Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Petal epidermal micromorphology in holoparasitic Orobanchaceae and its significance for systematics and pollination ecology

Renata Piwowarczyk A C and Justyna Kasińska B
+ Author Affiliations
- Author Affiliations

A Department of Botany, Institute of Biology, Jan Kochanowski University, 15 Świętokrzyska Street, PL-25-406 Kielce, Poland.

B Department of Applied Computer Science and Armament Engineering, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego 7, PL-25-314 Kielce, Poland.

C Corresponding author. Email: renata.piwowarczyk@ujk.edu.pl; renka76@wp.pl

Australian Systematic Botany 30(1) 48-63 https://doi.org/10.1071/SB16028
Submitted: 11 July 2016  Accepted: 28 December 2016   Published: 31 May 2017

Abstract

Flowers of holoparasitic plants have evolved several adaptations for pollination as part of their parasitic strategies. A study of the petal epidermis may be useful to systematics as well as to the knowledge of ecological and co-evolutionary adaptations between the parasites and their pollinators. The present work is a comparative study of the microsculpture of nectar guides and landing platforms in the flowers of holoparasitic species in the family Orobanchaceae. In total, 285 samples of 39 species from 10 holoparasitic genera (Boschniakia C.A.Mey. ex Bong., Boulardia F.W.Schultz, Cistanche Hoffmanns. & Link, Conopholis Wallr., Diphelypaea Nicolson, Epifagus Nutt., Mannagettaea H.Sm., Orobanche L., Phacellanthus Siebold & Zucc. and Phelipanche Pomel) and as an outgroup, of six additional hemiparasitic genera (Castilleja Mutis ex L.f., Euphrasia L., Orthantha (Benth.) A.Kern., Parentucellia Viv., Rhinanthus L., and Striga Lour.) were analysed using both light and scanning electron microscopy. Types of epidermal cells were characterised, and their distribution on the adaxial and abaxial surfaces of the petals determined. The following four major epidermal types were recognised: tabular rugose striate cells (TRS), areolate cells (AS), papillose conical cells (PCS) and lobular striate cells (PLS). Two main types of trichomes were observed, namely glandular and non-glandular. Our results showed that petal micromorphology may be useful to systematics; its influence in relation to the pollinators is discussed.

Additional keywords: epidermis, nectar guides, petal surface, SEM, trichomes, taxonomy.


References

Albach DC, Li H-Q, Zhao N, Jensen SR (2007) Molecular systematics and phytochemistry of Rehmannia (Scrophulariaceae). Biochemical Systematics and Ecology 35, 293–300.
Molecular systematics and phytochemistry of Rehmannia (Scrophulariaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFKjsL0%3D&md5=cf35be23e0df97688fa3984e9aa0b687CAS |

Ali MA, Al-Hemaid FM (2011) Taxonomic significance of trichomes micromorphology in cucurbits. Saudi Journal of Biological Sciences 18, 87–92.
Taxonomic significance of trichomes micromorphology in cucurbits.Crossref | GoogleScholarGoogle Scholar |

Ančev M, Goranova V (2006) Trichome morphology of eleven genera of the tribe Alysseae (Brassicaceae) occurring in Bulgaria. Willdenowia 36, 193–204.
Trichome morphology of eleven genera of the tribe Alysseae (Brassicaceae) occurring in Bulgaria.Crossref | GoogleScholarGoogle Scholar |

Antoniou Kourounioti RLA, Band LR, Fozard JA, Hampstead A, Lovrics A, Moyroud E, Vignolini S, King JR, Jensen OE, Glover BJ (2013) Buckling as an origin of ordered cuticular patterns in flower petals. Journal of the Royal Society, Interface 10, 20120847
Buckling as an origin of ordered cuticular patterns in flower petals.Crossref | GoogleScholarGoogle Scholar |

Argiropoulos A, Rhizopoulou S (2012) Topography and nanosculpture of petals’ surfaces of short-lived flowers of the wild species Cistus creticus, Cistus salviifolius, Eruca sativa and Sinapis arvensis. Botanical Studies (Taipei, Taiwan) 53, 479–488.

