Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

A comprehensive vicariant model for Southwest Pacific biotas

V. Ung A , B. Michaux B D and R. A. B. Leschen C
+ Author Affiliations
- Author Affiliations

A CNRS UMR 7205 (CNRS-UPMC-MNHN), 57 Rue Cuvier CP43, F-75005 Paris, France.

B Private Bag, Kaukapakapa 0843, New Zealand.

C Landcare Research, New Zealand Arthropod Collection, Private Bag 92170, Auckland, New Zealand.

D Corresponding author. Email: bjmichaux@gmail.com

Australian Systematic Botany 29(6) 424-439 https://doi.org/10.1071/SB16032
Submitted: 16 August 2016  Accepted: 7 October 2016   Published: 11 May 2017

Abstract

In the present paper, we develop a new biogeographic model for the biota of the Southwest Pacific, using 76 published phylogenies for a range of island endemics or near-endemic organisms. These phylogenies were converted to areagrams by substituting distributions for taxa. Paralogy-free subtrees (3-item statements) were derived from these areagrams and used as input data into LisBeth that uses compatibility analysis and an exhaustive branch and bound algorithm to produce optimal trees. A general areagram is derived from all three-item statements common to the optimal trees. The results of the analysis show that the Melanesian Rift is not a natural biogeographic area; the islands of the Southwest Pacific are more closely related to each other than they are to Australia; and New Caledonia has had a long history of biological isolation. There is support for a general period of mobilism during the mid-Cenozoic when the biota as a whole expanded its range in response to regional uplift. By comparing the general areagram with what is known about the tectonic development of the region, it is possible to both calibrate the nodes of the areagram, and to identify points of conflict between the geological and biological data.


References

Arensburger P, Buckley TR, Simon C, Moulds M, Holsinger KE (2004a) Biogeography and phylogeny of the New Zealand cicada genera (Homoptera: Cicadidae) based on nuclear and mitochondrial DNA data. Journal of Biogeography 31, 557–569.
Biogeography and phylogeny of the New Zealand cicada genera (Homoptera: Cicadidae) based on nuclear and mitochondrial DNA data.Crossref | GoogleScholarGoogle Scholar |

Arensburger P, Simon C, Holsinger K (2004b) Evolution and phylogeny of the New Zealand cicada genus Kikihia Dugdale (Homoptera: Auchenorrhyncha: Cicadidae) with special reference to the origin of the Kermadec and Norfolk islands’ species. Journal of Biogeography 31, 1769–1783.
Evolution and phylogeny of the New Zealand cicada genus Kikihia Dugdale (Homoptera: Auchenorrhyncha: Cicadidae) with special reference to the origin of the Kermadec and Norfolk islands’ species.Crossref | GoogleScholarGoogle Scholar |

Bagils RZ, Ung V, Grand A, Vignes-Lebbe R, Cao N, Ducasse J (2012) LisBeth: new cladistics for phylogenetics and biogeography. Comptes Rendus. Palévol 11, 563–566.
LisBeth: new cladistics for phylogenetics and biogeography.Crossref | GoogleScholarGoogle Scholar |

Baldwin SL, Fitzgerald PG, Webb LE (2012) Tectonics of the New Guinea Region. Annual Review of Earth and Planetary Sciences 40, 495–520.
Tectonics of the New Guinea Region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFSlt74%3D&md5=73f398521bf4f8cd3c7044a94a9c4f37CAS |

Balke M, Wewalka G, Alarie Y, Ribera I (2007) Molecular phylogeny of Pacific Island Colymbetinae: radiation of New Caledonian and Fijian species (Coleoptera, Dytiscidae). Zoologica Scripta 36, 173–200.

Ballance PF, Spörli KB (1979) Northland allochthon. Journal of the Royal Society of New Zealand 9, 259–275.
Northland allochthon.Crossref | GoogleScholarGoogle Scholar |

Boon WM, Kearvell JC, Daugherty CH, Chambers GK (2001) Molecular systematics and conservation of kakariki (Cyanoramphus spp.). Science for Conservation 176, 1–46.

Bremer K (1992) Ancestral areas: a cladistic reinterpretation of the center of origin concept. Systematic Biology 41, 436–445.
Ancestral areas: a cladistic reinterpretation of the center of origin concept.Crossref | GoogleScholarGoogle Scholar |

Bryan SE, Cook AG, Allen CM, Siegel C, Purdy DJ, Greentree JS, Tonguc IU (2012) Early–mid Cretaceous tectonic evolution of eastern Gondwana: from silicic LIP magmatism to continental rupture. Episodes 35, 142–152.

Buckley TR, Leschen RAB (2013) Comparative phylogenetic analyses reveals long-term isolation of lineages on the Three Kings Islands, New Zealand. Biological Journal of the Linnean Society. Linnean Society of London 108, 361–377.
Comparative phylogenetic analyses reveals long-term isolation of lineages on the Three Kings Islands, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Buckley TR, Arensbburger P, Simon C, Chambers GK (2002) Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. Systematic Biology 51, 4–18.
Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera.Crossref | GoogleScholarGoogle Scholar |

Buckley TR, Attanayake D, Bradler S (2009) Extreme convergence in stick insect evolution: phylogenetic placement of the Lord Howe Island tree lobster. Proceedings. Biological Sciences 276, 1055–1062.
Extreme convergence in stick insect evolution: phylogenetic placement of the Lord Howe Island tree lobster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVWksL0%3D&md5=cd86e80a534003b4595bf19f461a6455CAS |

