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FIRES have both direct (short-term) and indirect 
(longer-term) effects on organisms. Immediate 
impacts on individuals resulting from the fire itself 
may be injury or death, or survival through escape 
(emigration) or shelter (seeking refuge or through 
dormancy in a protected location). Indirect impacts 
result from the fire causing changes to some aspects 
of the environment (such as resources) which, in turn, 
affect the biota.  Thus unsuitable conditions after a 
fire may lead to emigration; with persistence at that 
location influenced by food availability, competition 
and/or predation, and the capacity of an organism to 
reproduce or recolonise from outside the area directly 
impacted.  Over time, responses of a population of 
organisms will be influenced not only by features of 
a particular fire (intensity, season, patchiness), but 
by processes occurring after the fire.  These ‘interval 
related’ processes affect resource availability, with 
population and community (species level) responses 
determined by various life-history (morpological, 
physiological and behavioural) characteristics.  These 
characteristics or ‘traits’, which allow organisms 
to persist in spite of fire, have been shaped over 
evolutionary time periods by the fire regime (Gill 
�975), not just by single fires in isolation.  Thus the 
response of an individual organism, population or 
community to fire will depend on the starting state, 
determined by the past history (e.g. time since last 

fire), as well as the characteristics of the particular 
fire and interactions with life-history traits (Whelan 
�995; Gill 2008).

A mechanistic understanding of the responses of a 
range of plants and animals to fire regimes represents 
a fundamental knowledge gap in fire management 
(Driscoll et al. 20�0). Predicting fire responses based 
on species’ life-history traits, and the development 
of a functional classification based on shared traits, 
provides a powerful framework supporting fire 
management for biodiversity conservation (Keith et al. 
2002). Can such a functional approach be developed 
for invertebrates, or are there alternative approaches 
to resolve this complexity? As a group, invertebrates 
are numerous, diverse, and play important functional 
roles in ecosystems (Beattie �995; Raven & Yeates 
2007). Their abundance and diversity however also 
poses a major challenge. A classification based on 
the lack of a morphological feature (a backbone) is 
unlikely to provide insight into shared characteristics 
that might form the basis of such an approach. With 
their exceptional diversity compared to other groups 
(Fig. �) and enormous range of life histories and 
morphologies, invertebrates compromise a vast and 
heterogeneous assemblage exhibiting often complex 
life-cycles. Ideally, a species-level approach to 
assessing biodiversity responses to fire is required, 
but often appears largely problematic because of the 
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Additionally, species with known and predictable 
tolerances and response to fire (Key Fire Response 
Species) are used to inform management concerning 
intervals between successive fires (see below).

Similarly, surrogates have also been used to 
resolve complexity issues in invertebrate biodiversity 
conservation and management.  Studies using coarse 
levels of taxonomic resolution (e.g. order, family), 
indicator groups (e.g. ants, spiders, collembola) and/
or functional groups are common (e.g. Greenslade 
& Majer �993; Madden & Fox �997; Collett �999; 
Abbott et al. 2003; York & Tarnawski 2004; Ribas et 
al. 20�2). questions relating to ecological processes 
(e.g. pollination, decomposition) may be best 
addressed using functionally important taxa (Seastedt 
�984; Brennan et al. 2009; Olotu et al. 20�2). Here, 
I discuss whether the use of surrogates offers 
promise as a strategy of dealing with the complexity 
of invertebrate biodiversity and associated issues 
surrounding fire management. I consider how we 
might develop a functional approach, based on 
species’ life-history traits that can complement 
existing strategies that, generally, focus on surrogates 

diversity involved and poor taxonomic resolution for 
many groups (Austin et al. 2004; New 2009). Their 
associations with many other organisms, especially 
plants, suggest that viewing invertebrates as a group 
in isolation may also be unproductive.

ADDRESSING COMPLEXITY

Resolving this complexity is challenging, but 
complexity is the norm in environmental management 
(Wainwright & Mulligan 2004).  In Victoria, and 
in other temperate areas of Australia, complex fire 
management issues are often addressed through the 
use of surrogates (Fig. 2). Vegetation is commonly 
mapped as associations based on floristic composition 
(Ecological Vegetation Class), similar responses 
to fire (Ecological Vegetation Division) and post-
fire developmental (growth) stages (Cheal 20�0).  
Although patterns and rates of secondary succession 
after fire are seldom linear (Whelan et al. 2002; Gill 
2008), management agencies often use time since 
last fire as a surrogate for assemblage composition 
and stage of structural developmental (Fire Ecology 
Working Group 2004; Clarke 2008; Cheal 20�0).  

INVERTEBRATES AND FIRE

Fig. 1.  A diagrammatic representation of relative species richness of major taxa in Victoria. The size of the image is 
indicative of the number of species in that broad taxonomic group.  Source: Victorian National Parks Association.
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Fig. 2. The use of surrogates to address complexity is commonplace in both fire management and biodiversity 
conservation.
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and/or listed (threatened) species. I use a number of 
examples from the published literature to illustrate 
approaches.  It is not intended as a review of the 
effects of fire on invertebrates (Friend �995; Swengel 
200�; Whelan et al. 2002; Van Heurck & Abbott 
2003; New et al. 20��) but focuses on opportunities 
that have potential for resolving existing challenges.  

