Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Ancient divergence and biogeography of Raukaua (Araliaceae) and close relatives in the southern hemisphere

Anthony Mitchell A F , Rong Li B , Joseph W. Brown C , Ines Schönberger D and Jun Wen E
+ Author Affiliations
- Author Affiliations

A University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand.

B Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.

C Department of Biological Sciences, University of Idaho, Moscow, Idaho 83843, USA.

D Allan Herbarium (CHR), Landcare Research, PO Box 40, Lincoln 7640, New Zealand.

E Department of Botany/MRC 166, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA.

F Corresponding author. Email: anthony.mitchell@otago.ac.nz

Australian Systematic Botany 25(6) 432-446 https://doi.org/10.1071/SB12020
Submitted: 28 October 2011  Accepted: 2 November 2012   Published: 14 December 2012

Abstract

Molecular genetic analyses were used to reconstruct phylogenetic relationships and estimate divergence times for Raukaua species and their close relatives. A monophyletic group identified as the ‘greater Raukaua clade’ was circumscribed, with eight representative species; its basal divergence was estimated at c. 70 Mya, possibly after Zealandia had separated from Gondwana. Raukaua is paraphyletic because of the placement of Motherwellia, Cephalaralia, Cheirodendron and Schefflera s.s. The phylogeny supports a more narrowly circumscribed Raukaua that includes the New Zealand but not the South American or Tasmanian representatives. Ancestors of the monophyletic South American and Tasmanian Raukaua and the mainland Australian Motherwellia and Cephalaralia diverged at c. 66 Mya and their current disjunction may be vicariant, with overland dispersal between Australia and South America, possibly via Antarctica. Vicariance is also a likely mechanism for divergence at c. 57 Mya of the monophyletic Motherwellia, Cephalaralia and Tasmanian Raukaua. The common ancestor of New Zealand Raukaua¸ Cheirodendron and Schefflera s.s. is inferred to have existed c. 62 Mya in New Zealand, before the marine incursions during the Oligocene, implying that New Zealand Raukaua and Schefflera s.s. survived the inundation period or speciated outside New Zealand and subsequently colonised. Ancestors of Cheirodendron split from New Zealand Raukaua c. 43 Mya and dispersed over vast expanses of the south-western Pacific to Hawaii.


References

Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In In ‘2nd International Symposium on Information Theory’, 2–8 September 1971, Tsahkadsor, Armenia. (Eds BN Petrov, F Csaki) pp. 267–281. (Akadémiai Kiadó: Budapest)

Barker NP, Weston PH, Rutschmann F, Sauquet H (2007) Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana. Journal of Biogeography 34, 2012–2027.
Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana.Crossref | GoogleScholarGoogle Scholar |

Blackburn DT (1981) Tertiary megafossil flora of Maslin Bay, South Australia: numerical taxonomic study of selected leaves. Alcheringa: An Australasian Journal of Palaeontology 5, 9–28.
Tertiary megafossil flora of Maslin Bay, South Australia: numerical taxonomic study of selected leaves.Crossref | GoogleScholarGoogle Scholar |

Bremer K, Friis EM, Bremer B (2004) Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. Systematic Biology 53, 496–505.
Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification.Crossref | GoogleScholarGoogle Scholar |

Brodribb TJ, Hill RS (1999) Southern conifers in time and space. Australian Journal of Botany 47, 639–696.
Southern conifers in time and space.Crossref | GoogleScholarGoogle Scholar |

Brown JM, Hedtke SM, Lemmon AR, Lemmon EM (2010) When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates. Systematic Biology 59, 145–161.
When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates.Crossref | GoogleScholarGoogle Scholar |

Brown JW, Van Tuinen M (2011) Evolving perceptions on the antiquity of the modern avian tree. In ‘Living Dinosaurs: the Evolutionary History of Modern Birds’. (Eds G Dyke, G Kaiser) pp. 306–324. (Wiley: Chichester, UK)

Buckley TR, James S, Allwood J, Bartlam S, Howitt R, Prada D (2011) Phylogenetic analysis of New Zealand earthworms (Oligochaeta: Megascolecidae) reveals ancient clades and cryptic taxonomic diversity. Molecular Phylogenetics and Evolution 58, 85–96.
Phylogenetic analysis of New Zealand earthworms (Oligochaeta: Megascolecidae) reveals ancient clades and cryptic taxonomic diversity.Crossref | GoogleScholarGoogle Scholar |

Campbell HJ, Landis CA (2003) New Zealand awash. New Zealand Geographer 2003, 6–7.