Buckley TR, Attanayake D, Nylander JAA, Bradler S (2010) The phylogenetic placement and biogeographical origins of the New Zealand stick insects (Phasmatodea). Systematic Entomology 35, 207–225.
The phylogenetic placement and biogeographical origins of the New Zealand stick insects (Phasmatodea).Crossref | GoogleScholarGoogle Scholar |

Buckley TR, James S, Allwood J, Bartlam S, Howitt R, Prada D (2011) Phylogenetic analysis of New Zealand earthworms (Oligochaeta: Megascolecidae) reveals ancient clades and cryptic taxonomic diversity. Molecular Phylogenetics and Evolution 58, 85–96.
Phylogenetic analysis of New Zealand earthworms (Oligochaeta: Megascolecidae) reveals ancient clades and cryptic taxonomic diversity.Crossref | GoogleScholarGoogle Scholar |

Burckhardt D (2009) Taxonomy and phylogeny of the Gondwanan moss bugs or Peloridiidae (Hemiptera: Coleorrhyncha). Deutsche Entomologische Zeitschrift 56, 173–235.
Taxonomy and phylogeny of the Gondwanan moss bugs or Peloridiidae (Hemiptera: Coleorrhyncha).Crossref | GoogleScholarGoogle Scholar |

Chapple DG, Ritchie PA, Daugherty CH (2009) Origin, diversification and systematics of the New Zealand skink fauna (Reptilia: Scincidae). Molecular Phylogenetics and Evolution 52, 470–487.
Origin, diversification and systematics of the New Zealand skink fauna (Reptilia: Scincidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12hsbk%3D&md5=2f1df55ccff32cbf94ddab6d149f1b35CAS |

Coleman PJ (1997) Australia and the Melanesian arcs: a review of tectonic settings. AGSO Journal of Australian Geology & Geophysics 17, 113–125.

Collot J, Géli L, Lafoy Y, Vially R, Cluzel D, Klingelhoefer F, Nouzé H (2008) Tectonic history of northern New Caledonian Basin from deep offshore seismic reflection: relation to late Eocene obduction in New Caledonia, Southwest Pacific. Tectonics 27, TC6006
Tectonic history of northern New Caledonian Basin from deep offshore seismic reflection: relation to late Eocene obduction in New Caledonia, Southwest Pacific.Crossref | GoogleScholarGoogle Scholar |

Collot J, Lafoy Y, Géli L (2011) ‘Explanatory Notes of the Structural Provinces of the Southwest Pacific Map.’ (Geological Society of New Caledonia: Nouméa, New Caledonia)

Craig DA, Currie DC, Joy DA (2001) Geographical history of the central-western Pacific black fly subgenus Inseliellum (Diptera: Simuliidae: Simulium) based on a reconstructed phylogeny of the species, hot-spot archipelagos and hydrological considerations. Journal of Biogeography 28, 1101–1127.
Geographical history of the central-western Pacific black fly subgenus Inseliellum (Diptera: Simuliidae: Simulium) based on a reconstructed phylogeny of the species, hot-spot archipelagos and hydrological considerations.Crossref | GoogleScholarGoogle Scholar |

Crawford AJ, Meffre S, Symonds PA (2003) 120 to 0 Ma tectonic evolution of the Southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System. In ‘Geological Society of Australia Special Publication 22’, pp. 377–397. (Geological Society of Australia: Sydney, NSW, Australia)

Croizat L (1964) ‘Space, Time, Form. The Biological Synthesis.’ (Self-Published: Caracus, Venezuela)

Darwin C (1903) ‘More Letters of Charles Darwin. Vol.1.’ (Ed. F. Darwin) (John Murray: London, UK)

de Queiroz A (2014) ‘The Monkey’s Journey: how Improbable Journeys Shaped the History of Life.’ (Basic Books: New York, NY, USA)

DiCaprio L, Müller RD, Gurnis M, Goncharov A (2009) Linking active margin dynamics to overriding plate deformation. Synthesizing geological images with geological data from the Norfolk Basin. Geochemistry Geophysics Geosystems 10, Q01004
Linking active margin dynamics to overriding plate deformation. Synthesizing geological images with geological data from the Norfolk Basin.Crossref | GoogleScholarGoogle Scholar |

Donoghue MJ, Moore BR (2003) Toward an integrative historical biogeography. Integrative and Comparative Biology 43, 261–270.
Toward an integrative historical biogeography.Crossref | GoogleScholarGoogle Scholar |

dos Santos CMD (2011) On the role of assumptions in cladistic biogeographical analyses. Papéis Avulsos de Zoologia 51, 295–305.
On the role of assumptions in cladistic biogeographical analyses.Crossref | GoogleScholarGoogle Scholar |

Dumbacher JP, Pratt TK, Fleischer RC (2003) Phylogeny of the owlet-nightjars (Aves: Aegothelida) based on mitochondrial DNA sequence. Molecular Phylogenetics and Evolution 29, 540–549.
Phylogeny of the owlet-nightjars (Aves: Aegothelida) based on mitochondrial DNA sequence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWnurs%3D&md5=7658129ea1d3683e5bf087d0453d042fCAS |

Ebach MC, Humphries CJ, Newman RA, Williams DM, Walsh SA (2005) Assumption 2: opaque to intuition? Journal of Biogeography 32, 781–787.
Assumption 2: opaque to intuition?Crossref | GoogleScholarGoogle Scholar |

Edgecombe GD, Colgan DJ, Sharkey D (2006) Phylogeny and biogeography of the Australasian centipede Henicops (Chilopoda: Lithobiomorpha): a combined morphological and molecular approach. Insect Systematics & Evolution 37, 241–256.
Phylogeny and biogeography of the Australasian centipede Henicops (Chilopoda: Lithobiomorpha): a combined morphological and molecular approach.Crossref | GoogleScholarGoogle Scholar |

Fleming CA (1979) ‘The Geological History of New Zealand and its Life.’ (University of Auckland Press: Auckland, New Zealand)

Gaina C, Roest WR, Müller RD, Symonds P (1998) The opening of the Tasman Sea: a gravity anomaly animation. Earth Interactions 2, 1–23.
The opening of the Tasman Sea: a gravity anomaly animation.Crossref | GoogleScholarGoogle Scholar |

Gamble A, Bauer AM, Greenbaum E, Jackman TR (2008) Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. Journal of Biogeography 35, 88–104.

