonnez W,  Reichman RC,  Garcea RL. Expression of human papillomavirus type 11 L1 protein in insect cells: In vivo and in vitro assembly of viruslike particles. J Virol 1993; 67 1936–44.
PubMed |

[7] Heino P,  Dillner J,  Schwartz S. Human papillomavirus type 16 capsid proteins produced from recombinant Semliki forest virus assemble into virus-like particles. Virology 1995; 214 349–59.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[8] Sasagawa T,  Pushko P,  Steers G,  Gschmeissner SE,  Hajibagheri MAN,  Finch J, et al. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe. Virology 1995; 206 126–35.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[9] Kirnbauer R,  Taub J,  Greenstone H,  Roden R,  Durst M,  Gissmann L, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1–L2 into virus-like particles. J Virol 1993; 67 6929–36.
PubMed |

[10] Einstein MH,  Baron M,  Levin MJ,  Chatterjee A,  Edwards RP,  Zepp F, et al. Comparison of the immunogenicity and safety of Cervarix® and Gardasil® human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin 2009; 5 705–19.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[11] Chen XS,  Casini G,  Harrison SC,  Garcea RL. Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol 2001; 307 173–82.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[12] Schellenbacher C,  Roden R,  Kirnbauer R. Chimeric L1–L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J Virol 2009; 83 10085–95.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[13] Kanda T,  Kondo K. Development of an HPV vaccine for a broad spectrum of high-risk types. Hum Vaccin 2008; 5 43–5.
Crossref | GoogleScholarGoogle Scholar |

[14] Evans TG,  Bonnez W,  Rose RC,  Koenig S,  Demeter L,  Suzich JA, et al. A phase 1 study of a recombinant viruslike particle vaccine against human papillomavirus type 11 in healthy adult volunteers. J Infect Dis 2001; 183 1485–93.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[15] Harro CD,  Pang YY,  Roden RB,  Hildesheim A,  Wang Z,  Reynolds MJ, et al. Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J Natl Cancer Inst 2001; 93 284–92.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[16] Zhang LF,  Zhou J,  Chen S,  Cai LL,  Bao QY,  Zheng FY, et al. HPV6b virus like particles are potent immunogens without adjuvant in man. Vaccine 2000; 18 1051–8.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[17] Koutsky LA,  Ault KA,  Wheeler CM,  Brown DR,  Barr E,  Alvarez FB, et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 2002; 347 1645–51.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[18] Villa LL,  Ault KA,  Giuliano AR,  Costa RL,  Petta CA,  Andrade RP, et al. Immunologic responses following administration of a vaccine targeting human papillomavirus types 6, 11, 16, and 18. Vaccine 2006;
Crossref | GoogleScholarGoogle Scholar |

[19] Giannini SL,  Hanon E,  Moris P,  Van MM,  Morel S,  Dessy F, et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 2006; 24 5937–49.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[20] The FUTURE II Study Group Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 2007; 356 1915–27.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[21] Garland SM,  Hernandez-Avila M,  Wheeler CM,  Perez G,  Harper DM,  Leodolter S, et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med 2007; 356 1928–43.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[22] Paavonen J,  Jenkins D,  Bosch FX,  Naud P,  Salmeron J,  Wheeler CM, et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 2007; 369 2161–70.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[23] Joura EA,  Leodolter S,  Hernandez-Avila M,  Wheeler CM,  Perez G,  Koutsky LA, et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet 2007; 369 1693–702.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[24] Harper DM,  Franco EL,  Wheeler CM,  Moscicki AB,  Romanowski B,  Roteli-Martins CM, et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 2006; 367 1247–55.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[25] Ault KA. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. Lancet 2007; 369 1861–8.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[26] Hildesheim A,  Herrero R,  Wacholder S,  Rodriguez AC,  Solomon D,  Bratti MC, et al. Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA 2007; 298 743–53.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[27] Olsson SE,  Kjaer SK,  Sigurdsson K,  Iversen OE,  Hernandez-Avila M,  Wheeler CM, et al. Evaluation of quadrivalent HPV 6/11/16/18 vaccine efficacy against cervical and anogenital disease in subjects with serological evidence of prior vaccine type HPV infection. Hum Vaccin 2009; 5 696–704.
Crossref | GoogleScholarGoogle Scholar |

[28] Brown DR,  Kjaer SK,  Sigurdsson K,  Iversen OE,  Hernandez-Avila M,  Wheeler CM, et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naïve women aged 16–26 years. J Infect Dis 2009; 199 926–35.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[29] Fairley CK,  Hocking JS,  Gurrin LC,  Chen MY,  Donovan B,  Bradshaw C. Rapid decline in presentations for genital warts after the implementation of a national quadrivalent human papillomavirus vaccination program for young women. Sex Transm Infect 2009; 85 499–502.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[30] Borja-Hart NL,  Benavides S,  Christensen C. Human papillomavirus vaccine safety in pediatric patients: an evaluation of the Vaccine Adverse Event Reporting System. Ann Pharmacother 2009; 43 356–9.
PubMed |

[31] Kang LW,  Crawford N,  Tang ML,  Buttery J,  Royle J,  Gold M, et al. Hypersensitivity reactions to human papillomavirus vaccine in Australian schoolgirls: retrospective cohort study. BMJ 2008; 337 a2642.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[32] Christensen ND,  Kreider JW. Antibody-mediated neutralization in vivo of infectious papillomaviruses. J Virol 1990; 64 3151–6.
PubMed |

[33] Roden RB,  Hubbert NL,  Kirnbauer R,  Christensen ND,  Lowy DR,  Schiller JT. Assessment of the serological relatedness of genital human papillomaviruses by hemagglutination inhibition. J Virol 1996; 70 3298–301.
PubMed |

[34] Peng SW,  Qi YM,  Hengst K,  Christensen N,  Kennedy L,  Frazer IH, et al. Capture ELISA and in vitro cell binding assay for the detection of antibodies to human papillomavirus type 6b virus-like particles in anogenital warts patients. Pathology 1999; 31 418–22.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[35] Bryan JT,  Jansen KU,  Lowe RS,  Fife KH,  McClowry T,  Glass D, et al. Human papillomavirus type 11 neutralization in the athymic mouse xenograft system: correlation with virus-like particle IgG concentration. J Med Virol 1997; 53 185–8.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[36] Block SL,  Nolan T,  Sattler C,  Barr E,  Giacoletti KE,  Marchant CD, et al. Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics 2006; 118 2135–45.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[37] Muñoz N,  Manalastas R,  Pitisuttithum P,  Tresukosol D,  Monsonego J,  Ault K, et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24–45 years: a randomised, double-blind trial. Lancet 2009; 373 1949–57.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[38] Bonanni P,  Boccalini S,  Bechini A. Efficacy, duration of immunity and cross protection after HPV vaccination: a review of the evidence. Vaccine 2009; 27(Suppl 1): A46–53.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[39] Olsson SE,  Villa LL,  Costa RL,  Petta CA,  Andrade RP,  Malm C, et al. Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine 2007; 25 4931–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |