Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

An expanded molecular phylogeny of the southern bluebells (Wahlenbergia, Campanulaceae) from Australia and New Zealand

Jessica M. Prebble A C , Heidi M. Meudt A B and Phil J. Garnock-Jones A
+ Author Affiliations
- Author Affiliations

A Victoria University of Wellington, School of Biological Sciences, PO Box 600, Wellington 6140, New Zealand.

B Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand.

C Corresponding author. Email: Jessie.prebble@gmail.com

Australian Systematic Botany 25(1) 11-30 https://doi.org/10.1071/SB11023
Submitted: 30 May 2011  Accepted: 25 September 2011   Published: 9 March 2012

Abstract

We used nuclear and chloroplast DNA markers to examine relationships and test the current morphology-based taxonomy of several species and subspecies of Australian and New Zealand Wahlenbergia. We sampled nuclear ribosomal ITS regions and the chloroplast regions trnL–F and trnK–psbA from 105 individuals, representing 29 of the 46 species and subspecies currently recognised in New Zealand and Australia. Our phylogeny was incompletely resolved because of low levels of genetic variation in all three markers and some conflict between ITS and chloroplast markers. The New Zealand rhizomatous species appear to have radiated in New Zealand after a single long-distance dispersal event from Australia, but it is unclear to which species in Australia they are most closely related. The New Zealand radicate species do not form a clade; instead they are shown to be very closely related to many Australian radicate species. The four species in the New Zealand lowland radicate W. gracilis complex may all belong to the same morphologically variable species. In contrast, the other New Zealand radicate species, W. vernicosa, is probably a separately evolving lineage, and is not conspecific with the W. gracilis complex, nor the Australian W. littoricola, as previously hypothesised. Two of the New Zealand rhizomatous species, W. albomarginata and W. pygmaea, may be conspecific. By contrast, the morphologically distinctive New Zealand rhizomatous W. cartilaginea, W. matthewsii and W. congesta subsp. haastii each formed monophyletic groups. Samples of two recently described Australian species (W. rupicola and W. telfordii) formed monophyletic groups consistent with their recognition.

Additional keywords: ITS, long-distance dispersal, species limits, taxonomy, trnK–psbA, trnL–F.


References

Antonelli A (2008) Higher level phylogeny and evolutionary trends in Campanulaceae subfam. Lobelioideae: molecular signal overshadows morphology. Molecular Phylogenetics and Evolution 46, 1–18.
Higher level phylogeny and evolutionary trends in Campanulaceae subfam. Lobelioideae: molecular signal overshadows morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKhsw%3D%3D&md5=af3812c2b3bd473391e6d9c84a94f5d9CAS |

Bayly M, Kellow A (2006) ‘An illustrated guide to New Zealand hebes.’ (Te Papa Press: Wellington)

Corriveau JL, Coleman AW (1988) Rapid screening methods to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. American Journal of Botany 75, 1443–1458.
Rapid screening methods to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species.Crossref | GoogleScholarGoogle Scholar |

Darlington CD, Wylie AP (1955) ‘Chromosome atlas of flowering plants.’ (Allen & Unwin: London)

de Lange PJ, Cameron EK (1999) The vascular flora of Aorangi Island, Poor Knights Islands, northern New Zealand. New Zealand Journal of Botany 37, 433–468.
The vascular flora of Aorangi Island, Poor Knights Islands, northern New Zealand.Crossref | GoogleScholarGoogle Scholar |

de Lange PJ, Norton DA, Courtney SP, Heenan PB, Barkla JW, Cameron EK, Hitchmough R, Townsend AJ (2009) Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47, 61–96.
Threatened and uncommon plants of New Zealand (2008 revision).Crossref | GoogleScholarGoogle Scholar |

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2007) ‘Geneious v3.0.’ Available at http://www.geneious.com/ [accessed November 2009]

Forster GJA (1786) ‘Florulae insularum australium prodromus.’ (Goettingen)

Forster PI (2000) Wahlenbergia celata (Campanulaceae), a new species from central Queensland. Austrobaileya 5, 661–665.

Gardner RC, De Lange PJ, Keeling DJ, Bowala T, Brown HA, Wright SD (2004) A late Quaternary phylogeography for Metrosideros (Myrtaceae) in New Zealand inferred from chloroplast DNA haplotypes. Biological Journal of the Linnean Society 83, 399–412.
A late Quaternary phylogeography for Metrosideros (Myrtaceae) in New Zealand inferred from chloroplast DNA haplotypes.Crossref | GoogleScholarGoogle Scholar |

Haberle RC, Dang A, Lee T, Peñaflor C, Cortés-Burns H, Oestreich A, Raubeson L, Cellinese N, Edwards EJ, Kim S-T, Eddie WMM, Jansen RK (2009) Taxonomic and biogeographic implications of a phylogenetic analysis of the Campanulaceae based on three chloroplast genes. Taxon 58, 715–734.

Hay JA (1953) The genus Wahlenbergia in New Zealand. MSc Thesis, Victoria University of Wellington, New Zealand.