Gemmill CE, Allan GJ, Wagner WL, Zimmer EA (2002) Evolution of insular Pacific Pittosporum (Pittosporaceae): origin of the Hawaiian radiation. Molecular Phylogenetics and Evolution 22, 31–42.
Evolution of insular Pacific Pittosporum (Pittosporaceae): origin of the Hawaiian radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xktl2itg%3D%3D&md5=6138795cd555bec1b6571ee8e22c00afCAS |

Gibbs GW (2010) Micropterigidae (Lepidoptera) of the southwestern Pacific: a revision with the establishment of five new genera from Australia, New Caledonia and New Zealand. Zootaxa 2520, 1–48.

Givnish TJ, Renner SS (2004) Tropical intercontinental disjunctions: Gondwana breakup, immigration from the Boreotropics, and transoceanic dispersal. International Journal of Plant Sciences 165, S1–S6.
Tropical intercontinental disjunctions: Gondwana breakup, immigration from the Boreotropics, and transoceanic dispersal.Crossref | GoogleScholarGoogle Scholar |

Goldberg J, Trewick SA, Powlesland RG (2011) Population structure and biogeography of Hemiphaga pigeons (Aves: Columbidae) on islands in the New Zealand region. Journal of Biogeography 38, 285–298.
Population structure and biogeography of Hemiphaga pigeons (Aves: Columbidae) on islands in the New Zealand region.Crossref | GoogleScholarGoogle Scholar |

Greene HG, Collot J-Y, Fisher MA, Crawford AJ (1994) Neogene tectonic evolution of the New Hebrides Island arc: a review incorporating ODP drilling results. Proceedings of the Ocean Drilling Program, Scientific Results 134, 46

Grobys JWG, Gohl K, Eagles G (2008) Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates. Geochemistry Geophysics Geosystems 9, 1–18.
Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates.Crossref | GoogleScholarGoogle Scholar |

Haase M, Bouchet P (1998) Radiation of crenobiontic gastropods on an ancient continental island: the Hemistomia-clade in New Caledonia (Gastropoda: Hydrobiidae). Hydrobiologia 367, 43–129.
Radiation of crenobiontic gastropods on an ancient continental island: the Hemistomia-clade in New Caledonia (Gastropoda: Hydrobiidae).Crossref | GoogleScholarGoogle Scholar |

Harbaugh DT, Baldwin BG (2007) Phylogeny and biogeography of the sandalwoods (Santalum, Santalaceae): repeated dispersals throughout the Pacific. American Journal of Botany 94, 1028–1040.

Hausdorf B (1998) Weighted ancestral area analysis and a solution of the redundant distribution problem. Systematic Biology 47, 445–456.
Weighted ancestral area analysis and a solution of the redundant distribution problem.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zitlentQ%3D%3D&md5=bf56a2b69903ac802a01f95493a75c22CAS |

Heads M (2002) Birds of paradise, vicariance biogeography, and terrane tectonics in New Guinea. Journal of Biogeography 29, 261–283.
Birds of paradise, vicariance biogeography, and terrane tectonics in New Guinea.Crossref | GoogleScholarGoogle Scholar |

Heads M (2008) Panbiogeography of New Caledonia, South-west Pacific: basal angiosperms on basement terranes, ultramafic endemics inherited from volcanic island arcs and old taxa endemic to young islands. Journal of Biogeography 35, 2153–2175.
Panbiogeography of New Caledonia, South-west Pacific: basal angiosperms on basement terranes, ultramafic endemics inherited from volcanic island arcs and old taxa endemic to young islands.Crossref | GoogleScholarGoogle Scholar |

Heads M (2014a) Biogeography by revelation: investigating a world shaped by miracles. Australian Systematic Botany 27, 282–304.
Biogeography by revelation: investigating a world shaped by miracles.Crossref | GoogleScholarGoogle Scholar |

Heads M (2014b) ‘Biogeography of Australasia.’ (Cambridge University Press: Cambridge, UK)

Heenan PB, Smissen RD (2013) Revised circumscription of Nothofagus and recognition of the segregate genera Fusospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phytotaxa 146, 1–31.
Revised circumscription of Nothofagus and recognition of the segregate genera Fusospora, Lophozonia, and Trisyngyne (Nothofagaceae).Crossref | GoogleScholarGoogle Scholar |

Herzer RH, Sykes R, Killops SD, Funnell RH, Burggraf DR, Townend J, Raine JI, Wilson GJ (1999) Cretaceous carbonaceous rocks from the Norfolk Ridge system, Southwest Pacific: implications for regional petroleum potential. New Zealand Journal of Geology and Geophysics 42, 57–73.
Cretaceous carbonaceous rocks from the Norfolk Ridge system, Southwest Pacific: implications for regional petroleum potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlKmt7s%3D&md5=5a50fda7f16bba31b6583fd072985bbbCAS |

Herzer RH, Barker DH, Roest WR, Mortimer N (2011) Oligocene–Miocene spreading history of the northern South Fiji Basin and implications for the evolution of the New Zealand plate boundary. Geochemistry Geophysics Geosystems 12, Q02004
Oligocene–Miocene spreading history of the northern South Fiji Basin and implications for the evolution of the New Zealand plate boundary.Crossref | GoogleScholarGoogle Scholar |

Hovenkamp P (1997) Vicariance events, not areas, should be used in biogeographical analysis. Cladistics 13, 67–79.
Vicariance events, not areas, should be used in biogeographical analysis.Crossref | GoogleScholarGoogle Scholar |

Hutton FW (1872) On the origin of the fauna and flora of New Zealand. Transactions and Proceedings of the New Zealand Institute 5, 227–256.