Clague DA (1996) The growth and subsidence of the Hawaiian–Emperor volcanic chain. In ‘The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes’. (Eds A Keast, SE Miller) pp. 35–50. (SPB Academic: Amsterdam)

Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, Austin J, Ward R (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707.
Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1ynsbY%3D&md5=5ecc16e5dd17bb7f757586db53453cc2CAS |

Couper RA (1953) Upper Mesozoic and Cainozoic Spores and Pollen Grains from New Zealand. DSIR, Geological Survey, Paleontological Bulletin 22. (Lower Hutt, New Zealand)

Couper RA (1960) New Zealand Mesozoic and Cainozoic Plant Microfossils. DSIR, Geological Survey, Paleontological Bulletin 32. (Lower Hutt, New Zealand)

Dilcher DL, Dolph GE (1970) Fossil leaves of Dendropanax from Eocene sediments of southeastern North America. American Journal of Botany 57, 153–160.
Fossil leaves of Dendropanax from Eocene sediments of southeastern North America.Crossref | GoogleScholarGoogle Scholar |

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar |

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar |

Ericson PGP, Christidis L, Cooper A, Irestedt M, Jackson J, Johansson US, Norman JA (2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceedings of the Royal Society of London B – Biological Sciences 269, 235–241.
A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFCiurk%3D&md5=f3def92a49c19f5aec78444121b522e5CAS |

Ettingshausen Fv (1887) Beiträge zur Kenntniss der Fossilen Flora Neuseelands. In ‘Denkschriften’, vol. 53, pp. 143–192. (Aus der Kaiserlich-Königlichen Hof- und Staatsdruckerei: Vienna) [In German]

Exon NF, Kennett JP, Malone MJ (2009) Antarctic–Australia separation. In ‘Highlights of ODP Discoveries: Greatest Hits’. (Ocean Drilling Program Legacy). Available at http://www.odplegacy.org/PDF/Outreach/Brochures/Greatest_Hits2/exon.pdf [Verified 15 November 2012]

Ferguson DK, Lee DE, Bannister JM, Zetter R, Jordan GJ, Vavra N, Mildenhall DC (2010) The taphonomy of a remarkable leaf bed assemblage from the Late Oligocene–Early Miocene Gore Lignite Measures, southern New Zealand. International Journal of Coal Geology 83, 173–181.
The taphonomy of a remarkable leaf bed assemblage from the Late Oligocene–Early Miocene Gore Lignite Measures, southern New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFSmtL4%3D&md5=39eceaf69583a33f8d1d9230d8793f93CAS |

Fosberg FR (1948) Derivation of the flora of the Hawaiian islands. In ‘Insects of Hawaii’, vol. 1. (Ed. EC Zimmerman) pp. 107–119. (University of Hawaii Press: Honolulu, HI)

Francis JE (1996) Antarctic palaeobotany: clues to climate change. Terra Antarctica 3, 135–140.

Frodin DG (1990) Identity of Aralia bastardiana Decaisne. Pacific Science 44, 265–276.

Frodin DG, Govaerts R (2003) Raukaua. In ‘World Checklist and Bibliography of Araliaceae’. pp. 307–311. (The Royal Botanic Gardens, Kew: London)

Giribet G, Boyer SL (2010) ‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent, or both? Invertebrate Systematics 24, 1–8.
‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent, or both?Crossref | GoogleScholarGoogle Scholar |

Goldberg J, Trewick SA, Paterson AM (2008) Evolution of New Zealand’s terrestrial fauna: a review of molecular evidence. Philosophical Transactions of the Royal Society B – Biological Sciences 363, 3319–3334.
Evolution of New Zealand’s terrestrial fauna: a review of molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Harbaugh DT, Wagner WL, Allan GJ, Zimmer EA (2009) The Hawaiian Archipelago is a stepping stone for dispersal in the Pacific: an example from the plant genus Melicope (Rutaceae). Journal of Biogeography 36, 230–241.
The Hawaiian Archipelago is a stepping stone for dispersal in the Pacific: an example from the plant genus Melicope (Rutaceae).Crossref | GoogleScholarGoogle Scholar |

Harms HAT (1896) Zur Kenntnis der Gattungen Aralia und Panax. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 23, 1–23.

Harms HAT (1897) Araliaceae. In ‘Die natürlichen Pflanzenfamilien 3(8)’. (Eds A Engler, K Prantl) pp. 1–62. (Engelmann: Leipzig)

Heenan PB (1998) The status of Raukaua edgerleyi var. serratus, and R. × parvus comb. nov. New Zealand Journal of Botany 36, 307–310.
The status of Raukaua edgerleyi var. serratus, and R. × parvus comb. nov.Crossref | GoogleScholarGoogle Scholar |

Heenan PB, Mitchell AD, de Lange PJ, Keeling J, Paterson AM (2010) Late-Cenozoic origin and diversification of Chatham Islands endemic plant species revealed by analyses of DNA sequence data. New Zealand Journal of Botany 48, 83–136.
Late-Cenozoic origin and diversification of Chatham Islands endemic plant species revealed by analyses of DNA sequence data.Crossref | GoogleScholarGoogle Scholar |

Hill RS (1995) Conifer origin, evolution and diversification in the Southern Hemisphere. In ‘Ecology of the Southern Conifers’. (Eds NJ Enright, RS Hill) pp. 10–29. (Melbourne University Press: Melbourne)

Hill RS, Read J (1987) Endemism in Tasmanian cool temperate rainforest: alternative hypotheses. Botanical Journal of the Linnean Society 95, 113–124.
Endemism in Tasmanian cool temperate rainforest: alternative hypotheses.Crossref | GoogleScholarGoogle Scholar |

Hill RS, Harwood DM, Webb PN (1996) Nothofagus beardmorensis (Nothofagaceae), a new species based on leaves from the Pilocene Sirius Group, Transantarctic Mountains, Antarctica. Review of Palaeobotany and Palynology 94, 11–24.
Nothofagus beardmorensis (Nothofagaceae), a new species based on leaves from the Pilocene Sirius Group, Transantarctic Mountains, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Janssens SB, Knox EB, Huysmans S, Smets EF, Merckx VSFT (2009) Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Molecular Phylogenetics and Evolution 52, 806–824.
Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVaqtb0%3D&md5=2019a12e30f41511a80c6caa214feb12CAS |

Kass RE, Raftery AE (1995) Bayes factors. Journal of the American Statistical Association 90, 773–795.
Bayes factors.Crossref | GoogleScholarGoogle Scholar |

Kershaw P, Wagstaff B (2001) The southern conifer family Araucariaceae: history, status, and value for paleoenvironmental reconstruction. Annual Review of Ecology and Systematics 32, 397–414.
The southern conifer family Araucariaceae: history, status, and value for paleoenvironmental reconstruction.Crossref | GoogleScholarGoogle Scholar |

Knapp M, Stöckler K, Havell D, Delsuc F, Sebastiani F, Lockhart PJ (2005) Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech). PLoS Biology 3, e14
Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech).Crossref | GoogleScholarGoogle Scholar |

Knapp M, Mudaliar R, Havell D, Wagstaff SJ, Lockhart PJ (2007) The drowning of New Zealand and the problem of Agathis. Systematic Biology 56, 862–870.
The drowning of New Zealand and the problem of Agathis.Crossref | GoogleScholarGoogle Scholar |

Knobloch E, Mai DH (1986) Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpravy ústredního ústavu geologickénho 47, 1–219.

Landis CA, Campbell HJ, Begg JG, Mildenhall DC, Paterson AM, Trewick SA (2008) The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine 145, 173–197.
The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora.Crossref | GoogleScholarGoogle Scholar |

Lee D, Lindqvist J, Mildenhall D, Bannister J, Kaulfuss U (2009) Paleobotany, palynology and sedimentology of Late Cretaceous–Miocene sequences in Otago and Southland. In ‘Field Trip Guides, Geosciences 09 Conference. Joint Geological and Geophysical Societies Conference’, 23–27 November 2009, Oamaru, New Zealand. (Ed. IM Turnbull) Geological Society of New Zealand Miscellaneous Publication 128B, 12-1–12-39. Available at http://cdn.onlinehosting.co.nz/~gsnz/siteadmin/uploaded/fieldtrips/MP128B_FT12-13.pdf [Verified 15 November 2012]

Li HM (1992) Early Tertiary palaeoclimate of King George Island, Antarctica – evidence from the Fossil Hill flora. In ‘Recent Progress in Antarctic Earth Science’. (Ed. Y Yoshida) pp. 371–375. (Terra Scientific (Terrapus): Tokyo)

