Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Nuclear and plastid DNA sequences reveal complex reticulate patterns in Australian water-lilies (Nymphaea subgenus Anecphya, Nymphaeaceae)

Cornelia Löhne A E F , Thomas Borsch A E , Surrey W. L. Jacobs B , C. Barre Hellquist C and John H. Wiersema D
+ Author Affiliations
- Author Affiliations

A Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany.

B National Herbarium, Royal Botanic Gardens, Sydney, NSW 2000, Australia.

C Department of Biology, Massachusetts College of Liberal Arts, North Adams, MA 01247-4100, USA.

D Systematic Botany and Mycology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705-2350, USA.

E Present address: Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195, Berlin.

F Corresponding author. Email: c.loehne@bgbm.org

Australian Systematic Botany 21(4) 229-250 https://doi.org/10.1071/SB07010
Submitted: 5 March 2007  Accepted: 29 July 2008   Published: 22 October 2008

Abstract

This study represents the first comprehensive analysis of phylogenetic relationships within the Australian water-lilies, Nymphaea subg. Anecphya. Our 51-accession dataset covers all 10 species of the subgenus, except the newly described N. alexii, and includes information from the nuclear ITS as well as from the chloroplast trnT–trnF region. The results show that molecular data are consistent with morphology, because the subdivision of subg. Anecphya into two major clades, a large-seeded and a small-seeded group, could be confirmed. Within the large-seeded group, Nymphaea atrans and N. immutabilis seem to form one clade, whereas samples of N. gigantea, N. georginae, N. macrosperma and N. carpentariae form another. Relationships within the small-seeded group, containing all samples of N. violacea, N. elleniae and N. hastifolia, are less clear, since the trees obtained from the chloroplast and the nuclear marker are incongruent. The samples of N. violacea do not form a monophyletic group in each of the trees, but—at least in the ITS tree—group with either N. elleniae or N. hastifolia/Ondinea, respectively. Polymorphisms among ITS paralogues, i.e. substitutions at single nucleotide positions and length polymorphisms, have been observed in some samples of N. violacea. This fact as well as the incongruent phylogenetic signal obtained from the chloroplast and the nuclear genomes point to recent hybridisation or introgression in this group. Remarkably, Ondinea purpurea is resolved within the small-seeded group by both markers and seems to have a close relationship to N. hastifolia. Although incomplete lineage sorting cannot be fully excluded to explain high variability in N. violacea, molecular data potentially hint to a case of still imperfect taxonomy.


References


Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29, 417–434.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed | open url image1

Andreasen K, Baldwin BG (2003) Nuclear ribosomal DNA sequence polymorphism and hybridization in checker mallows (Sidalcea, Malvaceae). Molecular Phylogenetics and Evolution 29, 563–581.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Arnheim N (1983) Concerted evolution in multigene families. In ‘Evolution of genes and proteins’. (Eds M Nei, R Koehn) pp. 38–61. (Sinauer: Sunderland, MA)

Bailey CD, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29, 435–455.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82, 247–277.
Crossref | GoogleScholarGoogle Scholar | open url image1

Borsch T (2000) Phylogeny and evolution of the genus Nymphaea (Nymphaeaceae). PhD Thesis, University of Bonn.

Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Non-coding plastid trnT–trnF sequences reveal a well resolved phylogeny of basal angiosperms. Journal of Evolutionary Biology 16, 558–576.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Borsch T, Hilu KW, Wiersema JH, Löhne C, Barthlott W, Wilde V (2007) Phylogeny of Nymphaea (Nymphaeaceae): evidence from substitutions and microstructural changes of the chloroplast trnT–F region. International Journal of Plant Sciences 168, 639–671.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Buckler ES, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145, 821–832.
CAS | PubMed |
open url image1

Campbell CS, Wojciechowski MF, Baldwin BG, Alice LA, Donoghue MJ (1997) Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Molecular Biology and Evolution 14, 81–90.
CAS | PubMed |
open url image1

Caspary R (1865–1866) Nymphaeaceae. Annales Musei Botanici Lugduno-Batavi 2, 241–253. open url image1

Caspary R (1891) Nymphaeaceae. In ‘Die natürlichen Pflanzenfamilien, III. Teil Abt. 2, 2a’. (Eds A Engler, K Prantl) pp. 1–10. (Wilhelm Engelmann: Leipzig)

Comes HP, Abbott RJ (2001) Molecular phylogeography, reticulation, and lineage sorting in Mediterranean Senecio sect. Senecio (Asteraceae). Evolution 55, 1943–1962.
CAS | PubMed |
open url image1

Conard HS (1905) ‘The waterlilies. A monograph of the genus Nymphaea.’(Lord Baltimore Press: Baltimore, MD)

Den Hartog C (1970) Ondinea, a new genus of Nymphaeaceae. Blumea 18, 413–417. open url image1

Domin K (1929) ‘Beiträge zur Flora und Pflanzengeographie Australiens.’ (Schweizerbart: Stuttgart)

Elder JF Jr, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. The Quarterly Review of Biology 70, 297–320.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fuertes Aguilar J, Nieto Feliner G (2003) Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Molecular Phylogenetics and Evolution 28, 430–447.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Fuertes Aguilar J, Rosselló JA, Nieto Feliner G (1999) nrDNA concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Molecular Ecology 8, 1341–1346.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gupta PP (1978) Cytogenetics of aquatic ornamentals. II. Cytology of Nymphaeas. Cytologia 43, 477–484. open url image1

Gupta PP (1980) Cytogenetics of aquatic ornamentals. VI. Evolutionary trends and relationships in the genus Nymphaea. Cytologia 45, 307–314. open url image1

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
CAS |
open url image1

Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251, 308–310.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Jacobs SWL (1992) New species, lectotypes and synonyms of Australasian Nymphaea (Nymphaeaceae). Telopea 4, 635–641. open url image1

Jacobs SWL (1994) Further notes on Nymphaea (Nymphaeaceae) in Australasia. Telopea 5, 703–706. open url image1

Jacobs SWL (2007) Nymphaea subg. Confluentes. In ‘Flora of Australia. Vol. 2’. (Ed. AJG Wilson) p. 458. (CSIRO and Australian Biological Resources Study: Melbourne)

Jacobs SWL, Hellquist CB (2006) Three new species of Nymphaea (Nymphaeaceae) in Australia. Telopea 11, 155–160. open url image1

Jacobs SWL , Porter CI (2007) Nymphaeaceae. In ‘Flora of Australia. Vol. 2’. (Ed. AJG Wilson) pp. 259–275. (CSIRO and Australian Biological Resources Study: Melbourne)

Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Molecular Biology and Evolution 23, 1602–1612.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Kenneally KF, Schneider EL (1983) The genus Ondinea (Nymphaeaceae) including a new subspecies from the Kimberley region, Western Australia. Nuytsia 4, 359–365. open url image1

Koontz JA, Soltis PS, Soltis DE (2004) Using phylogeny reconstruction to test hypotheses of hybrid origin in Delphinium section Diedropetala (Ranunculaceae). Systematic Botany 29, 345–357.
Crossref | GoogleScholarGoogle Scholar | open url image1

Langlet O, Söderberg E (1927) Über die Chromosomenzahlen einiger Nymphaeaceen. Acta Horti Bergiani 9, 85–104. open url image1

Lehmann (1853) Die Gattung Nymphaea. Otto’s Hamburger Garten- und Blumen-Zeitung 9, 218. open url image1

Les DH, Moody ML, Doran AS, Phillips WE (2004) A genetically confirmed intersubgeneric hybrid in Nymphaea L. (Nymphaeaceae Salisb.). Hortscience 39, 219–222.
CAS |
open url image1

Löhne C, Borsch T (2005) Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Molecular Biology and Evolution 22, 317–332.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed | open url image1

Löhne C, Borsch T, Wiersema JH (2007) Phylogenetic analysis of Nymphaeales using fast-evolving and non-coding chloroplast markers. Botanical Journal of the Linnean Society 154, 141–163.
Crossref | GoogleScholarGoogle Scholar | open url image1

Marhold K, Lihova J, Perny M, Bleeker W (2004) Comparative ITS and AFLP analysis of diploid Cardamine (Brassicaceae) taxa from closely related polyploid complexes. Annals of Botany 93, 507–520.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Merrill ED, Perry LM (1942) Aquatic plants of British New Guinea. Journal of the Arnold Arboretum. Arnold Arboretum 23, 388–389. open url image1