Azuma H, Thien LB, Kawano S (1999) Floral scents, leaf volatiles, and thermogenic flowers in Magnoliaceae. Plant Species Biology 14, 121–127.
Floral scents, leaf volatiles, and thermogenic flowers in Magnoliaceae.Crossref | GoogleScholarGoogle Scholar |

Baagøe J (1977) Taxonomical applications of ligule microcharacters in Compositae. 1. Anthemideae, Heliantheae and Tageteae. Botanisk Tidsskrift 71, 192–223.

Baagøe J (1980) SEM-studies in ligules of Lactuceae (Compositae). Botanisk Tidsskrift 75, 199–217.

Barthlott W (1981) Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. Nordic Journal of Botany 1, 345–355.
Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects.Crossref | GoogleScholarGoogle Scholar |

Barthlott W (1990) Scanning electron microscopy of the epidermal surface in plants. In ‘Scanning Electron Microscopy in Taxonomy and Functional Morphology’. (Ed. D Claugher) pp. 69–94. (Clarendon Press: Oxford, UK)

Barthlott W, Ehler N (1977) Raster-Elektronemmikroskopie der Epidermis-Oberflächen von Spermatophyten. Tropische Subtropische Pflanzenwelt 19, 367–467.

Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126, 237–260.
Classification and terminology of plant epicuticular waxes.Crossref | GoogleScholarGoogle Scholar |

Beck G (1891) Orobanchaceae. In ‘Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten, insbesondere den Nutzpflanzen’. (Eds A Engler, K Prantl) pp. 123–132. (Wilhelm Engelmann: Leipzig, Germany)

Beck G (1930) Orobanchaceae L. In ‘Das Pflanzenreich (IV.261)’. (Ed. A Engler) pp. 1–348. (Verlag von Wilhelm Engelmann: Leipzig, Germany)

Bennett JR, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. American Journal of Botany 93, 1039–1051.
Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnsl2lsb8%3D&md5=6af4452e194e1c75879e73c62ce6a31eCAS |

Bentham G (1876) Ordo CXV. Scrophularineae. Ordo CXVI. Orobanchaceae. In ‘Genera plantarum, vol. 2’. (Eds G Bentham, JD Hooker) pp.913 980 (Reeve: London, UK)

Bremer K, Backlund A, Sennblad B, Swenson U, Andreasen K, Hjerston M, Backlund M, Bremer B (2001) A phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies. Plant Systematics and Evolution 229, 137–169.
A phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVSgtro%3D&md5=cb4e45b44a7f9a7530f5ed983cdcc9f5CAS |

Briscoe AD, Chittka L (2001) The evolution of colour vision in insects. Annual Review of Entomology 46, 471–510.
The evolution of colour vision in insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlSmt7w%3D&md5=9f67f62df1fdfef428aa48c09dda642bCAS |

Christensen K, Hansen H (1998) SEM-studies of epidermal patterns of petals in the angiosperms. Opera Botanica 135, 1–91.
SEM-studies of epidermal patterns of petals in the angiosperms.Crossref | GoogleScholarGoogle Scholar |

Çildir H, Kahraman A, Doğan M (2012) Petal and sepal epidermal micromorphology of six Lathyrus taxa (Fabaceae) and their systematic value. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40, 35–41.

Clarke D, Whitney H, Sutton G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340, 66–69.
Detection and learning of floral electric fields by bumblebees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVCrsr8%3D&md5=2e5205f9f6a5d5382a27c2c8617f930cCAS |

Dafni A, Giurfa M (1999) The functional ecology of nectar guides in relation to insect behavior and vision. In ‘Evolutionary Theory and Processes – Modern Perspectives’. (Eds S Wasser, R May) pp. 363–383. (Kluwer: Leiden, Netherlands)

dePamphilis CW, Young ND, Wolfe AD (1997) Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proceedings of the National Academy of Sciences of the United States of America 94, 7367–7372.
Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFOmtLw%3D&md5=0b69e3e8994efbc4ca7572650d48476aCAS |