Li R, Wen J (in press) Phylogeny and biogeography of Dendropanax (Araliaceae), a genus disjunct between tropical/subtropical Asia and the Neotropics. Systematic Botany

Lowry PP II (1990) Araliaceae. In ‘Manual of the Flowering Plants of Hawaii. I’. (Eds WL Wagner, DR Herbst, SH Sohmer) Bishop Museum Special Publication, vol. 83. pp. 224–237. (University of Hawaii Press: Honolulu, HI)

Magallón S, Castillo A (2009) Angiosperm diversification through time. American Journal of Botany 96, 349–365.
Angiosperm diversification through time.Crossref | GoogleScholarGoogle Scholar |

Manchester SR (1994) Fruits and seeds of the middle Eocene nut beds flora, Clarno Formation, Oregon. Palæontographica Americana 58, 38–39.

Martínez-Millán M (2010) Fossil record and age of Asteridae. Botanical Review 76, 83–135.
Fossil record and age of Asteridae.Crossref | GoogleScholarGoogle Scholar |

McGlone MS (2005) Goodbye Gondwana. Journal of Biogeography 32, 739–740.
Goodbye Gondwana.Crossref | GoogleScholarGoogle Scholar |

McGlone MS, Salinger MJ, Moar NT (1993) Paleovegetation studies of New Zealand’s climate since the last glacial maximum. In ‘Global Climates Since the last Glacial Maximum’. (Eds HE Wright, JE Kutzbach, T Webb III, WF Ruddiman, FA Street-Perrott, PJ Bartlein) pp. 294–317. (University of Minnesota Press: Minneapolis, MN)

McLoughlin S (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49, 271–300.
The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism.Crossref | GoogleScholarGoogle Scholar |

Mildenhall DC (1970) Checklist of valid and invalid plant macrofossils from New Zealand. Transactions of the Royal Society of New Zealand – Earth Science 8, 77–89.

Mildenhall DC (1980) New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. Palaeogeography, Palaeoclimatology, Palaeoecology 31, 197–233.
New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution.Crossref | GoogleScholarGoogle Scholar |

Mitchell AD, Wagstaff SJ (1997) Phylogenetic relationships of Pseudopanax (Araliaceae) inferred from parsimony analysis of rDNA sequence data and morphology. Plant Systematics and Evolution 208, 121–138.
Phylogenetic relationships of Pseudopanax (Araliaceae) inferred from parsimony analysis of rDNA sequence data and morphology.Crossref | GoogleScholarGoogle Scholar |

Mitchell AD, Wagstaff SJ (2000) Phylogeny and biogeography of the Chilean Pseudopanax laetevirens. New Zealand Journal of Botany 38, 409–414.
Phylogeny and biogeography of the Chilean Pseudopanax laetevirens.Crossref | GoogleScholarGoogle Scholar |

Mitchell AD, Frodin D, Heads M (1997) Reinstatement of Raukaua, a genus of the Araliaceae centred in New Zealand. New Zealand Journal of Botany 35, 309–315.
Reinstatement of Raukaua, a genus of the Araliaceae centred in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Mitchell AD, Heenan PB, Murray BG, Molloy BPJ, de Lange PJ (2009) Evolution of the south-western Pacific genus Melicytus (Violaceae): evidence from DNA sequence data, cytology, and sex expression. Australian Systematic Botany 22, 143–157.
Evolution of the south-western Pacific genus Melicytus (Violaceae): evidence from DNA sequence data, cytology, and sex expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFygtro%3D&md5=abbea1a45d20606332cb42951c8f2787CAS |

Nicolas AN, Plunkett GM (2009) The demise of subfamily Hydrocotyloideae (Apiaceae) and the re-alignment of its genera across the entire order Apiales. Molecular Phylogenetics and Evolution 53, 134–151.
The demise of subfamily Hydrocotyloideae (Apiaceae) and the re-alignment of its genera across the entire order Apiales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlyksLs%3D&md5=28191465811e676499ff3378a3a37693CAS |

Plunkett GM, Soltis DE, Soltis PS (1996) Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. American Journal of Botany 83, 499–515.
Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVWltLk%3D&md5=a09d9b65239adcc3104c9db38c8be1a4CAS |

Plunkett GM, Wen J, Lowry PP (2004) Infrafamilial relationships in Araliaceae: insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL–trnF) sequence data. Plant Systematics and Evolution 245, 1–39.
Infrafamilial relationships in Araliaceae: insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL–trnF) sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVWgtr8%3D&md5=dff22866f90795863c2a1ac312ad17f5CAS |

Plunkett GM, Lowry PP, Frodin DG, Wen J (2005) Phylogeny and geography of Schefflera: pervasive polyphyly in the largest genus of Araliaceae. Annals of the Missouri Botanical Garden 92, 202–224.

