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STORIES ABOUT SYMMETRY
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Abstract: In this note I would like to shine a light on topics where symmetry plays a role. Together we will explore how 
symmetry can be captured mathematically and how concepts involving symmetry help to understand viruses and self-organising 
materials, how they can be used to design better algorithms and how the classification of elementary symmetries leads to an 
exciting story about an unprecedented communal effort to prove a big mathematical theorem. I will give examples of open 
questions that still wait to be answered.
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INTRODUCTION

What comes to your mind when you think about the word 
symmetry? Do you see pictures? Do you remember pieces 
of art, or of architecture? Do memories from school come 
up, maybe from geometry lessons? There are many famous 
examples of artwork where symmetry is displayed, for 
example in wall tilings, paintings or glass windows. An 
example of symmetry in Australian Aboriginal artwork is 
shown in Figure 1, in which totems of Indigenous culture 
and landscape have been incorporated into the painting. 
The artist has combined rough global symmetry with 
intricate symmetrical patterns. 

M.C. Escher famously dedicated a lot of his work to 
symmetry, perspective and other mathematical concepts 
that he enjoyed exploring and analysing through his craft. 
The virtual Escher gallery (see https://mcescher.com/) 
exhibits numerous examples of this in his work. The artist 
Alex John Beck explores facial symmetry in his project 
‘both sides of’ (see https://alexjohnbeck.com/projects/
Both_Sides_Of), and he has kindly allowed me to show 
examples of his work. I came across this art project because 
of the following quote from The Economist (see Economist 
2012):

Figure 1: Painting by Australian Aboriginal artist Marie Young, c.2001 (46 x 30 cm). Maryvale Station Artifacts, 
Northern Territory, Australia. Photo from Bill Birch. 
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‘BEAUTY may be in the eye of the beholder, but 
a symmetrical face is usually a big help. … In 
theory, evolution provides a logical answer: unfit 
individuals are less likely than fitter folk to be able 
to maintain the symmetrical development of their 
bodies when exposed to stress and disease.’

This explains why psychologists are also interested in 
symmetry: 

‘What is symmetry? Symmetry is the extent where 
one-half of the object is the same as the other half. 
Facial symmetry is the most commonly talked 
about wherein it is a specific measure of bodily 
symmetry.’ (quoted from https://ncpsychoanalysis.
org/symmetrical-face/)

From a mathematical perspective, this description 
of symmetry is rather vague, and also narrow, because 
it only refers to mirror symmetry and neglects rotational 
symmetry. But, of course, every discipline describes what 
is intuitively relevant there, as we will see when we turn 
to physics and chemistry. In these subjects, symmetry 
has played a major role in the description and analysis of 
crystals, and an extensive historical overview is given in 
Burckhardt’s book on the symmetry of crystals (Burckhardt 
1988). This book was inspired by an exhibition in 1986 
titled ‘Symmetry in arts, in nature and in science’. 

Concepts like regularity, repetition and symmetry 
also play a role when it comes to storing or transmitting 
information. For example, describing what a chessboard 
looks like is much easier than describing a completely 
chaotic floor tiling. It is exactly this principle, namely 
storing or communicating information of a highly regular 
structure effectively, that led to the virus models by Caspar, 
Klug, Crick, Watson and later Twarock (see Twarock, 2020 
for a detailed and accessible overview). The basic idea 
often was to start with a sphere and then tile its surface 
with regular polygons, and these virus models made it 
possible to explain how very much information, in this 
case the reproduction information for the virus, could be 
coded and stored in such a tiny space, and with a tolerable 
error probability in the reproduction process. In computer 
algebra, a similar reduction principle is applied for many 
algorithms — we reduce the search and hence make 
problems accessible, or considerably reduce the run time, 
by detecting symmetry and then pruning parts of the search 
infrastructure that are superfluous — see for example 
Leon (1991) or Jefferson et al. (2021). This makes more 
problems accessible for us to solve, harder problems, and it 
contributes to the sustainability of doing computer-assisted 
research.

As a final example, we look at self-assembling materials, 
where we also often detect symmetry. The general example 
comes from columnar liquid crystals where the polyphilic 
molecules form 2D-honeycomb structures. (See Figure 3.)

An interesting special case occurs when the polyphilic 
molecules assemble in a quasiperiodic pattern. The 
following picture shows experimental electron density 
maps where we can see the development of the dodecagonal 
supertiles at the transition from triangular to square tiling 
patterns (A–C) with changing temperature. The lower part 
of the picture shows the models of the tiling patterns in 
the distinct honeycomb phases as follows: Black lines 
correspond to polyaromatic rods, blue dots correspond 
to glycerol groups, and the cells are filled by lateral alkyl 
chains (see Poppe et al. 2020).