Dyer GA, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2006) Behavioural ecology: bees associate warmth with floral colour. Nature 442, 525
Behavioural ecology: bees associate warmth with floral colour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnsl2jsro%3D&md5=bae078ea30337ac2c61e386d903d3195CAS |

Ehler N (1976) Struktur und Funktionen der Oberflächen von Orchideenbluten. In ‘Proceedings, 8th World Orchid Conference, German Orchid Society’, 1975, Frankfurt am Main, Germany. (Ed. K Senghas) pp. 456–462. (Palmengarten: Frankfurt, Germany)

Endress PK (1998) Anthirrinum and Asteridae: evolutionary changes of floral symmetry. Society for Experimental Biology Symposium Series 51, 133–140.

Fischer E (2004) Scrophulariaceae. In ‘The Families and Genera of Vascular Plants. Vol. VII. Flowering Plants. Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae)’. (Ed. JW Kadereit) pp. 333–432. (Springer–Verlag: Berlin, Germany)

Foster JJ, Sharkey CR, Gaworska VA, Roberts NW, Whitney HM, Patridge JC (2014) Bumblebees learn polarization patterns. Current Biology 24, 1415–1420.
Bumblebees learn polarization patterns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslCmtr4%3D&md5=c64d026636084ebbe93512a9bdeeaca1CAS |

Fratzl P (2007) Biomimetic materials research: what can we really learn from nature’s structural materials? Journal of the Royal Society, Interface 4, 637–642.
Biomimetic materials research: what can we really learn from nature’s structural materials?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVemsb7E&md5=93e7138f88bca0fea2d3372b10f0859fCAS |

Free JB (1970) Effect of flower shapes and nectar guides on the behaviour of foraging honeybees. Behaviour 37, 269–285.
Effect of flower shapes and nectar guides on the behaviour of foraging honeybees.Crossref | GoogleScholarGoogle Scholar |

Gkikas D, Argiropoulos A, Rhizopoulou S (2015) Epidermal focusing of light and modelling of reflectance infloral-petals with conically shaped epidermal cells. Flora 212, 38–45.
Epidermal focusing of light and modelling of reflectance infloral-petals with conically shaped epidermal cells.Crossref | GoogleScholarGoogle Scholar |

Glover BJ, Martin C (1998) The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity 80, 778–784.
The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus.Crossref | GoogleScholarGoogle Scholar |

Glover BJ, Martin C (2002) Evolution of adaptive petal cell morphology. In ‘Developmental Genetics and Plant Evolution’. (Eds QCB Cronk, RM Bateman, JA Hawkins) pp. 160–172. (Taylor & Francis: London, UK)

Goodale E, Kim E, Nabors A, Henrichon S, Nieh JC (2014) The innate responses of bumble bees to flower patterns: separating the nectar guide from the nectary changes bee movements and search time. Naturwissenschaften 101, 523–526.
The innate responses of bumble bees to flower patterns: separating the nectar guide from the nectary changes bee movements and search time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFKntL0%3D&md5=a92eda7cdeba1375c63c12463a89fe5aCAS |

Halamski AT, Piwowarczyk R (2008) Graines d’Orobanches comme critère taxonomique: information sur les travaux en cours. Bulletin Mensuel de la Societe Linneenne de Lyon 77, 37–40.

Hansen HV (1991) Phylogenetic studies in Compositae tribe Mutisieae. Opera Botanica 109, 1–50.

Haratym W, Weryszko-Chmielewska E (2013) Structural features of flower trichomes in drug eyebright (Euphrasia stricta D.Wolff ex J.F.Lehm.). Acta Agrobotanica 66, 35–44.
Structural features of flower trichomes in drug eyebright (Euphrasia stricta D.Wolff ex J.F.Lehm.).Crossref | GoogleScholarGoogle Scholar |

Harborne JB (1997) ‘Ekologia Biochemiczna.’ (Wydawnictwo Naukowe PWN: Warszawa, Poland)

Hassan EA, El-Awadi ME (2009) Study on the trichomes of the parasitic weed broomrape: morphology and histochemistry. General and Applied Plant Physiology 35, 13–21.

