
RESEARCH PAPER 
https://doi.org/10.1071/RJ23001 

Carbon-dioxide-driven increase in foliage projective cover is 
not the same as increased woody plant density: lessons from 
an Australian tropical savanna 
Gabriel M. CrowleyA,* and Stephen A. MurphyA,B

ABSTRACT 

Carbon accounting in tropical savannas relies on a good understanding of the effects of 
atmospheric carbon dioxide (CO2) and land management on foliage projective cover (FPC) 
and vegetation structure. We used generalised additive modelling to track changes in Autumn 
Persistent Green (APG, a satellite-image-derived measure of FPC) in six vegetation types on 
Cape York Peninsula, Australia, over an 18-year period, and examined the influence of fire and 
grazing land tenure. We then used field monitoring and variography (analysis of spatial auto
correlation) in a smaller study area to determine whether changes in APG reflected vegetation 
structural change. APG increased through the 18-year study period and was significantly influ
enced by vegetation type, recent fire history and grazing land tenure. Residual year-on-year 
increases suggest CO2 fertilisation was the main driver of APG increase. APG was reduced by 
fires in the previous year, with early dry season fires having greater impact than late dry season 
fires, particularly in grassland and rainforest. This is consistent with leaves being most fire 
sensitive early in the year, when they are actively growing, than in the late dry season, when 
they are dormant. As seedlings and suckers would be particularly fire-sensitive, early fires may 
therefore be more effective than late fires at preventing woody encroachment. We demon
strated that variography provides a good indication of whether APG increases are caused by 
increases in FPC alone, or by an increase in tree density. We found support for increased woody 
plant density in grasslands, and that this increase was most pronounced on grazing lands. 
Conversely, we found no support for stem density increases in the dominant eucalypt woodland, 
despite APG increases being highest in this vegetation type. Hence, increases in FPC cannot 
always be equated to increases in woody biomass, and may occur in their absence. This 
conclusion has serious implications for global carbon accounting.  

Keywords: biophysical models, climate change and high CO2, fire vegetation patterns, 
grasslands, grazing pressure, remote sensing, savanna woodlands, vegetation structure. 

Introduction 

Potential effects of increasing atmospheric CO2 on vegetation include increases in foliage 
projective cover (FPC) and the size and density of woody plants (Hovenden and Williams 
2010; Bond and Midgley 2012; Donohue et al. 2013). If FPC can be shown to influence 
woody plant size and number, then it can also be used as a measure of woody biomass. 
Although increases in both measures of foliage cover (Piao et al. 2020) and woody plant 
density (Stevens et al. 2017) have been observed in many landscapes over the last 
century, the nexus between the two is largely untested. 

Australia is a key region for testing this relationship. Studies have shown an 11.7% 
increase in the normalised difference vegetation index (NDVI) across eastern Australia 
since 1982 (Rifai et al. 2022). This has been interpreted as indicating an increasing FPC 
as a result of CO2 fertilisation. Australian tropical savannas have also experienced 
structural vegetation change over the same period, with woody encroachment of 
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grasslands, and the expansion of rainforests (Bowman and 
Fensham 1991; Neldner et al. 1997; Crowley and Garnett 
1998; Russell-Smith et al. 2004a; Sharp and Bowman 2004). 
CO2 fertilisation is also likely to have had a role in these 
changes (Bond and Midgley 2012). In this study, we investi
gated changes in FPC and vegetation structure on Cape York 
Peninsula (CYP) in the Australian tropical savanna zone. 

FPC may increase as a result of increases in the density of 
leaves within an existing canopy area; an expansion of the 
canopy of existing trees, or an increase in tree density 
(Fig. 1; Fisher et al. 2018). At least the first of these may 
occur without an increase in woody biomass. Rain-induced 
leaf flush is often transient, reversing with the onset of 
drought, and carbon assimilated by leaves may be lost to 
the atmosphere rather than converted to timber (Thomas 
and Martin 2012; Rahman et al. 2019). 