Jaffre T, Bouchet P, Veillon J-M (1997) Threatened plants of New Caledonia: is the system of protected areas adequate? Biodiversity and Conservation 7, 109–135.
Threatened plants of New Caledonia: is the system of protected areas adequate?Crossref | GoogleScholarGoogle Scholar |

Keene J, Potter A, Baker C, Tran M (2008) Sedimentology and geomorphology of the East Marine Region: a spatial analysis. (Geoscience Australia Publications) Available at http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/b_fdi_53-54/010020262.pdf [Verified October 2016]

Keith P, Lord C, Lorion J, Watanabe S, Tsukamoto K, Couloux A, Dettai A (2011) Phylogeny and biogeography of Sicydiinae (Teleostei: Gobiidae) inferred from mitochondrial and nuclear genes. Marine Biology 158, 311–326.
Phylogeny and biogeography of Sicydiinae (Teleostei: Gobiidae) inferred from mitochondrial and nuclear genes.Crossref | GoogleScholarGoogle Scholar |

Klingelhoefer F, Lafoy Y, Collot J, Cosquer E, Géli L, Nouzé H, Vially R (2007) Crustal structure of the basin and ridge system west of New Caledonia (Southwest Pacific) from wide-angle and reflection seismic data. Journal of Geophysical Research 112, B11102
Crustal structure of the basin and ridge system west of New Caledonia (Southwest Pacific) from wide-angle and reflection seismic data.Crossref | GoogleScholarGoogle Scholar |

Korall P, Pryer KM (2014) Global biogeography of scaly tree ferns (Cyatheaceae): evidence for Gondwanan vicariance and limited transoceanic dispersal. Journal of Biogeography 41, 402–413.
Global biogeography of scaly tree ferns (Cyatheaceae): evidence for Gondwanan vicariance and limited transoceanic dispersal.Crossref | GoogleScholarGoogle Scholar |

Korall P, Conant DS, Metzgar JS, Schneider H, Pryer KM (2007) A molecular phylogeny of scaly tree ferns (Cyatheaceae). American Journal of Botany 94, 873–886.
A molecular phylogeny of scaly tree ferns (Cyatheaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVCntLY%3D&md5=4f744b2a827c6cf3f8561156139f9cdaCAS |

Ladiges PY, Cantrill D (2007) New Caledonia–Australian connections: biogeographic patterns and geology. Australian Journal of Botany 20, 383–389.

Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30, 989–998.
Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Lafoy Y, Brodien I, Vially R, Exon NF (2005a) Structure of the basin and ridge system west of New Caledonia (Southwest Pacific): a synthesis. Marine Geophysical Researches 26, 37–50.
Structure of the basin and ridge system west of New Caledonia (Southwest Pacific): a synthesis.Crossref | GoogleScholarGoogle Scholar |

Lafoy Y, Géli L, Klingelhoefer F, Vially R, Sichler B, Nouzé H (2005b) Discovery of continental stretching and oceanic spreading in the Tasman Sea. Eos 86, 101–105.
Discovery of continental stretching and oceanic spreading in the Tasman Sea.Crossref | GoogleScholarGoogle Scholar |

Landcare Research (2015) Phylogeny of New Zealand plants, Pennantiaceae. Available at http://plantphylogeny.landcareresearch.co.nz/webforms/ViewTree.aspx?ObjectID=a3ae47d8-56a1-442c-b2a6-1804dad911b6 [Verified October 2016

Lane A, Shine R (2011) Phylogenetic relationships within laticaudine sea snakes (Elapidae). Molecular Phylogenetics and Evolution 59, 567–577.
Phylogenetic relationships within laticaudine sea snakes (Elapidae).Crossref | GoogleScholarGoogle Scholar |

Leschen RAB, Lackner T (2013) Gondwanan Gymnochilini (Coleoptera: Trogossitidae): generic concepts, review of New Zealand species and long-range Pacific dispersal. Systematic Entomology 38, 278–304.
Gondwanan Gymnochilini (Coleoptera: Trogossitidae): generic concepts, review of New Zealand species and long-range Pacific dispersal.Crossref | GoogleScholarGoogle Scholar |

Lucky A (2011) Molecular phylogeny and biogeography of the spider ants, genus Leptomyrmex Mayr (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution 59, 281–292.
Molecular phylogeny and biogeography of the spider ants, genus Leptomyrmex Mayr (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Marshall DC, Hill KBR, Marske KA, Chambers C, Buckley TR, Simon C (2012) Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation. BMC Evolutionary Biology 12, 117–135.
Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation.Crossref | GoogleScholarGoogle Scholar |

Matthews KJ, Hale AJ, Gurnis M, Müller RD, DiCaprio L (2011) Dynamic subsidence of Eastern Australia during the Cretaceous. Gondwana Research 19, 372–383.
Dynamic subsidence of Eastern Australia during the Cretaceous.Crossref | GoogleScholarGoogle Scholar |