Pole M (1994) The New Zealand flora – entirely long-distance dispersal? Journal of Biogeography 21, 625–635.
The New Zealand flora – entirely long-distance dispersal?Crossref | GoogleScholarGoogle Scholar |

Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
MODELTEST: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=3d05fcb80b92fac912ffefaee08f7e4aCAS |

Potter D, Freudenstein JV (2005) Character-based phylogenetic Linnaean classification: taxa should be both ranked and monophyletic. Taxon 54, 1033–1035.
Character-based phylogenetic Linnaean classification: taxa should be both ranked and monophyletic.Crossref | GoogleScholarGoogle Scholar |

Raigemborn M, Brea M, Zucol A, Matheos S (2009) Early Paleogene climate at mid latitude in South America: mineralogical and paleobotanical proxies from continental sequences in Golfo San Jorge basin (Patagonia, Argentina). Geologica Acta 7, 125–145.

Rambaut A, Drummond AJ (2010a) ‘Tracer, version 1.5.’ Available at http://beast.bio.ed.ac.uk/ [Verified 15 November 2012].

Rambaut A, Drummond AJ (2010b) ‘TreeAnnotator, version 1.6.1.’ Available at http://tree.bio.ed.ac.uk/software/treeannotator/ [Verified 2011].

Raven PH, Axelrod DI (1972) Plate tectonics and Australasian paleobiogeography. Science 176, 1379–1386.
Plate tectonics and Australasian paleobiogeography.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvls1Cnsg%3D%3D&md5=23769fe9214bdbead0105338a262aabaCAS |

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=c3efa0cf361d593855ae82b9093dc1d2CAS |

Sanmartín I, Ronquist F (2004) Southern Hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology 53, 216–243.
Southern Hemisphere biogeography inferred by event-based models: plant versus animal patterns.Crossref | GoogleScholarGoogle Scholar |

Shen Y (1998) A paleoisthmus linking southern South America with the Antarctic Peninsula during Late Cretaceous and Early Tertiary. Science in China – Earth Sciences 41, 225–229.
A paleoisthmus linking southern South America with the Antarctic Peninsula during Late Cretaceous and Early Tertiary.Crossref | GoogleScholarGoogle Scholar |

Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322, 86–89.
Rates of molecular evolution are linked to life history in flowering plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFyhu77N&md5=d8f8df782f39e900d91101b2518e0ed3CAS |

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=5951b3e2e44170968e05586196eaac1fCAS |

Stevens GR (1985) ‘Lands in Collision: Discovering New Zealand’s Past Geography.’ (DSIR: Wellington, New Zealand)

Stöckler K, Daniel IL, Lockhart PJ (2002) New Zealand kauri (Agathis australis (D.Don) Lindl., Araucariaceae) survives Oligocene drowning. Systematic Biology 51, 827–832.
New Zealand kauri (Agathis australis (D.Don) Lindl., Araucariaceae) survives Oligocene drowning.Crossref | GoogleScholarGoogle Scholar |

Swenson U, Bremer K (1997) Pacific biogeography of the Asteraceae genus Abrotanella (Senecioneae, Blennospermatinae. Systematic Botany 22, 493–508.
Pacific biogeography of the Asteraceae genus Abrotanella (Senecioneae, Blennospermatinae.Crossref | GoogleScholarGoogle Scholar |

Swofford DL (2002) ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).’ Version 4.0b10. (Sinauer Associates: Sunderland, MA)

Thiv M, van der Niet T, Rutschmann F, Thulin M, Brune T, Linder HP (2011) Old–New World and trans-African disjunctions of Thamnosma (Rutaceae): intercontinental long-distance dispersal and local differentiation in the succulent biome. American Journal of Botany 98, 76–87.
Old–New World and trans-African disjunctions of Thamnosma (Rutaceae): intercontinental long-distance dispersal and local differentiation in the succulent biome.Crossref | GoogleScholarGoogle Scholar | [Published online early 23 December 2010]