FPC increases and structural vegetation change may also 
have different drivers. Increase in woody stem density in 
savannas has been linked to fire and grazing regimes, rain
fall variation and CO2 fertilisation (Bond and Midgley 2000;  
van Langevelde et al. 2003; Sharp and Bowman 2004; Prior 
et al. 2006; Crowley et al. 2009; Bond and Midgley 2012;  
Anderegg et al. 2013; Cook et al. 2015; Stevens et al. 2016). 
While FPC is likely to respond to the same drivers, it may 
not do so in the same way. Knowing the extent to which 
changes in FPC and woody stem density are linked is essen
tial for global carbon accounting. Accurate assessment of 
carbon stocks also requires a landscape-scale understanding 
of how CO2 fertilisation interacts with fire and grazing 
regimes to affect vegetation structure (Bultan et al. 2022). 

Linking vegetation change to causal factors is often chal
lenging because of the limited timeframe of field studies or 
intermittent availability of aerial photographs, whereas global 
and continental assessments may be at too coarse a scale to 
identify vegetation structure or its relationship with land 
management (cf. Haverd et al. 2020). Recently, medium- 
scale (30 m resolution) vegetation products derived from 
Landsat imagery, combined with on-ground verification, has 
facilitated assessment of Australian vegetation structure at 
landscape, regional and continental scales (Flood et al. 
2019; Liao et al. 2020). Of these products, Persistent Green 
(a satellite-image derived measure of FPC, see Supplementary 
Appendix S1 in the Supporting Information), has also been 
used to assess vegetation change (Scarth et al. 2015). The 
utility of this product may be enhanced by variography, the 
statistical description of the texture (spatial autocorrelation) 
of imagery (Solana-Gutiérrez and Merino-de-Miguel 2011), 
tied to on-ground observations of vegetation structure. In 
this study, we used Persistent Green to assess FPC change 
and the extent to which this has been translated into changes 
in vegetation structure. We also examined the role of CO2 
fertilisation and fire and grazing land tenure in driving FPC 
change. Finally, we propose a method for further exploring 
vegetation change and its causes using variography tied to on- 
ground observations of vegetation structure. 

Methods 

Study areas 

Our main study area extends over 274 000 km2 of CYP (Fig. 2; 
140–145°E, 12–19°S), and constitutes 21% of Australia’s trop
ical savanna zone. It is within the area identified as having a 
spike in carbon sequestration in 2010–2011 (Ma et al. 2016). 

(a) Original foliage cover

(d) Increased number of trees
ongoing increase in foliage cover likely

(c) Increased foliage density
rapid reversal possible

(h) Reduced foliage density
rapid recovery possible

(f ) Partial canopy death
slow recovery possible

(e) Canopy expansion
slow reversal possible

(b) Original foliage cover

(g) Tree death
long-term reduction in foliage cover likely
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Sparse
foliage of

deciduous tree

Large tree Small tree

Increasing rainfall/decreasing !re

Gaps
between

trees

Semi-dense
foliage of

evergreen tree

Fig. 1. (a, b) Components of vegetation that contribute to foliage 
projective cover; and how these are translated into foliage response 
to (c–e) increasing and (f–h) decreasing rainfall. Artwork © Mariska 
Marnane.   
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It has reliable monsoonal rainfall, with minimal interannual 
variation (Laughlin et al. 2003; Bureau of Meteorology 2019) 
and little vegetation clearance (Accad et al. 2021), so provides 
a key opportunity for assessing whether increasing CO2 levels 
have been translated into vegetation structural change in 
tropical savannas. Vegetation change documented in the 
study area from plot-based sampling and analysis of aerial 
photographs includes loss of grasslands; thickening of teatree 
woodlands; and expansion of rainforest into adjoining euca
lypt woodlands (Neldner et al. 1997; Crowley and Garnett 
1998; Russell-Smith et al. 2004a; Crowley et al. 2009). 