Hu S, Dilcher DL, Jarzen DM, Taylor DW (2008) Early steps of angiosperm–pollinator coevolution. Proceedings of the National Academy of Sciences of the United States of America 105, 240–245.
Early steps of angiosperm–pollinator coevolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVajtLc%3D&md5=0e8ee2dab45cd213b3ecbb1e1f25ff9eCAS |

Joel DM, Gressel J, Musselman LJ (Eds) (2013) ‘Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies.’ (Springer: Heidelberg, Germany)

Jones M (1991) Studies on the pollination of Orobanche species in the British Isles. In ‘Progress in Orobanche Research’. (Eds K Wegmann, LJ Musselman) pp. 6–17. (Eberhard-Karls-Universitat: Tubingen Germany)

Kay QON, Daoud HS, Stirton CH (1981) Pigment distribution, light reflection and cell structure in petals. Botanical Journal of the Linnean Society 83, 57–83.
Pigment distribution, light reflection and cell structure in petals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVSmtLw%3D&md5=43f68a96bccc6a4353976b0b7e0b3352CAS |

Kevan PG, Lane MA (1985) Flower petal microtexture is a tactile cue for bees. Proceedings of the National Academy of Sciences of the United States of America 82, 4750–4752.
Flower petal microtexture is a tactile cue for bees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnivFajsA%3D%3D&md5=2b826022783c11f9bdcab47f3b689d49CAS |

Krebs CJ (2009) ‘Ecology: the Experimental Analysis of Distribution and Abundance.’ (Benjamin Cummings: San Francisco, CA, USA)

Kuijt J (1969) ‘The Biology of Parasitic Flowering Plants.’ (University of California Press: Berkeley, CA, USA)

Leonard AS, Papaj DR (2011) ‘X’ marks the spot: the possible benefits of nectar guides to bees and plants. Functional Ecology 25, 1293–1301.
‘X’ marks the spot: the possible benefits of nectar guides to bees and plants.Crossref | GoogleScholarGoogle Scholar |

Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Systematics and Evolution 222, 89–111.
The ecology and evolution of visual pollen signals.Crossref | GoogleScholarGoogle Scholar |

Lunau K (2006) Stamens and mimic stamens as components of floral colour patterns. Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie 127, 13–41.
Stamens and mimic stamens as components of floral colour patterns.Crossref | GoogleScholarGoogle Scholar |

Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 178, 477–489.
Colour choices of naive bumble bees and their implications for colour perception.Crossref | GoogleScholarGoogle Scholar |

Manning A (1956) The efect of honey-guides. Behaviour 9, 114–139.
The efect of honey-guides.Crossref | GoogleScholarGoogle Scholar |

McNeal JR, Bennett JR, Wolfe AD, Mathews S (2013) Phylogeny and origins of holoparasitism in Orobanchaceae. American Journal of Botany 100, 971–983.
Phylogeny and origins of holoparasitism in Orobanchaceae.Crossref | GoogleScholarGoogle Scholar |

Metcalfe CR, Chalk L (1972) ‘Anatomy of the Dicotyledons, vol. II.’ (Oxford University Press: Oxford, UK)

Nicoletti M, Serafini M, Tomassini L (1987) New isolations of phenylpropanoid glycosides from Bignoniaceae and Orobanchaceae. The chemosystematic importance of phenylpropanoid glucoside distribution in Asteridae. Annali di Botanica 45, 197–216.

Nikolov LA, Staedler YM, Manickam S, Schönenberger J, Endress PK, Kramer EM, Davis CC (2014) Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia. American Journal of Botany 101, 225–243.
Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia.Crossref | GoogleScholarGoogle Scholar |

Noda KI, Glover BJ, Linstead P, Martin C (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369, 661–664.
Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFSitrs%3D&md5=df04dbae1c891b2e8bb00573c6d499bfCAS |

Nunes ELP, Smidt EC, Stützel T, Ike Coan A (2015) Comparative floral micromorphology and anatomy of species of Bulbophyllum section Napelli (Orchidaceae), a Neotropical section widely distributed in forest habitats. Botanical Journal of the Linnean Society 177, 378–394.
Comparative floral micromorphology and anatomy of species of Bulbophyllum section Napelli (Orchidaceae), a Neotropical section widely distributed in forest habitats.Crossref | GoogleScholarGoogle Scholar |