Hay JA (1961) Wahlenbergia. In ‘Flora of New Zealand, v. 1. Indigenous tracheophyta: Psilopsida, Lycopsida, Filicopsida, gymnospermae, dicotyledones’. (Ed. HH Allan) pp. 787–796. (Government Printer: Wellington, New Zealand)

Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution 56, 1557–1565.

Huson DH, Bryant D (2005) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267.
Application of phylogenetic networks in evolutionary studies.Crossref | GoogleScholarGoogle Scholar |

Lammers TG (1996) Phylogeny, biogeography, and systematics of the Wahlenbergia fernandeziana complex (Campanulaceae: Campanuloideae). Systematic Botany 21, 397–415.
Phylogeny, biogeography, and systematics of the Wahlenbergia fernandeziana complex (Campanulaceae: Campanuloideae).Crossref | GoogleScholarGoogle Scholar |

Lammers TG (2007) ‘World checklist and bibliography of Campanulaceae.’ (Royal Botanic Gardens, Kew: London)

Lewis KB, Carter L, Davey FJ (1994) The opening of Cook Strait – interglacial tidal scour and aligning basins at a subduction to transform plate edge. Marine Geology 116, 293–312.
The opening of Cook Strait – interglacial tidal scour and aligning basins at a subduction to transform plate edge.Crossref | GoogleScholarGoogle Scholar |

Lockhart PJ, McLenachan PA, Harell D, Glenny D, Huson D, Jensen U (2001) Phylogeny, radiation, and transoceanic dispersal of New Zealand alpine buttercups: Molecular evidence under split decomposition. Annals of the Missouri Botanical Garden 88, 458–477.
Phylogeny, radiation, and transoceanic dispersal of New Zealand alpine buttercups: Molecular evidence under split decomposition.Crossref | GoogleScholarGoogle Scholar |

Maddison DR, Maddison WP (2001) ‘MacClade 4.’ (Sinauer Associates: Sunderland, MA)

Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends in Plant Science 12, 106–117.
Almost forgotten or latest practice? AFLP applications, analyses and advances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVShsbY%3D&md5=a7b168a698f12e2251452caa01b3605cCAS |

Meudt HM, Simpson BB (2006) The biogeography of the austral, subalpine genus Ourisia (Plantaginaceae) based on molecular phylogenetic evidence: South American origin and dispersal to New Zealand and Tasmania. Biological Journal of the Linnean Society 87, 479–513.
The biogeography of the austral, subalpine genus Ourisia (Plantaginaceae) based on molecular phylogenetic evidence: South American origin and dispersal to New Zealand and Tasmania.Crossref | GoogleScholarGoogle Scholar |

Nicolson DH, Fosberg DR (2004) ‘The Forsters and the botany of the second Cook expedition (1772–1775).’ (Gantner Verlag: Vienna)

Petterson JA (1997a) Identity of the original Wahlenbergia gracilis (Campanulaceae) and allied species. An historical review of early collections. New Zealand Journal of Botany 35, 55–78.

Petterson JA (1997b) Revision of the genus Wahlenbergia (Campanulaceae) in New Zealand. New Zealand Journal of Botany 35, 9–54.

Petterson JA (2005) The genus Wahlenbergia (Campanulaceae): the harebells of New Zealand. Wellington Botanical Society Bulletin 49, 16–35.

Petterson JA, Williams EG, Dawson MI (1995) Contributions to a chromosome atlas of the New Zealand flora. 34. Wahlenbergia (Campanulaceae). New Zealand Journal of Botany 33, 489–496.

Plunkett GT, Bruhl JJ, Telford IRH (2009) Two new, sympatric species of Wahlenbergia (Campanulaceae) from the New England Tableland escarpment, New South Wales, Australia. Australian Systematic Botany 22, 319–331.
Two new, sympatric species of Wahlenbergia (Campanulaceae) from the New England Tableland escarpment, New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=1321379b41aaa18466ebbac3dd3ca37fCAS |

Prebble JM (2010) The evolution of Wahlenbergia (Campanulaceae) in Australasia. MSc Thesis, Victoria University of Wellington, New Zealand.

Prebble JM, Cupido CN, Meudt HM, Garnock-Jones PJ (2011) First phylogenetic and biogeographical study of the southern bluebells (Wahlenbergia, Campanulaceae). Molecular Phylogenetics and Evolution 59, 636–648.
First phylogenetic and biogeographical study of the southern bluebells (Wahlenbergia, Campanulaceae).Crossref | GoogleScholarGoogle Scholar |

Rambaut A, Drummond AJ (2007) ‘Tracer v1.4.’ Available at http://beast.bio.ed.ac.uk/Tracer [accessed December 2009]

Reeves G, Chase M, Goldblatt P, Rudall P, Fay M, Cox A, Lejeune B, Souza-Chies T (2001) Molecular systematics of Iridaceae: evidence from four plastid DNA regions. American Journal of Botany 88, 2074–2087.
Molecular systematics of Iridaceae: evidence from four plastid DNA regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFyk&md5=f28f047a5b8c03e9f775f6811181f536CAS |

Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.