This study area is primarily in the tropical savanna cli
matic zone (Bureau of Meteorology 2006; Supplementary 
Appendix S2, Fig. S3). Between 1961 and 1990, mean tem
peratures averaged 24–30°C, minima 18–21°C, and maxima 
24–40°C, with little change over the subsequent decades 
(Bureau of Meteorology 2022). Rainfall is concentrated 
between November and April (Fig. S2), and averaged 

580–2400 mm a year between 1986 and 2015, with moder
ately low annual variability (Fig. S3; Bureau of Meteorology 
2022). Rainfall in the 30 years to 2018 averaged 3% higher 
than in the previous 30 years (Bureau of Meteorology 2019). 
Spatially, interannual rainfall variability increased as rain
fall decreased (Fig. S3). Soils are typically infertile, espe
cially deficient in phosphorus and sulfur (Biggs and Philip 
1995). Fifteen vegetation types (1:5 million scale Broad 
Vegetation Groups, BVGs; Queensland Herbarium 2018) 
have been mapped in the study area (Table S1, Fig S4). 
Eucalypt woodland is the most extensive (47.7%), followed 
by teatree woodland (18.8%) and floodplain forest (12.4%). 
Grassland covers 7.7% of the study area. First Nations 
Peoples have occupied CYP for at least 37 000 years 
(David and Lourandos 1997). Most land was removed 
from First Australians’ ownership for cattle grazing in the 
late 19th century, and continued to be grazed throughout 
the study period (Table S2, Fig. S5). Restoration of land to 
First Nations Peoples commenced in 1987, along with large 
areas being retired from grazing. 

During the study period, highest fire frequency occurred 
along the western peninsula (excluding the low-lying allu
vial fans), extending to the east coast in the central penin
sula (Figs S6, S7). Large areas were burnt in at least 14 of the 
18 years. Dedicated fire extension programs began in 2004, 
and the Australian Government’s Savanna Burning program 
in 2012 (Edwards et al. 2021). This program awards carbon 
credits for the use of low intensity early dry season (EDS: 
January–July) burning to reduce the extent of more intense 
late dry season (LDS: August–December) wildfires, thereby 
abating greenhouse gas emissions and sequestering carbon 
(Murphy et al. 2015). 

We used Artemis Antbed Nature Refuge (AANR) – origi
nally a 21 km2 area being managed for golden-shouldered 
parrot (Psephotus chrysopterygius Gould, 1857) recovery in 
central CYP – as a case study area for assessing vegetation 
structural change (Murphy et al. 2021). AANR is on Artemis 
cattle station, and has been used for grazing since 1911 
(Crowley and Garnett 2000). It was fenced and dedicated 
as a Nature Refuge in 1994, although grazing continued 
until 2019. In 2022, AANR was expanded to >1000 km2. 
It is dominated by eucalypt woodland (56.4%) and teatree 
woodland (26.3%), with pockets of grassland (9.1%; 
Fig. S8). AANR and the surrounding area experienced tea
tree (Melaleuca viridiflora Sol. ex Gaertn) invasion of grass
lands and thickening of teatree woodlands (Crowley and 
Garnett 1998; Crowley et al. 2009). Between 2001 and 
2020, the 30 m pixels within AANR were burnt an average 
of 2.6 times (2.3 times by LDS fires), with no fires in either 
2001 or 2020. 

Data layers and study period 

We used Autumn Persistent Green (APG; Department of 
Environment and Science 2022; 30 m pixels; coordinate 
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Fig. 2. The study area showing focal vegetation types. Map adapted 
from Broad Vegetation Group mapping by  Department of Environment 
and Science (2018).   
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reference system – EPSG: 3577, https://epsg.io/) as a mea
sure of FPC, because autumn (March–May) imagery was the 
least affected by current-year fires (Supplementary Appendix 
S1). We used fire scar mapping from the North Australian 
Fire Information website. This was derived from satellite 
imagery from MODIS (the Moderate Resolution Imaging 
Spectroradiometer), VIIRS (the Visible Infrared Imaging 
Radiometer Suite) and NOAA (the National Oceanic and 
Atmospheric Administration) (Charles Darwin University 
2021; 250 m pixels; EPSG: 4283). Annual EDS fire rasters 
were produced by combining all fires from January to July, 
inclusive, and LDS fire rasters by combining all fires from 
August to December, inclusive. We chose a study period 
(2001–2018) over which both Persistent Green imagery 
(1990–2018) and fire scar mapping (2000–2020) were avail
able at the time of analysis, delaying the start year to 2001 to 
enable inclusion of previous-year fire occurrence in our 
modelling. We compiled a raster of grazing land tenure 
during the study period (Table S2, Fig. S5; 1:100 000; 
EPSG: 3577) for inclusion in all models. 