In an ongoing project in the research training group 
‘Beyond Amphiphilicity’ (https://beam.uni-halle.de/) we 
take this as motivation in order to understand the chemical 
perspective on symmetry with mathematical rigour, but 
also respecting the long history of using this concept in a 
variety of disciplines. Carsten Tschierske and I, together 
with our PhD students Virginia-Marie Fischer and Christian 
Anders, are working on a combination of mathematical 
analysis and chemical experiments. One of our aims is to 
close gaps in the existing descriptions, discuss and resolve 
ambiguities and contribute to a consistent description of 
well-known concepts that is both mathematically exact 
as well as accessible to non-mathematicians. In the future 

Figure 2: Two examples from Alex John Beck’s project 
‘Two sides of’.
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our work will hopefully make it possible to predict the 
behaviour of such self-organising materials when we 
change the molecular structure. But now it is time to turn 
to the mathematical language for symmetry. It goes back to 
Evariste Galois, in the 1830s, motivated by permutations 
of roots of polynomials.

MATHEMATICAL DESCRIPTION
Definition

A group is a pair (G, *), where G is a set and the following 
conditions are satisfied:
(1) * is a binary operation on G, which means that if we 

take a and b from G, then a * b is also an element from 
G.

(2) G and * satisfy the associative law, which means that 
for all a, b and c from G, we have that (a * b) * c =  
a * (b * c).

(3) There is a neutral element n for * in G, which means 
that n is an element such that for all g in G, it is true 
that g * n = g.

(4) For all g in G there is an inverse element with respect 
to * in G, i.e. an element h such that g * h = n, where n 
is neutral as in (3).

Examples
• (ℤ,+) , the set of integers and addition, exhibits an 

example of a group where the binary operation satisfies 
the commutative law. This means that for all integers x 
and y, it is true that x+y= y+x. The neutral element in 
this group is 0, and for each integer z, its inverse is -z. 

• Next we take the set of all permutations of a non-
empty set S, together with the composition of maps. 
A permutation is a one-on-one map from S to itself, 
and by the composition of maps we just mean that 
we apply the maps one after the other. This also gives 
an example, and it can be seen as an early and very 
natural example of groups coming up in mathematics. 
The neutral element is the identity map (‘do nothing’), 
and each map is a permutation, i.e. one-on-one (or in 
mathematical terms bijective) and hence each map in S 
has an inverse map (‘undo’). This example sheds some 
light on why the notion of a group is so fundamental 
and has so many applications in various areas of 
mathematics and beyond. 

• Another very natural example comes from regular 
polygons and their sets of symmetries. For instance, 
the set of rotations and reflections of a square and the 
compositions of maps gives rise to a group with eight 
elements.

Figure 3: Example for our molecules with an indication of the different variants.

Figure 4: Change of symmetry — development of dodecagonal supertiles at the 
transition from triangular to square tiling patterns with rising temperature. 
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These examples can already illustrate some of the 
subtleties around groups. In the first example, (ℤ,+), the 
set of integers and addition, it does not matter which way 
around we apply the binary operation. In contrast, for the 
second and third example, this is usually not the case. 

As soon as the set S has three elements or more, or the 
regular polygon has three vertices or more, the group that 
we described above does not satisfy the commutative law 
with the given binary operation. While some permutations, 
or symmetries, commute, others do not. 

If S={1,2,3}, for example, then let us denote by c the 
map that interchanges 1, 2 and 3 in a cycle. Let s denote 
the map that swaps 1 and 2 and leaves 3 alone. See what 
happens if you apply c first and then s, or the other way 
around!

If we take a square and denote its corners by 1, 2, 3 and 
4, where the notation is used going round in a circle and 
counter-clockwise, and if we consider counter-clockwise 
rotations around the centre of this square, then any two 
such rotations commute. This means that it does not matter 
which way around we compose the rotations. But if we 
apply a rotation and a reflection, then it matters which 
way around we apply the maps. Most of the time! Again, I 
invite readers to try for themselves!

In fact, regular polygons and their symmetries are a 
good place to close the gap between our abstract definition 
of a group and the intuition of ‘symmetry’: If a geometrical 
object is given (e.g. a regular polygon), then a symmetry of 
this object is a bijective map from the object to itself that 
preserves distances. The set of symmetries, defined in this 
way, will always give rise to a group, with the composition 
of maps as binary operation. Depending on context, 
‘distance-preserving’ might be replaced by ‘continuous’, 
or by ‘compatible with an algebraic structure’, or by other 
properties that are relevant to the area at hand. 