Roquet C, Saez L, Aldasoro JJ, Susanna A, Alarcón ML, García-Jacas N (2008) Natural delineation, molecular phylogeny and floral evolution in Campanula. Systematic Botany 33, 203–217.
Natural delineation, molecular phylogeny and floral evolution in Campanula.Crossref | GoogleScholarGoogle Scholar |

Shaffer H, Thomson R (2007) Delimiting species in recent radiations. Systematic Biology 56, 896–906.
Delimiting species in recent radiations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVKktr8%3D&md5=5464fae070692506cc0891312259f886CAS |

Shepherd LD, Perrie LR, Brownsey PJ (2008) Low-copy nuclear DNA sequences reveal a predominance of allopolyploids in a New Zealand Asplenium fern complex. Molecular Phylogenetics and Evolution 49, 240–248.
Low-copy nuclear DNA sequences reveal a predominance of allopolyploids in a New Zealand Asplenium fern complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOltr3M&md5=dbd8d057cfdf155208181de09d6f4936CAS |

Smissen RD, Breitwieser I, Ward JM (2004) Phylogenetic implications of trans-specific chloroplast DNA sequence polymorphism in New Zealand Gnaphalieae (Asteraceae). Plant Systematics and Evolution 249, 37–53.
Phylogenetic implications of trans-specific chloroplast DNA sequence polymorphism in New Zealand Gnaphalieae (Asteraceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptV2jurs%3D&md5=131a97aa074719f9dc7ece2f81ec83c0CAS |

Smith PJ (1992) A revision of the genus Wahlenbergia (Campanulaceae) in Australia. Telopea 5, 91–175.

Swofford DL (2002) ‘PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.’ (Sinauer Associates: Sunderland, MA)

Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17, 1105–1109.
Universal primers for amplification of three non-coding regions of chloroplast DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhslel&md5=d612c2384eaa3676300663657c3536fdCAS |

Tay ML, Meudt HM, Garnock-Jones PJ, Ritchie PA (2010) DNA sequences from three genomes reveal multiple long-distance dispersals and non-monophyly of sections in Australasian Plantago (Plantaginaceae). Australian Systematic Botany 23, 47–68.
DNA sequences from three genomes reveal multiple long-distance dispersals and non-monophyly of sections in Australasian Plantago (Plantaginaceae).Crossref | GoogleScholarGoogle Scholar |

Wagstaff SJ, Garnock-Jones PJ (1998) Evolution and biogeography of the Hebe complex (Scrophulariaceae) inferred from ITS sequences. New Zealand Journal of Botany 36, 425–437.
Evolution and biogeography of the Hebe complex (Scrophulariaceae) inferred from ITS sequences.Crossref | GoogleScholarGoogle Scholar |

Wagstaff SJ, Garnock-Jones PJ (2000) Patterns of diversification in Chionohebe and Parahebe (Scrophulariaceae) inferred from ITS sequences. New Zealand Journal of Botany 38, 389–407.
Patterns of diversification in Chionohebe and Parahebe (Scrophulariaceae) inferred from ITS sequences.Crossref | GoogleScholarGoogle Scholar |

Wagstaff SJ, Bayly MJ, Garnock-Jones PJ, Albach DC (2002) Classification, origin, and diversification of the New Zealand hebes (Scrophulariaceae). Annals of the Missouri Botanical Garden 89, 38–63.
Classification, origin, and diversification of the New Zealand hebes (Scrophulariaceae).Crossref | GoogleScholarGoogle Scholar |

Walsh NG (1999) Wahlenbergia. In ‘Flora of Victoria. Vol. 4: Dicotyledons (Cornanceae to Asteraceae)’. (Eds NG Walsh, TJ Entwisle) pp. 554–563. (Inkata Press: Melbourne)

Want G (1963) Sporogenesis, gametogenesis, and embryogeny of Wahlenbergia bicolor N.Lothian. Australian Journal of Botany 11, 152–167.
Sporogenesis, gametogenesis, and embryogeny of Wahlenbergia bicolor N.Lothian.Crossref | GoogleScholarGoogle Scholar |

Webb CJ, Simpson MJA (2001) ‘Seeds of New Zealand gymnosperms & dicotyledons.’ (Manuka Press: Christchurch, New Zealand)

White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR protocols: a guide to methods and applications’. (Eds M Innis, DH Gelfand, J Sninsky, T White) pp. 315–322. (Academic Press: San Diego, CA)

Winkworth R, Grau J, Robertson A, Lockhart P (2002) The origins and evolution of the genus Myosotis L. (Boraginaceae). Molecular Phylogenetics and Evolution 24, 180–193.
The origins and evolution of the genus Myosotis L. (Boraginaceae).Crossref | GoogleScholarGoogle Scholar |

Yoder AD, Irwin JA, Payseur BA (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Systematic Biology 50, 408–424.
Failure of the ILD to determine data combinability for slow loris phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntVOntg%3D%3D&md5=f9df3b3e1a7f31f912f18fd0403089edCAS |

Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence data sets under the maximum likelihood criterion. PhD Thesis, The University of Texas, Austin, TX.