Ojeda I, Francisco-Ortega J, Cronk QCB (2009) Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity. Annals of Botany 104, 1099–1110.
Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity.Crossref | GoogleScholarGoogle Scholar |

Ollerton J, Stott A, Allnutt E, Shove S, Taylor C, Lamborn E (2007) Pollination niche overlap between a parasitic plant and its host. Oecologia 151, 473–485.
Pollination niche overlap between a parasitic plant and its host.Crossref | GoogleScholarGoogle Scholar |

Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA (2001) Disintegration of the Scrophulariaceae. American Journal of Botany 88, 348–361.
Disintegration of the Scrophulariaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1eqsr0%3D&md5=e004324455830fc8830b74b6a6b0e335CAS |

Oxelman B, Kornhall P, Olmstead RG, Bremer B (2005) Further disintegration of the Scrophulariaceae. Taxon 54, 411–425.
Further disintegration of the Scrophulariaceae.Crossref | GoogleScholarGoogle Scholar |

Payne WW (1978) A glossary of plant hair terminology. Brittonia 30, 239–255.
A glossary of plant hair terminology.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R (2011) Orobanche mayeri (Suess. & Ronniger) Bertsch & F. Bertsch: the new species to Poland. Acta Societatis Botanicorum Poloniae 80, 179–183.
Orobanche mayeri (Suess. & Ronniger) Bertsch & F. Bertsch: the new species to Poland.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R (2013) Seed productivity in relation to other shoot features for endangered parasitic plant Orobanche picridis F.W.Schultz (Orobanchaceae). Polish Journal of Ecology 61, 55–64.

Piwowarczyk R (2015a) Orobanche zajaciorum (Orobanchaceae): a new species from the Caucasus. Phytotaxa 201, 214–220.
Orobanche zajaciorum (Orobanchaceae): a new species from the Caucasus.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R (2015b) Seed morphology of Boschniakia sensu lato (Orobanchaceae) and its taxonomical implications. Phytotaxa 231, 156–164.
Seed morphology of Boschniakia sensu lato (Orobanchaceae) and its taxonomical implications.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R (2015c) Seed micromorphology of central European Orobanche and Phelipanche (Orobanchaceae) in relation to preferred hosts and systematic implications. Australian Systematic Botany 28, 124–136.
Seed micromorphology of central European Orobanche and Phelipanche (Orobanchaceae) in relation to preferred hosts and systematic implications.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Jankowska-Błaszczuk M (2014) Intra-specific diversity of seed productivity and morphological features in parasitic species Orobanche bartlingii Griseb. (Orobanchaceae). Polish Journal of Ecology 62, 723–738.
Intra-specific diversity of seed productivity and morphological features in parasitic species Orobanche bartlingii Griseb. (Orobanchaceae).Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Krajewski Ł (2015) Orobanche elatior and O. kochii (Orobanchaceae) in Poland: distribution, taxonomy, plant communities and seed micromorphology. Acta Societatis Botanicorum Poloniae 84, 103–123.
Orobanche elatior and O. kochii (Orobanchaceae) in Poland: distribution, taxonomy, plant communities and seed micromorphology.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Przemyski A (2009) New locality of Orobanche coerulescens Stephan ex Willd. (Orobanchaceae) at the NW limit of its geographical range. Acta Societatis Botanicorum Poloniae 78, 291–295.
New locality of Orobanche coerulescens Stephan ex Willd. (Orobanchaceae) at the NW limit of its geographical range.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Przemyski A (2010) The distribution and habitat preferences of the declining species Orobanche arenaria (Orobanchaceae) at the northern limit of its geographical range. Acta Societatis Botanicorum Poloniae 79, 43–50.
The distribution and habitat preferences of the declining species Orobanche arenaria (Orobanchaceae) at the northern limit of its geographical range.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Chmielewski P, Gierczyk B, Piwowarski B, Stachyra P (2010) Orobanche pallidiflora Wimm. & Grab. in Poland: distribution, habitat and host preferences. Acta Societatis Botanicorum Poloniae 79, 197–205.
Orobanche pallidiflora Wimm. & Grab. in Poland: distribution, habitat and host preferences.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Chmielewski P, Cwener A (2011) The distribution and habitat requirements of the genus Orobanche L. (Orobanchaceae) in SE Poland. Acta Societatis Botanicorum Poloniae 80, 37–48.
The distribution and habitat requirements of the genus Orobanche L. (Orobanchaceae) in SE Poland.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Halamski AT, Durska E (2014) Seed and pollen morphology in the Orobanche alsatica complex (Orobanchaceae) from central Europe and its taxonomic significance. Australian Systematic Botany 27, 145–157.
Seed and pollen morphology in the Orobanche alsatica complex (Orobanchaceae) from central Europe and its taxonomic significance.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Kwolek D, Denysenko M, Cygan M, Góralski G, Ślesak H, Tuleja M, Joachimiak AJ (2015a) Orobanche grenieri (Orobanchaceae), a southwestern European species newly found in Asia. Annales Botanici Fennici 52, 411–418.
Orobanche grenieri (Orobanchaceae), a southwestern European species newly found in Asia.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Madeja J, Nobis M (2015b) Pollen morphology of the central European broomrapes (Orobanchaceae: Orobanche, Phelipanche and Orobanchella) and its taxonomical implications. Plant Systematics and Evolution 301, 795–808.
Pollen morphology of the central European broomrapes (Orobanchaceae: Orobanche, Phelipanche and Orobanchella) and its taxonomical implications.Crossref | GoogleScholarGoogle Scholar |