We also sourced data layers of other variables with the 
potential to influence fire occurrence and vegetation struc
ture (Supplementary Appendix S3, Table S3), i.e. vegetation 
type (Queensland Herbarium 2018; 1:100 000 resolution; 
EPSG:4283), rainfall (Bureau of Meteorology 2008; pixel 
size: 0.025°; EPSG:4283), and 1-, 2- or 3-year percentage 
rainfall anomalies (Bureau of Meteorology 2021; 0.05° pix
els; EPSG:3577), as justified below. We did not include 
temperature, because vegetation change in savanna regions 
has been shown to be relatively insensitive to temperature 
(García Criado et al. 2020). 

Vegetation type influences fire regime through variations 
in its structure and composition (Miller and Murphy 2017). 
Different vegetation types have also exhibited different 
forms of structural change that are – in turn – influenced 
by fire regime. Rainforest on CYP (BVG 1) has expanded into 
adjoining woodlands and grasslands (Bowman and Fensham 
1991; Russell-Smith et al. 2004a, 2004b). The structure of 
Eucalypt-dominated woodland (BVG3) and floodplain forest 
(BVG4) appears to have remained fairly stable across northern 
Australia (Crowley and Garnett 1998; Murphy et al. 2014;  
Prior et al. 2020). Teatree woodland on CYP (BVG 8) has 
markedly thickened under a fire regime that has been influ
enced by cattle grazing (BVG 8, Crowley et al. 2009), and 
encroached on adjoining grasslands (BVG13; Neldner et al. 
1997; Crowley and Garnett 1998). We therefore retained each 
of these vegetation types, and combined all remaining vege
tation types into an unclassified vegetation type. 

Seasonal and annual variations in rainfall influence fire 
occurrence (Felderhof and Gillieson 2006). They also drive 
leaf production and loss, and thus change in FPC (Fensham 
et al. 2009; Thomas and Martin 2012; Anderegg et al. 2013;  
Rahman et al. 2019). Extended wet and dry periods drive 
cyclical canopy thickening and thinning (Fensham and 
Holman 1999); with 3-year rainfall anomalies being shown 

to influence Persistent Green values in northern Australian 
savannas (Cowley 2020). 

Modelling 

Data management and modelling were undertaken in R (R 
Core Team 2020). We combined all data layers for 18 years 
of APG, 19 years of EDS and LDS fire extent, grazing land 
tenure, vegetation, rainfall, and 18 years of 1-, 2- and 3-year 
rainfall anomalies into a raster stack matching the extent of 
the main study area using the raster package (Hijmans and 
van Etten 2012). All layers were first either rasterised or 
disaggregated to a 30 m resolution, with no interpolation. 
Values from this stack were extracted at 30 525 stratified 
random points across the study area (1500–6000 per vege
tation type) for use in analysis, reduced to 27 622 points 
(959–5742 per vegetation type; Fig. S9, Table S4) on the 
removal of missing values and locations whose grazing land 
tenure changed within the study period. 

We used generalised additive modelling (GAM) for very 
large datasets (bam function in the mgcv package; Wood 
2019): first, to characterise changes in fire occurrence in 
each vegetation type over time; and then, to assess the 
influence of fire and grazing land tenure on FPC in each 
vegetation type over time. To model EDS and LDS fire 
occurrence in each vegetation type over time, we used 
GAM with a binomial distribution and the logit link function 
using factor smooth and 18 knots (the number of joins 
between spline functions) corresponding to the 18 years of 
the study period as a fixed effect. Each model of fire occur
rence also initially contained the following random effects: 
previous-year fire season (EDS, LDS, or unburnt), grazing 
land tenure (yes, no), mean annual rainfall, 1-, 2- or 3-yearly 
rainfall anomalies, geospatial location, and – for LDS fire 
occurrence alone – EDS burning in the current year. To 
clarify general trends in fire occurrence, we reran the best- 
fit model using factor smooth with three knots to produce a 
model with maximum smoothness. 