Müller J (1970) Description of pollen grains of Ondinea purpurea den Hartog. Blumea 18, 416–417. open url image1

Müller K (2004) PRAP—computation of Bremer support for large data sets. Molecular Phylogenetics and Evolution 31, 780–782.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Müller K (2005) SeqState: primer design and sequence statistics for phylogenetic DNA datasets. Applied Bioinformatics 4, 65–69.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed | open url image1

Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414.
Crossref | GoogleScholarGoogle Scholar | open url image1

Okada H, Tamura M (1981) Karyomorphological study of the Nymphaeales. Journal of Japanese Botany 56, 367–374. open url image1

Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Quandt D , Müller K , Stech M , Frahm J-P , Frey W , Hilu KW , Borsch T (2004) Molecular evolution of the chloroplast trnL–F region in land plants. In ‘Molecular systematics of bryophytes’. (Eds B Goffinet, V Hollowell, R Magill) pp. 13–37. (Missouri Botanical Garden Press: St Louis, MI)

Rieseberg LH, Broulliet L (1994) Are many plant species paraphyletic? Taxon 43, 21–32.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences, USA 92, 6813–6817.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sauquet H, Doyle JA, Scharaschkin T, Borsch T, Hilu KW, Chatrou LW, Le Thomas A (2003) Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Botanical Journal of the Linnean Society 142, 125–186.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schneider EL (1983) Gross morphology and floral biology of Ondinea purpurea den Hartog. Australian Journal of Botany 31, 371–382.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schneider EL, Ford EG (1978) Morphological studies of the Nymphaeaceae. X. The seed of Ondinea purpurea den Hartog. Bulletin of the Torrey Botanical Club 105, 192–200.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schneider EL , Williamson PS (1993) Nymphaeaceae. In ‘The families and genera of vascular plants II’. (Eds K Kubitzki, JG Rohwer, V Bittrich) pp. 486–493. (Springer: Berlin)

Schneider EL, Carlquist S, Beamer K, Kohn A (1995) Vessels in Nymphaeaceae: Nuphar, Nymphaea, and Ondinea. International Journal of Plant Sciences 156, 857–862.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92, 142–166.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Small RL, Cronn RC, Wendel JF (2004) L.A.S. Johnson Review No. 2. Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany 17, 145–170.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Suh Y, Thien LB, Reeve HE, Zimmer EA (1993) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. American Journal of Botany 80, 1042–1055.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Swofford DL (2002) ‘PAUP* Phylogenetic analysis using parsimony (*and other methods) v. 4.0b10.’ (Sinauer Associates: Sunderland, MA)

Syring J, Farrell K, Businský R, Cronn R, Liston A (2007) Widespread genealogical nonmonophyly in species of Pinus subgenus Strobus. Systematic Biology 56, 163–181.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Sytsma KJ, Gottlieb LD (1986) Chloroplast DNA evidence for the origin of the genus Heterogaura from a species of Clarkia (Onagraceae). Proceedings of the National Academy of Sciences, USA 83, 5554–5557.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Molecular Biology 17, 1105–1109.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1

Vriesendorp B, Bakker FT (2005) Reconstructing patterns of reticulate evolution in angiosperms: what can we do? Taxon 54, 593–604. open url image1

White TJ , Bruns T , Lee S , Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR protocols: a guide to methods and applications’. (Eds DGM Innis, J Sninsky, T White) pp. 315–322. (Academic Press: San Diego, CA)

Wiersema JH 1987 ‘A monograph of Nymphaea subgenus Hydrocallis (Nymphaeaceae).’ (The American Society of Plant Taxonomists: Ann Arbor, MI)

Williamson PS, Moseley MF (1989) Morphological studies of the Nymphaeaceae sensu lato. XVII. Floral anatomy of Ondinea purpurea subspecies purpurea (Nymphaeaceae). American Journal of Botany 76, 1779–1794.
Crossref | GoogleScholarGoogle Scholar | open url image1

Woods K, Hilu KW, Borsch T, Wiersema JH (2005) Pattern of variation and systematics of Nymphaea odorata: II. Sequence information from ITS and trnL–trnF. Systematic Botany 30, 481–493.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zhang D, Sang T (1999) Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. American Journal of Botany 86, 735–740.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | PubMed | open url image1