Piwowarczyk R, Carlón L, Kasińska J, Tofil S, Furmańczyk P (2016) Micromorphological intraspecific differentiation of nectar guides and landing platform for pollinators in the Iberian parasitic plant Cistanche phelypaea (Orobanchaceae). Botany Letters 163, 47–55.
Micromorphological intraspecific differentiation of nectar guides and landing platform for pollinators in the Iberian parasitic plant Cistanche phelypaea (Orobanchaceae).Crossref | GoogleScholarGoogle Scholar |

Plaza L, Fernandez I, Juan R, Pastor J, Pujadas A (2004) Micromorphological studies on seeds of Orobanche species from the Iberian Peninsula and the Balearic Islands, and their systematic significance. Annals of Botany 94, 167–178.
Micromorphological studies on seeds of Orobanche species from the Iberian Peninsula and the Balearic Islands, and their systematic significance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czhsFyltw%3D%3D&md5=a82925ed9163346d22dcb83909bdc52fCAS |

Pusch J, Günther KF (2009) Orobanchaceae (Sommerwurzgewächse). In ‘Illustrierte Flora von Mitteleuropa’. (Ed. G Hegi) pp. 1–99. (Weissdorn–Verlag: Jena, Germany)

Renner SS (2006) Rewardless flowers in the angiosperms and the role of insect cognition in their evolution. In ‘Plant–Pollinator Interaction: from Specialization to Generalization’. (Eds NM Waser, J Ollerton) pp. 123–144. (University of Chicago Press: Chicago, IL, USA)

Ronse de Craene LP (2010). ‘Floral diagrams. An Aid to Understand Floral Morphology and Evolution.’ (Cambridge University Press: Cambridge, UK)

Sacchetti G, Ballero M, Serafini M, Muzzoli M, Tosi B, Poli F (2003) Morphological and histochemical investigation on glandular trichomes of Orobanche ramosa subsp. nana (Orobanchaceae). Phyton 43, 207–214.