Meffre S, Crawford AJ, Quilty PG (2006) Arc-continent collision forming a large island between New Caledonia and New Zealand in the Oligocene. In ‘Australian Earth Sciences Convention 2006: Conference Abstracts’, 2–8 July 2006, Melbourne, Vic., Australia. (Geological Society of Australia) Available at http://www.publish.csiro.au/?act=view_file&file_id=ASEG2006ab111.pdf [Verified October 2016]

Michaux B (1989) Generalized tracks and geology. Systematic Zoology 38, 390–398.
Generalized tracks and geology.Crossref | GoogleScholarGoogle Scholar |

Michaux B (1994) Land movements and animal distributions in east Wallacea (eastern Indonesia, Papua New Guinea and Melanesia). Palaeogeography, Palaeoclimatology, Palaeoecology 112, 323–343.
Land movements and animal distributions in east Wallacea (eastern Indonesia, Papua New Guinea and Melanesia).Crossref | GoogleScholarGoogle Scholar |

Michaux B (1998) Terrestrial birds of the Indo-Pacific. In ‘Biogeography and Geological Evolution of SE Asia’. (Eds R Hall, JD Holloway) pp. 361–391. (Backhuys: Leiden, Netherlands)

Michaux B (2010) Biogeology of Wallacea: geotectonic models, areas of endemism, and natural biogeographical units. Biological Journal of the Linnean Society. Linnean Society of London 101, 193–212.
Biogeology of Wallacea: geotectonic models, areas of endemism, and natural biogeographical units.Crossref | GoogleScholarGoogle Scholar |

Mitchell AD, Heenan PB, Murray BG, Molloy BPJ, de Lange PJ (2009) Evolution of the south-western Pacific genus Melicytus (Violaceae): evidence from DNA sequence data, cytology and sex expression. Australian Systematic Botany 22, 143–157.
Evolution of the south-western Pacific genus Melicytus (Violaceae): evidence from DNA sequence data, cytology and sex expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFygtro%3D&md5=627ccf737526a5bf230e413747471bd6CAS |

Mortimer N (2004) Basement gabbro from Lord Howe Rise. New Zealand Journal of Geology and Geophysics 47, 501–507.
Basement gabbro from Lord Howe Rise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSltbrF&md5=0def97a8fcdfee45fec3f5da67e722f1CAS |

Mortimer N, Herzer RH, Gans PB, Laporte-Magoni C, Calvert AT, Bosch D (2007) Oligocene–Miocene tectonic evolution of the South Fiji Basin and Northland Plateau, SW Pacific Ocean: evidence from petrology and dating of dredged rocks. Marine Geology 237, 1–24.
Oligocene–Miocene tectonic evolution of the South Fiji Basin and Northland Plateau, SW Pacific Ocean: evidence from petrology and dating of dredged rocks.Crossref | GoogleScholarGoogle Scholar |

Mortimer N, Dunlap WJ, Palin JM, Herzer RH, Hauff F, Clark M (2008) Ultra-fast early Miocene exhumation of Cavalli Seamount, Northland Plateau, Southwest Pacific Ocean. New Zealand Journal of Geology and Geophysics 51, 29–42.
Ultra-fast early Miocene exhumation of Cavalli Seamount, Northland Plateau, Southwest Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVKjsr4%3D&md5=d86bdab27cbe32ff3cd4549c69acb811CAS |

Mouly A, Razafimandimbison SG, Khodabandeh A, Bremer B (2009) Phylogeny and classification of the species-rich pantropical showy genus Ixora (Rubiaceae-Ixoreae) with indications of geographical monophyletic units and hybrids. American Journal of Botany 96, 686–706.
Phylogeny and classification of the species-rich pantropical showy genus Ixora (Rubiaceae-Ixoreae) with indications of geographical monophyletic units and hybrids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlGnt78%3D&md5=56757cef55b25663b0fa1a1d7573fb7eCAS |

Nattier R, Robillard A, Desutter-Grandcolas L, Coloux A, Grandcolis P (2011) Older than New Caledonian emergence? A molecular phylogenetic study of the eneopterine crickets (Orthoptera: Grylloidea). Journal of Biogeography 38, 2195–2209.
Older than New Caledonian emergence? A molecular phylogenetic study of the eneopterine crickets (Orthoptera: Grylloidea).Crossref | GoogleScholarGoogle Scholar |

Nelson G, Ladiges PY (1996) Paralogy in cladistic biogeography and analysis of paralogy-free subtrees. American Museum Novitates 3167, 1–58.

Nelson G, Platnick NI (1981) ‘Systematics and Biogeography: Cladistics and Vicariance.’ (Columbia University Press: New York, NY, USA)

Nicholson KN, Black PM, Sporli KB (2008) Cretaceous–Oligocene multiphase magmatism on Three Kings Islands, northern New Zealand. New Zealand Journal of Geology and Geophysics 51, 219–229.
Cretaceous–Oligocene multiphase magmatism on Three Kings Islands, northern New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCiur7K&md5=5900dfe8ceea9debf51f0beab4102adbCAS |

Nicholson KN, Maurizot P, Black PM, Picard C, Simonetti A, Stuart A, Alexander A (2011) Geochemistry and age of the Noumea Basin lavas, New Caledonia: evidence for Cretaceous subduction beneath the eastern Gondwana margin. Lithos 125, 659–674.
Geochemistry and age of the Noumea Basin lavas, New Caledonia: evidence for Cretaceous subduction beneath the eastern Gondwana margin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlSqtrY%3D&md5=99c72f1cea747d26d072a5a0cef308b7CAS |