Context of abstract group theory and its history

Groups have been abstractly studied for centuries, and 
the development of group theory has often been informed 
by (actual or potential) applications. The perspective of 
applications, in particular outside mathematics, comes 
with some challenges, because the various contexts lead 
to many different notations and often to ambiguities. 
From the perspective of an abstract mathematical theory, 
we need precise definitions, tools and methods in order 
to move the theory forward (i.e. results that are proven to 
be true, rather than just observations from examples), and 
we need questions and conjectures that move the theory 
forward and get researchers involved. It was Otto Hölder 
who, in 1892, asked a very natural and very hard question 
that turned out to be a driving force for the field for a long 
time to come: ‘It would be of the greatest interest if it were 

possible to give an overview of the entire collection of 
finite simple groups.’ (Solomon 2001) 

Here, a group is said to be finite if and only if the number 
of elements in the underlying set is finite, and ‘simple’ 
means that the group cannot be split up into smaller groups 
by using normal subgroups and factor groups. Rather than 
going into technical details here, we rephrase Hölder’s 
question in a nutshell: What are the ‘building blocks of 
groups’? 

If we want an analogy, then we might think of prime 
numbers and how they build up the integers. Given 
an integer, once we know all its prime divisors with 
multiplicities, we can easily obtain our original number by 
multiplying. However, the situation with finite groups is 
subtler. Even if we can split up a group into simple sections 
and determine their structure, then the knowledge of these 
simple building blocks is not enough in order to re-build the 
group. The same building blocks can be used to construct 
quite different groups — for example, the unique simple 
groups of size 2 and 3, respectively, can be combined in 
two ways, and one of the resulting groups is commutative 
while the other one is not.

Therefore, a much more appropriate analogy comes 
from chemistry: atoms and molecules. 

We could then ask: 
• What are the ‘atoms’ of group theory? 
• How can they be combined to build up ‘molecules’? 
• Is there a ‘periodic table’ for group theory?

It took more than a hundred years, generations of 
mathematicians and a gigantic communal effort, but it was 
indeed possible to find all the ‘atoms’ of group theory, i.e. 
the finite simple groups, and we keep finding out more and 
more about their internal structure and their properties. 
They come in several infinite families, along with 26 so-
called sporadic simple groups. For a better impression of 
the classification theorem and its background, I recommend 
overview articles and background literature by Gorenstein 
(e.g. Gorenstein 1985) and Solomon (e.g. Solomon 2001). 
The Classification of Finite Simple Groups continues 
to have an impact in mathematics and beyond, partly 
because many tentative results and strategies to prove big 
open conjectures were based on it being achieved. At the 
same time, it raises deep philosophical questions, because 
the original proof of the actual classification theorem 
is scattered across tens of thousands of pages in journal 
articles and books, it involves computer calculations, and 
some of the work was based on private communication or 
on the publication of articles that have been announced, 
but never happened. Michael Aschbacher, one of the key 
contributors to this classification theorem, raises some 
of these philosophical questions (see Aschbacher 2005). 
The importance and impact of the result calls for deep 



and extensive research into these philosophical questions 
as well as the history of the whole undertaking. Such a 
communal effort over several generations is unprecedented 
in mathematics, and there is much to learn from this great 
collective achievement:
1) How can we be convinced that the proof of the 

classification theorem is complete?
2) How did this communal work influence the perception 

of what a proof even is?
3) How did communication between colleagues change 

during this time, because of the work and because of 
technological advances?

4) How did the project influence work across sub-
disciplines? 

5) What was the role of conferences and special 
programs? Of networks and funding?

6) How did the rise of computers change the work in 
the classification program? How did the research 
community respond to computer-assisted proofs or 
constructions?

This is just a small selection of questions, and some 
of them turn out to be really big, difficult questions. In 
hindsight it becomes obvious why they are relevant — 
for example, the original proof was widely believed 
to be complete and correct, but then some gaps were 
found. Most of them were minor, but there was also a 
more substantial gap that was discovered and discussed 
not long after the announcement that the classification is 
complete, and it took more than 20 years and more than 
1000 pages to fill this gap (see Aschbacher & Smith 2004). 
In order to increase confidence in the existing proofs and 
to understand the classification even better, several ‘next 
generation proof projects’ are ongoing. While the so-called 
GLS revision project is close to the original methods 
(nine books so far, see Gorenstein et al. 1994–2021), there 
are also new approaches with a different perspective, 
for example a strategy for a proof using fusion systems. 
Aschbacher gives an overview over this approach along 
with some background (see Aschbacher 2015).

As a finite group theorist, I am excited about the 
historical and philosophical perspective on the classification 
theorem and about working in this area. I began working 
on historical questions and using the Oberwolfach Digital 
Archive after meeting Volker Remmert, a science historian 
whose academic roots lie in group theory. His mini-
workshop ‘History of the Workshops in Oberwolfach, 
1944 ‒ ca. 1960’ introduced me to a historical perspective 
on several of my research topics, and together we hope 
to shed new light on the history and philosophy of the 
Classification of Finite Simple Groups.
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