Schäferhoff B, Fleischmann A, Fischer E, Albach D, Borsch T, Heubl G, Müller KF (2010) Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences. BMC Evolutionary Biology 10, 352
Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences.Crossref | GoogleScholarGoogle Scholar |

Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. The Plant Journal 54, 702–711.
Harnessing plant trichome biochemistry for the production of useful compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFKgs78%3D&md5=dfadef3fdc469f49b66d498964b1c9bdCAS |

Schneeweiss GM (2013) Phylogenetic relationships and evolutionary trends in Orobanchaceae. In ‘Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies’. (Eds DM Joel, J Gressel, LJ Musselman) (Springer: Heidelberg, Germany)

Schubert K (1925) Zur Kenntnis der Blütenblatt-Epidermis. Botanisches Archiv: Zeitschrift für die Gesamte Botanik 12, 226–289.

Seyedi Z, Salmaki Y (2015) Trichome morphology and its significance in the systematics of Phlomoides (Lamiaceae; Lamioideae; Phlomideae). Flora 213, 40–48.
Trichome morphology and its significance in the systematics of Phlomoides (Lamiaceae; Lamioideae; Phlomideae).Crossref | GoogleScholarGoogle Scholar |

Shang Y, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE, Martin CR, Davies KM (2011) The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytologist 189, 602–615.
The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlChtbk%3D&md5=14780f8e093b1a178d5807eca44784c1CAS |

Sharifnia F, Shakib SB (2012) Epidermal petal patterns of 13 Iranian Rubus L. (Rosaceae) species. Annals of Biological Research 3, 2734–2740.

Spring O (2000) Chemotaxonomy based on metabolites from glandular trichomes. Advances in Botanical Research 31, 153–174.
Chemotaxonomy based on metabolites from glandular trichomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFKgsLs%3D&md5=cb0ebe361e3b5738b870d51bc4db29c9CAS |

Stirton CH (1981) Petal sculpturing in papilionoid legumes. In ‘Advances in Legume Systematics’. (Eds RM Polhil, PH Raven) pp. 771–788. (HSMO: London, UK)

Světlíková P, Hájek T, Těšitel J (2015) Hydathode trichomes actively secreting water from leaves play a key role in the physiology and evolution of root-parasitic rhinanthoid Orobanchaceae. Annals of Botany 116, 61–68.
Hydathode trichomes actively secreting water from leaves play a key role in the physiology and evolution of root-parasitic rhinanthoid Orobanchaceae.Crossref | GoogleScholarGoogle Scholar |

Tahir SS, Rajput MTM (2010) SEM studies of petal structure of corolla of the species Sibbaldia L. (Rosaceae). Pakistan Journal of Botany 42, 1443–1449.

Tank DC, Egger JM, Olmstead RG (2009) Phylogenetic classification of subtribe Castillejinae (Orobanchaceae). Systematic Botany 34, 182–197.
Phylogenetic classification of subtribe Castillejinae (Orobanchaceae).Crossref | GoogleScholarGoogle Scholar |

Teryokhin ES (1997). ‘Weed Broomrapes: Systematics, Ontogenesis, Biology, Evolution.’ (Aufstieg-Verlag: Landshut, Germany)

Teryokhin ES, Schibakina GB, Serafimovitsch NB, Kravtzova TI (1993) ‘Opredelitel Sarasychovych Flory SSSR.’ (Nauka: Saint Petersburg, Russia)

Tóth P, Undas AK, Verstappen F, Bouwmeester H (2016) Floral volatiles in parasitic plants of the Orobanchaceae. Ecological and taxonomic implications. Frontiers in Plant Science 7, 312
Floral volatiles in parasitic plants of the Orobanchaceae. Ecological and taxonomic implications.Crossref | GoogleScholarGoogle Scholar |

Ushimaru A, Watanabe T, Nakata K (2007) Colored floral organs influence pollinator behavior and pollen transfer in Commelina communis (Commelinaceae). American Journal of Botany 94, 249–258.
Colored floral organs influence pollinator behavior and pollen transfer in Commelina communis (Commelinaceae).Crossref | GoogleScholarGoogle Scholar |

Vigneron JP, Rassart M, Vértesy Z, Kertész K, Sarrazin M, Biró LP, Ertz D, Lousse V (2005) Optical structure and function of the white filamentary hair covering the edelweiss bracts. Physical Review – E. Statistical, Nonlinear, and Soft Matter Physics 71, 011906
Optical structure and function of the white filamentary hair covering the edelweiss bracts.Crossref | GoogleScholarGoogle Scholar |