Nielsen SV, Bauer AM, Jackman TR, Hitchmough RA, Daugherty CH (2011) New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Molecular Phylogenetics and Evolution 59, 1–22.
New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities.Crossref | GoogleScholarGoogle Scholar |

Nyári AS (2011) Origin and evolution of the unique Australo-Papuan mangrove-restricted avifauna: novel insights form molecular phylogenetic and comparative phylogeographic analyses. PhD thesis, University of Kansas, Lawrence, KS, USA. Available at https://kuscholarworks.ku.edu/bitstream/handle/1808/7691/Nyari_ku_0099D_11510_DATA_1.pdf?sequence=1 [Verified October 2016]

Oliver WRB (1925) Biogeographical relations of the New Zealand region. Journal of the Linnean Society Botany 47, 99–140.
Biogeographical relations of the New Zealand region.Crossref | GoogleScholarGoogle Scholar |

Page TJ, Baker AM, Cook BD, Hughes JM (2005) Historical transoceanic dispersal of a freshwater shrimp: the colonization of the South Pacific by the genus Paratya (Atyidae). Journal of Biogeography 32, 581–593.
Historical transoceanic dispersal of a freshwater shrimp: the colonization of the South Pacific by the genus Paratya (Atyidae).Crossref | GoogleScholarGoogle Scholar |

Papadopulos AST, Baker WJ, Crayn D, Buttin RK, Kynast RG, Hutton I, Savolainen V (2011) Speciation with gene flow on Lord Howe Island. Proceedings of the National Academy of Sciences of the United States of America 108, 13188–13193.
Speciation with gene flow on Lord Howe Island.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKitL7M&md5=536665f04bb7fefb6ad929c583b1bdf7CAS |

Parenti LR, Ebach ME (2009) ‘Comparative Biogeography.’ (University of California Press: Oakland, CA, USA)

Pelletier B (2007) Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In ‘Compendium of Marine Species of New Caledonia’. (Eds C Payri, B Richer de Forges) pp. 19–32. (IRD: Nouméa, New Caledonia)

Percy DM, Garver AM, Wagner WL, James HF, Cunningham CW, Miller SE, Fleischer RC (2008) Progressive island colonization and ancient origin of Hawaiian Metrosideros (Myrtaceae). Proceedings. Biological Sciences 275, 1479–1490.
Progressive island colonization and ancient origin of Hawaiian Metrosideros (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFGhu7c%3D&md5=af01d8508e671d5b0c2350628c07e5a2CAS |

Perrie LR, Brownsey PJ, Lockhart PJ, Brown EA, Large MF (2003) Biogeography of temperate Australasian Polystichum ferns as inferred from chloroplast sequence and AFLP. Journal of Biogeography 30, 1729–1736.

Pigram CJ, Davies HL (1987) Terranes and accretion history of the New Guinea orogeny. BMR Journal of Australian Geology and Geophysics 10, 193–211.

Ponder WF, Colgan DJ, Gleeson DM, Sherley GH (2003) Relationships of Placostylus from Lord Howe Island: an investigation using the mitochondrial cytochrome c oxidase 1 gene. Molluscan Research 23, 159–178.
Relationships of Placostylus from Lord Howe Island: an investigation using the mitochondrial cytochrome c oxidase 1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVeltL4%3D&md5=c8eb784346629241fbe4dc186de31c78CAS |

Pratt SJ (2013) Evolution of the genera Vitex (Lamiaceae) and Zygogynum (Winteraceae) on New Caledonia. MSc thesis, University of Waikato, Hamilton, New Zealand. Available at http://researchcommons.waikato.ac.nz/handle/10289/7570 [Verified October 2016]

Pratt RC, Morgan-Richards M, Trewick SA (2008) Diversification of New Zealand weta (Orthoptera: Ensifera: Anostostomatidae) and their relationships in Australasia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 3427–3437.
Diversification of New Zealand weta (Orthoptera: Ensifera: Anostostomatidae) and their relationships in Australasia.Crossref | GoogleScholarGoogle Scholar |

Puslednik L, Serb JM (2008) Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Molecular Phylogenetics and Evolution 48, 1178–1188.
Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyntL7N&md5=a891b8a32e53c0ff4826129383ef58f6CAS |

Quilty PG (1993) Tasmantid and Lord Howe seamounts: biostratigraphy and palaeoceanographic significance. Alcheringa 17, 27–53.
Tasmantid and Lord Howe seamounts: biostratigraphy and palaeoceanographic significance.Crossref | GoogleScholarGoogle Scholar |

Rapela CW, Pankhurst RJ, Fanning J, Hervé F (2005) Pacific subduction coeval with the Karoo mantle plume: early Jurassic subcordilleran belt of northwestern Patagonia. In ‘Terrane Processes at the Margin of Gondwana’. (Eds APM Vaughan, PI Leat, RJ Pankhurst) Geological Society Special Publication 246, pp. 1–21. (Geological Society Publishing House: Bath, UK)

Ronquist F (1994) Ancestral areas and parsimony. Systematic Biology 43, 267–274.
Ancestral areas and parsimony.Crossref | GoogleScholarGoogle Scholar |

Rønsted N, Weiblen GD, Savolainen V, Cook JM (2008) Phylogeny, biogeography and ecology of Ficus section Malvanthera (Moraceae). Molecular Phylogenetics and Evolution 48, 12–22.
Phylogeny, biogeography and ecology of Ficus section Malvanthera (Moraceae).Crossref | GoogleScholarGoogle Scholar |

Rosen DE (1978) Vicariant patterns and historical explanation in biogeography. Systematic Zoology 27, 159–188.
Vicariant patterns and historical explanation in biogeography.Crossref | GoogleScholarGoogle Scholar |