USE OF VEGETATION COMMUNITY 
 SURROGATES

Evidence that different plant species support 
particular assemblages of invertebrates (Peeters et 
al. 200�; Majer et al. 2003; Moir et al. 20�0) and 
that the composition of assemblages might reflect 
broad vegetation (structural) associations (Yen 
�987, beetles; Harris et al. 2003, spiders) provides 
encouragement that vegetation associations (as 
defined management units) might be useful surrogates 
for invertebrate assemblage composition. Mac Nally 
et al. (2002) investigated the potential for EVCs to 
be used as biodiversity management units in the box-
ironbark ecosystem of central Victoria. They surveyed 
eighty sites for tree species, birds, mammals, reptiles, 
terrestrial invertebrates, and nocturnal flying insects.  
EVCs proved useful surrogates for bird, mammal 

and tree communities, but not so for reptiles and 
invertebrates (at the ordinal level). While differences 
in taxonomic resolution (lack of species-level data 
for invertebrates – see below) may have contributed 
to this outcome, other studies have demonstrated that 
invertebrates rarely display biogeographic patterns 
of endemism or turnover similar to vascular plants 
and vertebrates (Oliver et al. �998; Ferrier et al. 
�999; Moritz et al. 200�).  An alternate approach 
might involve the use of habitat and/or growth stages 
as surrogates; a method that is being developed for 
vertebrates (Clarke 2008; MacHunter et al. 2009) but 
remains largely untested for invertebrates (but see 
Hein et al. 2007).

COARSE TAXONOMIC CLASSIFICATION

Given the extraordinary diversity of many 
invertebrate groups, and associated taxonomic 
challenges, it is reasonable to ask whether data at a 
coarse level of taxonomic resolution are sufficient to 
answer many fire-related questions.  This approach is 
often used for environmental monitoring (Campbell 
2004) where the response of orders or families to 
a particular environmental variable is known and 
can be indicative of a change of state.  As the first 
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signal observable. In comparison, species-level 
beetle data (Fig 3B) showed a clear separation of 
treatments in ordination space, suggesting different 
assemblage composition, with beetle species again 
responding to soil and vegetation-related habitat 
parameters. In particular this analysis identified 
that, at the species-level, changes in the amount 
of vegetation in the ground herb and small shrub 
layers (0–20 cm) was the primary determinant of 
assemblage composition; clearly a response to 
grazing and burning. Interestingly, species-level 
data also allowed the identification of a previous 
logging disturbance history (stumps) which had an 
interaction with the grazing/burning regime (York & 
Tarnawski 2004).  While some similar patterns were 
identified for spiders at the species level (Harris et al. 
2003), no grazing/burning patterns were observed for 
this group.  This has implications for the selection of 
‘indicator’ taxa for addressing particular disturbance-
related questions (see below).

USE OF INDICATOR TAXA

In Victoria, the primary approach used to formulate 
desirable inter-fire intervals for the conservation of 
biodiversity is based on functional groups of plants.  
The desired mean fire interval is determined by 
monitoring plant responses of the most vulnerable 
types as indicators and measuring critical times in 
their life cycles (Gill 2008). These Key Fire Response 
Species (KFRS) are a central feature of the flora vital 
attributes model; species within an EVC whose vital 
attributes indicate that they are vulnerable to either 
a regime of frequent fires or to long periods of fire 
exclusion (Fire Ecology Working Group 2004). The 
model assumes if the fire frequency fits within the 
tolerable fire interval determined by the KFRS then 
all species of vascular flora within the area should 
survive. Interestingly, this assumption is a largely 
untested for plants (Cawson & Muir 2008), with the 
outcome for other groups unknown.

With invertebrates, research and inventory 
projects are rarely sufficiently well funded to support 
the sampling and identification of more than a few 
taxa in a given area. Usually a reduced set of taxa, 
or more commonly a single taxon, are sometimes 
used as surrogates for all taxa. These have been 
called variously, priority taxa (New �998), indicator 
taxa (Kremen �992; Churchill �997), focal groups 
(di Castri et al. �992), predictor sets (Kitching 
�993) or target taxa (Kremen �994; Lewandowski 
et al. 20�0).  Surrogate taxa should have known 

stage of identifying material from most collections 
of terrestrial invertebrates involves ordinal sorting 
(Harvey & Yen �997) it is worth testing the efficacy 
of such data to address fire management issues.  