Vignolini S, Moyroud E, Glover BJ, Steiner U (2013) Analysing photonic structures in plants. Journal of the Royal Society, Interface 10, 20130394
Analysing photonic structures in plants.Crossref | GoogleScholarGoogle Scholar |

von Arx M, Goyret J, Davidowitz G, Raguso RA (2012) Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths. Proceedings of the National Academy of Sciences of the United States of America 109, 9471–9476.
Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptlahsrs%3D&md5=c5e042994ea3ae37212d6452c8bcced8CAS |

Wang YG, Li GZ, Zhang WJ, You JC, Jia K (2007) Leaf epidermal features of Rhododendron (Ericaceae) from China and their systematic significance. Acta Phytotaxonomica Sinica 45, 1–20.

Waser NM, Price MV (1985) The efect of nectar guides on pollinator preference: experimental studies with a montane herb. Oecologia 67, 121–126.
The efect of nectar guides on pollinator preference: experimental studies with a montane herb.Crossref | GoogleScholarGoogle Scholar |

Wettstein R (1891) Scrophulariaceae. In ‘Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten, insbesondere den Nutzpflanzen 4/3b.’ (Eds A Engler, K Prantl) pp. 39–107. (Wilhelm Engelmann: Leipzig, Germany)

Whitney HM, Kolle M, Alvarez-Fernandez R, Steiner U, Glover BJ (2009a) Contributions of iridescence to floral patterning. Communicative & Integrative Biology 2, 230–232.
Contributions of iridescence to floral patterning.Crossref | GoogleScholarGoogle Scholar |

Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Glover BJ (2009b) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323, 130–133.
Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovF2l&md5=263c4a1a15a90689418d70e7e3e64e37CAS |

Whitney HM, Bennett KMV, Dorling M, Sandbach L, Prince D, Chittka L, Glover BJ (2011) Why do so many petals have conical epidermal cells? Annals of Botany 108, 609–616.
Why do so many petals have conical epidermal cells?Crossref | GoogleScholarGoogle Scholar |

Wolfe AD, dePamphilis CW (1998) The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Molecular Biology and Evolution 15, 1243–1258.
The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1eksrY%3D&md5=908f73359d9cdbc7f17b0fc38da3695fCAS |

Wolfe AD, Randle CP, Liu L, Steiner KE (2005) Phylogeny and biogeography of Orobanchaceae. Folia Geobotanica 40, 115–134.
Phylogeny and biogeography of Orobanchaceae.Crossref | GoogleScholarGoogle Scholar |

Xia Z, Yin-Zheng W, Smith JF (2009) Familial placement andrelations of Rehmannia and Triaenophora (Scrophulariaceae s.l.) inferred from five gene regions. American Journal of Botany 96, 519–530.
Familial placement andrelations of Rehmannia and Triaenophora (Scrophulariaceae s.l.) inferred from five gene regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Cmsr8%3D&md5=78db538fbcb2652c92dcd8b987c669d5CAS |

Xiang CL, Dong ZH, Peng H, Liu ZW (2010) Trichome micromorphology of the east Asiatic genus Chelonopsis (Lamiaceae) and its systematic implications. Flora 205, 434–441.
Trichome micromorphology of the east Asiatic genus Chelonopsis (Lamiaceae) and its systematic implications.Crossref | GoogleScholarGoogle Scholar |

Young ND, Steiner KE, de Pamphilis CW (1999) The evolution of parasitism in Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series. Annals of the Missouri Botanical Garden 86, 876–893.
The evolution of parasitism in Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series.Crossref | GoogleScholarGoogle Scholar |

Zare G, Dönmez AA, Dönmez EO (2014) Pollen morphology and evolution in the genus Orobanche L. s.l. and its allied genera (Orobancheae/Orobanchaceae) in Turkey. Plant Systematics and Evolution 300, 783–802.
Pollen morphology and evolution in the genus Orobanche L. s.l. and its allied genera (Orobancheae/Orobanchaceae) in Turkey.Crossref | GoogleScholarGoogle Scholar |