Schellart WP (2006) Fitting Northland, New Caledonia and d’Entrecasteaux geology into the Late Cretaceous–Cenozoic Southwest Pacific tectonic framework. In ‘AESC Extended Abstracts 2006’, 2–8 July 2006, Melbourne, Vic., Australia. (Geological Society of Australia) Available at http://www.publish.csiro.au/ex/ASEG2006ab157 [Verified October 2016]

Schellart WP, Lister GS, Toy VG (2006) A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth-Science Reviews 76, 191–233.
A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes.Crossref | GoogleScholarGoogle Scholar |

Schellart WP, Kennett BLN, Spakman W, Amaru M (2009) Plate reconstructions and tomography reveal a fossil lower mantle slab below the Tasman Sea. Earth and Planetary Science Letters 278, 143–151.
Plate reconstructions and tomography reveal a fossil lower mantle slab below the Tasman Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVGjurw%3D&md5=5d71b2a49d6465005e64ae74480a264aCAS |

Schmidt S, Driver F, de Barro P (2006) The phylogenetic characteristics of three different 28S rRNA gene regions in Encarsia (Insecta, Hymenoptera, Aphelinidae). Organisms, Diversity & Evolution 6, 127–139.
The phylogenetic characteristics of three different 28S rRNA gene regions in Encarsia (Insecta, Hymenoptera, Aphelinidae).Crossref | GoogleScholarGoogle Scholar |

Schweizer M, Güntert M, Hertwig ST (2013) Out of the Bassian province: historical biogeography of the Australasian platycercine parrots (Aves, Psittaciformes). Zoologica Scripta 42, 13–27.
Out of the Bassian province: historical biogeography of the Australasian platycercine parrots (Aves, Psittaciformes).Crossref | GoogleScholarGoogle Scholar |

Sdrolias M, Müller RD, Gaina C (2001) Plate tectonic evolution of eastern Australian marginal ocean basins. Eastern Australian Basin Symposium 2001, 227–237.

Sdrolias M, Müller RD, Gaina C (2003) Tectonic evolution of the Southwest Pacific using constraints from backarc basins. In ‘Evolution and Dynamics of the Australian Plate’ (Eds RR Hillis, D Muller) Geological Society of Australia Special Publication 22 and Geological Society of America Special Paper 372, pp. 343–359. (Geological Society of America: Boulder, CO, USA)

Sdrolias M, Müller RD, Mauffret A, Bernardel G (2004) Enigmatic formation of the Norfolk Basin, SW Pacific: a plume influence on back-arc extension. Geochemistry Geophysics Geosystems 5, Q06005
Enigmatic formation of the Norfolk Basin, SW Pacific: a plume influence on back-arc extension.Crossref | GoogleScholarGoogle Scholar |

Seton M, Flament N, Müller RD (2012) Subduction history in the Melanesian border region, SW Pacific. In ‘East Australasian Basins Symposium IV’, 10–14 September 2012, Brisbane, Qld, Australia. (Ed. T Mares) (Petroleum Exploration Society of Australia: Brisbane, Qld, Australia) Available at http://www.earthbyte.org/Resources/Pdf/Seton_Melanesian_borderlands_subduction_history_EABS4_2012.pdf [Verified October 2016]

Sirvid PJ, Moore NE, Chambers GK, Prendergast K (2013) A preliminary molecular analysis of phylogenetic relationships of New Zealand Thomisidae (Areneae) using a multilocus approach. Invertebrate Systematics 27, 655–672.

Smith SA, Sadlier RA, Bauer AM, Austin C, Jackman T (2007) Molecular phylogeny of the scincid lizards of New Caledonia and adjacent areas: evidence for a single origin of the endemic skinks of Tasmantis. Molecular Phylogenetics and Evolution 43, 1151–1166.
Molecular phylogeny of the scincid lizards of New Caledonia and adjacent areas: evidence for a single origin of the endemic skinks of Tasmantis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVOrtbs%3D&md5=bed3198ebbfffbe9ffc8c18c2c0895a3CAS |

Spencer HG, Brook FJ, Kennedy M (2006) Phylogeography of Kauri snails and their allies from Northland, New Zealand (Mollusca: Gastropoda: Rhytididae: Paryphantinae). Molecular Phylogenetics and Evolution 38, 835–842.
Phylogeography of Kauri snails and their allies from Northland, New Zealand (Mollusca: Gastropoda: Rhytididae: Paryphantinae).Crossref | GoogleScholarGoogle Scholar |

Stagg HMJ, Borissova I, Alcock M, Moore AMG (1999) Tectonic provinces of the Lord Howe Rise. AGSO Research Newsletter 31, 31–32. http://www.agso.gov.au/information/publications/resnews/

Steane DA, Wilson KL, Hill RS (2003) Using matK sequence data to unravel the phylogeny of Casuarinaceae. Molecular Phylogenetics and Evolution 28, 47–59.
Using matK sequence data to unravel the phylogeny of Casuarinaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVGltbY%3D&md5=67122bcd56a09bcd023f117b23f64da8CAS |

Stefenon VM, Gailing O, Finkeldey R (2006) Phylogenetic relationship within genus Araucaria (Araucariaceae) assessed by means of AFLP fingerprints. Silvae Genetica 55, 45–52.