A study of terrestrial invertebrate fauna in north-
eastern NSW compared sites with a history of grazing 
and associated burning to others without grazing 
and burning (York �999; York & Tarnawski 2004).  
Data were analysed initially at the level of order, 
and then at species level for beetles (362 species).  
At coarse taxonomic resolution (order) there was 
no apparent difference in invertebrate assemblages 
between grazing/burning treatments (Fig 3A). The 
invertebrates were responding to coarse habitat 
features such as vegetation understory structure and 
soil physical properties, with no grazing/burning 

Fig. 3. Biplot from Canonical Corresponence Analyses 
(CCA) of (A) invertebrate abundance data – ordinal level 
and (B) beetle abundance data. Points represent sample sites 
and vectors (arrows) represent environmental variables. 
The length of the arrow signifies the relative contribution 
of that variable to assemblage composition, while the 
direction signifies its contribution to the difference between 
treatments. Solid arrows represent statistically significant 
vectors (P<0.05) while dashed arrows represent variables 
that make a lesser contribution. Adapted from York �999 
and York & Tarnowski 2004.
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relationships to the diversity of other taxa, or respond 
in a predictable way to environmental parameters or 
disturbance (Hammond �994). The identification of 
suitable invertebrate indicator taxa for fire-related 
questions is beyond the scope of this paper, but it 
is likely that no single taxon would prove superior, 
and should be determined by the specific question 
being posed (Andersen �999; Oliver et al. �999).  
In Victoria (and elsewhere) Fire Management Plans 
must evaluate risks to rare and threatened species 
and communities against the risk to (human) life and 
property (DSE 2006, p.�0).  However, the capacity 
of listed invertebrate taxa to function as surrogates or 
indicators in fire management would seem severely 
constrained; primarily by their  rarity and patchy 
distribution, and lack of knowledge with regard to 
fire responses, but also due to the fact that terrestrial 
invertebrates are currently markedly underrepresented 
on threatened species lists (as a proportion of their 
overall diversity).

A FUNCTIONAL APPROACH

There are, however, opportunities to progress this 
issue using a functional approach, allowing us to 
simplify the complexity associated with exceptional 
biodiversity and interpret changes in an ecologically 
meaningful way.  I suggest that there are two main 
steps in this process (York 2003). Firstly, we need 
to define functional (target) taxa based on feeding 
guilds, groups that can be defined and interpreted 
ecologically (Krebs �985; Schowalter 2000, p. 
235). The selection of target taxa would depend 
upon the question being posed, the scope (timing 
and scale) of the investigation, and their suitability 
for the environment under investigation (Oliver et 
al. �999).  With regard to invertebrates, such guilds 
(with example constituent taxa from which candidate 
species/groups could be chosen) might involve, 
for example: nectar and pollen feeders (butterflies, 
bees), predators and parasitoids (spiders, wasps), 
fungal feeders (flies, beetles) or decomposers and 
carrion feeders (dung beetles). Secondly, within such 
a functional classification, we then need to define 
groups based on their habitat utilisation so as to 
predict (and interpret) their response to disturbance 
by fire. Extending the model proposed by Warren et 
al. (�987) for grassland invertebrates, such response 
groups could be defined as: flying surface dwellers, 
non-flying surface dwellers, litter dwellers, soil 
dwellers, bark dwellers and saproxylic (associated 
with dead and decaying wood).

Within this scheme, a subset of response 
groups within functional target taxa, with known 
sensitivities to aspects of the fire regime, could be 
identified and effectively function as KFRS. Using 
an appropriate sampling methodology (Southwood & 
Henderson 2000; Lovell et al. 20�0), data collected 
could be utilised to address particular management 
questions.  For example, if the management issue 
concerned the impact of a particular fire regime on 
litter decomposition and nutrient cycling, then litter- 
and soil-dwelling organisms from the decomposer 
functional guild would be the appropriate target 
taxa. Target species could vary between locations as 
it is function and response that are the key indicator 
attributes. An understanding of the mechanisms 
underlying observed response patterns would need 
to be developed through focussed research with an 
adaptive management framework (Di Stefano & 
York 20�2). Once the links between taxa and the 
ecological functions that they facilitate are better 
understood, monitoring of selected functions (rather 
than the invertebrates themselves) could be used to 
assess the impact of altered fire regimes (herbivory– 
Christie & York 2009, decomposition–Brennan et al. 
2009).

CONCLUSIONS

To incorporate invertebrates effectively in fire 
management we need firstly to routinely include 
them in surveys and monitoring.  The development 
of rapid biodiversity protocols (see Oliver and 
Beattie �996), improved and widely available on-line 
taxonomic keys (e.g. Ants Down Under, http://anic.
ento.csiro.au/ants/), novel approaches such as DNA 
barcoding (Smith et al. 2005), and improved ways of 
dealing with taxonomic uncertainty in data analyses 
(Cayuela et al. 20��), now makes routine inclusion a 
realistic proposition.

Given the widespread and systematic use of 
surrogates in fire management (e.g. EVCs, KFRS, 
vegetation growth stages based on time since last 
fire) it is worthwhile considering whether these 
approaches are appropriate to address management 
issues relating to diverse invertebrate assemblages.   
As invertebrate distribution patterns manifest 
themselves at different spatial scales to vertebrates 
and vascular plants, exhibiting narrow distributions 
and high species turnover, vegetation mapped at 
coarse scales (e.g. EVC) is unlikely to prove a 
useful substitute.  The use of habitat models as 
surrogates for broad invertebrate assemblages has 
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diverse group presents a number of challenges to fire 
management, there are a range of new approaches 
that currently present exciting opportunities to 
address and resolve what has previously been often 
regarded as an intractable problem.
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