Trewick SA, Paterson AM, Campbell HJ (2007) Hello New Zealand. Journal of Biogeography 34, 1–6.
Hello New Zealand.Crossref | GoogleScholarGoogle Scholar |

Wallis GP, Trewick SA (2009) New Zealand phylogeography: evolution on a small continent. Molecular Ecology 18, 3548–3580.
New Zealand phylogeography: evolution on a small continent.Crossref | GoogleScholarGoogle Scholar |

Waters JM, Craw D (2006) Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Systematic Biology 55, 351–356.
Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity.Crossref | GoogleScholarGoogle Scholar |

Wen J (2001a) Species diversity, nomenclature, phylogeny, biogeography, and classification of the ginseng genus (Panax L., Araliaceae). In ‘Proceedings of the International Ginseng Workshop: Utilization of Biotechnological, Genetic and Cultural Approaches for North American and Asian Ginseng Improvement’. (Ed. ZK Punja) pp. 67–88. (Simon Fraser University Press: Vancouver, BC)

Wen J (2001b) Evolution of the AraliaPanax complex (Araliaceae) as inferred from nuclear ribosomal ITS sequences. Edinburgh Journal of Botany 58, 243–257.
Evolution of the AraliaPanax complex (Araliaceae) as inferred from nuclear ribosomal ITS sequences.Crossref | GoogleScholarGoogle Scholar |

Wen J (2002) Revision of Aralia sect. Pentapanax (Seem.) J.Wen (Araliaceae). Cathaya 13–14, 1–116.

Wen J (2004) Systematics and biogeography of Aralia L. sect. Dimorphanthus (Miq.) Miq. (Araliaceae). Cathaya 15–16, 1–187.

Wen J (2011) Systematics and biogeography of Aralia L. (Araliaceae): revision of Aralia sects. Aralia, Humiles, Nanae and Sciadodendron. In ‘Smithsonian Institution, Contributions from the United States National Herbarium’, vol. 57, 1–172. Available at http://botany.si.edu/pubs/CUSNH/vol_57.pdf [Verified 15 November 2012]

Wen J, Plunkett GM, Mitchell A, Wagstaff S (2001) The evolution of Araliaceae: a phylogenetic analysis based on the ITS sequences of nuclear ribosomal DNA. Systematic Botany 26, 144–167.

Wen J, Zhu YP, Lee C, Widjaja E, Leng GS (2008) Evolutionary relationships of Araliaceae in the Malesian region: a preliminary analysis. Journal of Electronics Information & Technology 30, 391–399.

Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London B – Biological Sciences 268, 2211–2220.
Evolution of the angiosperms: calibrating the family tree.Crossref | GoogleScholarGoogle Scholar |

Winkworth RC, Robertson AW, Ehrendorfer F, Lockhart PJ (1999) The importance of dispersal and recent speciation in the flora of New Zealand. Journal of Biogeography 26, 1323–1325.
The importance of dispersal and recent speciation in the flora of New Zealand.Crossref | GoogleScholarGoogle Scholar |

Woodburne MO, Case JA (1996) Dispersal, vicariance and the Late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. Journal of Mammalian Evolution 3, 121–161.
Dispersal, vicariance and the Late Cretaceous to early Tertiary land mammal biogeography from South America to Australia.Crossref | GoogleScholarGoogle Scholar |

Wright SD, Yong CG, Wichman SR, Dawson JW, Gardner RC (2001) Stepping stones to Hawaii: a transequatorial dispersal pathway for Metrosideros (Myrtaceae) inferred from nrDNA (ITS+ETS). Journal of Biogeography 28, 769–774.
Stepping stones to Hawaii: a transequatorial dispersal pathway for Metrosideros (Myrtaceae) inferred from nrDNA (ITS+ETS).Crossref | GoogleScholarGoogle Scholar |

Yu Y, Harris A, He X (2010) S-DIVA (statistical dispersal–vicariance analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56, 848–850.
S-DIVA (statistical dispersal–vicariance analysis): a tool for inferring biogeographic histories.Crossref | GoogleScholarGoogle Scholar |

Yu Y, Harris A, He X (2011) RASP (Reconstruct Ancestral State in Phylogenies) v.2.0 beta. Available at http://mnh.scu.edu.cn/soft/blog/RASP [Verified 2011].