Stöckler K, Daniel IL, Lockhart PJ (2002) New Zealand kauri (Agathis australis (D.Don) Lindl., Araucariacea) survives Oligocene drowning. Systematic Biology 51, 827–832.
New Zealand kauri (Agathis australis (D.Don) Lindl., Araucariacea) survives Oligocene drowning.Crossref | GoogleScholarGoogle Scholar |

Sutherland R (1999) Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data. Tectonophysics 308, 341–362.
Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data.Crossref | GoogleScholarGoogle Scholar |

Sutherland R, Collot J, Lafoy Y, Logan GA, Hackney R, Stagpoole V, Uruski C, Hashimoto T, Higgins K, Herzer RH, Wood R, Mortimer N, Rollet N (2010) Lithosphere delamination with foundering of lower crust and mantle caused permanent subsidence of New Caledonian Trough and transient uplift of Lord Howe Rise during Eocene and Oligocene initiation of Tonga–Kermadec subduction, western Pacific. Tectonics 29, TC2004
Lithosphere delamination with foundering of lower crust and mantle caused permanent subsidence of New Caledonian Trough and transient uplift of Lord Howe Rise during Eocene and Oligocene initiation of Tonga–Kermadec subduction, western Pacific.Crossref | GoogleScholarGoogle Scholar |

Swenson U, Hill RS, McLoughlin S (2001) Biogeography of Nothofagus supports the sequence of Gondwana break-up. Taxon 50, 1025–1041.
Biogeography of Nothofagus supports the sequence of Gondwana break-up.Crossref | GoogleScholarGoogle Scholar |

Swenson U, Nylinder S, Munzinger J (2013) Sapotaceae biogeography supports New Caledonia being an old Darwinian island. Journal of Biogeography 40, 797-809
Sapotaceae biogeography supports New Caledonia being an old Darwinian island.Crossref | GoogleScholarGoogle Scholar |

Tulloch AJ, Kimbrough DL, Wood RA (1991) Carboniferous granite basement dredged from a site on the southwest margin of the Challenger Plateau, Tasman Sea. New Zealand Journal of Geology and Geophysics 34, 121–126.
Carboniferous granite basement dredged from a site on the southwest margin of the Challenger Plateau, Tasman Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvVOjsLo%3D&md5=e849e2dad45ee183b0e8ab0c1d0a6d00CAS |

Ung V, Zaragüeta-Bagils R, Williams DM (2016) Comparative biogeography of Southeast Asia and the West Pacific region. Biological Journal of the Linnean Society. Linnean Society of London 117, 372–385.
Comparative biogeography of Southeast Asia and the West Pacific region.Crossref | GoogleScholarGoogle Scholar |

van Veller MGP, Kornet DJ, Zandee M (2000) Methods in vicariance biogeography: assessment of the implementations of assumptions 0, 1, and 2. Cladistics 16, 319–345.
Methods in vicariance biogeography: assessment of the implementations of assumptions 0, 1, and 2.Crossref | GoogleScholarGoogle Scholar |

Wagstaff SJ, Dawson MI, Venter S, Munzinger J, Crayn DM, Steane DA, Lemson KL (2010) Origin, diversification and classification of the Australasian genus Dracophyllum (Richeeae: Ericaceae). Annals of the Missouri Botanical Garden 97, 235–258.
Origin, diversification and classification of the Australasian genus Dracophyllum (Richeeae: Ericaceae).Crossref | GoogleScholarGoogle Scholar |

Wallace AR (1876) ‘The Geographical Distribution of Animals.’ (MacMillan: London, UK)

Wiley EO, Lieberman BS (2011) ‘Phylogenetics: the Theory of Phylogenetic Systematics’, 2nd edn. (Wiley-Blackwell: Hoboken, NJ, USA)

Wink M, Heidrich P, Sauer-Gürth H, Elsayed A-A, Gonzales J (2008) Molecular phylogeny and systematics of owls (Strigiformes). In ‘Owls of the World’. pp. 42–63. (Helm: London, UK)

Woo VL, Funke JF, Smith PJ, Lockhart PJ, Garnock-Jones PJ (2011) New World origins of Southwest Pacific Gesneriaceae: multiple movements across and within the South Pacific. International Journal of Plant Sciences 172, 434–457.
New World origins of Southwest Pacific Gesneriaceae: multiple movements across and within the South Pacific.Crossref | GoogleScholarGoogle Scholar |

Wood RA (1991) Structure and seismic stratigraphy of the western Challenger Plateau. New Zealand Journal of Geology and Geophysics 34, 1–9.
Structure and seismic stratigraphy of the western Challenger Plateau.Crossref | GoogleScholarGoogle Scholar |

Wood R, Woodward D (2002) Sediment thickness and crustal structure of offshore western New Zealand from 3D gravity modelling. New Zealand Journal of Geology and Geophysics 45, 243–255.
Sediment thickness and crustal structure of offshore western New Zealand from 3D gravity modelling.Crossref | GoogleScholarGoogle Scholar |

Wright SD, Yang CG, Dawson JW, Whittaker DJ, Gardner RC (2000) Riding the ice age El Niño? Pacific biogeography and evolution of Metrosideros subg. Metrosideros (Myrtaceae) inferred from nuclear ribosomal DNA. Proceedings of the National Academy of Sciences of the United States of America 97, 4118–4123.
Riding the ice age El Niño? Pacific biogeography and evolution of Metrosideros subg. Metrosideros (Myrtaceae) inferred from nuclear ribosomal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislSgtbg%3D&md5=8eb3cdfc0b1383559d4e2cf4b7780172CAS |

Zhang L-B, Renner S (2003) The deepest splits in Chloranthaceae as resolved by chloroplast sequences. International Journal of Plant Sciences 164, S383–S392.
The deepest splits in Chloranthaceae as resolved by chloroplast sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVOhsL8%3D&md5=d3d9e6c152a90194f830290a2d3d47a8CAS |