To model changes in APG in each vegetation type over 
time, we used GAM with a Gaussian distribution and the 
identity link function (with factor smooth and 18 knots) as a 
fixed effect, initially with no other effects included in the 
model. To assess the influence of management on APG, we 
reran the model including year–vegetation type, previous- 
year season of burn, grazing land tenure and vegetation– 
grazing interactions as fixed effects; as well as average 
annual rainfall, 1-, 2- or 3-yearly rainfall anomalies, and 
geospatial location as random effects. 

Inclusion of geospatial location in all models accounted 
for spatiotemporal variability, but we did not incorporate 
autocorrelation as we were not making predictions outside 
our sampled time periods or study area (Pawley and 
McArdle 2021). We adjusted each model by substituting or 
removing variables to identify the best-fit model that 
explained the highest level of deviance with the least 
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effective degrees of freedom as determined by a deviance 
test ANOVA. Independent fixed and random effects were 
retained in the model if their contribution was significant 
at P < 0.05, or if the analysis of deviance test indicated that 
they strengthened the model. 

Field observations and variography 

We used variography tied to on-ground observations to iden
tify modes of canopy change in AANR (Fig. 1). We extracted 
the woody plant data from seven 200 m2 permanently- 
marked field plots in and around AANR (Fig. S6) established 
in 1998–2001 in grasslands being invaded by teatree wood
land, and remeasured in 2021 (Crowley and Garnett 1998;  
Crowley et al. 2009; Murphy et al. 2021). We grouped counts 
of woody plants into two size classes (1–3, and >3 m, which 
is the height above which lignotuberous plants can generally 
survive burning without height reduction; Bond and Midgley 
2000). We compared the results from these plots with 
changes in the APG imagery between 2001 and 2020. 

We compared APG variograms for AANR in 2001 and 
2020 to assess whether on-ground vegetation structural 
change in the grassland/teatree woodland vegetation commu
nity could be detected using variography, as follows. Uniform 
grassland or woodland has low variation in FPC. Adding trees 
to grassland increases the variation; filling in canopy gaps in 
woodland reduces it. Variography captures these changes by 
measuring spatial autocorrelation, or how similar FPC at any 
one point is to that of the surrounding vegetation (Solana- 
Gutiérrez and Merino-de-Miguel 2011; Hamada et al. 2019). 
Variograms map semivariance (variance of observations that 
are lower than the mean) against distance (Supplementary 
Appendix S4). If spatial autocorrelation is present, influence 
declines with distance, and semivariance increases towards a 
maximum value (the sill; Fig. S10). The distance at which this 
occurs is called the range. Within-pixel semivariance is cap
tured in the nugget (semivariance at zero distance). Within a 
vegetation type, semivariance usually follows a Gaussian, 
spherical or exponential form; and adjoining vegetation for
mations produce secondary and subsequent peaks (Kamal 
et al. 2014). Variation in cover within the canopy and 
between canopies is reflected in a variogram’s nugget and 
partial sill (sill minus nugget), respectively; the range reflects 
size of vegetation structural elements, and the form reflects 
the level of clustering within those elements (Hamada et al. 
2019). Hence variogram parameters can be used to separate 
out structural elements of vegetation cover. Increase in foliage 
density within the canopy and infilling of canopy gaps smaller 
than the pixel size should reduce the nugget-to-partial sill 
ratio (Table S5). Woody invasion of grassland should increase 
the sill. We also applied variography to the eucalypt wood
land in AANR using the same principles, but without the 
benefit of field observations. 

We extracted APG for grassland/teatree woodland and 
eucalypt woodland from the 2001 and 2020 APG layers for 

use in separate variograms. As severe fragmentation inter
feres with variogram calculation, we selected a contiguous 
subset of 12 510 eucalypt woodland pixels for analysis, but 
were able to use all 8274 grassland/teatree woodland pixels. 
We constructed and analysed APG variograms for each year- 
vegetation combination using the R package gstat (Pebesma 
2004). After discounting anisotropy (directional depen
dence), we constructed a single two-dimensional exponen
tial variogram for each year-vegetation combination. We 
used a Kolmogorov–Smirnov test to assess whether there 
was a significant change in the shape of the variograms 
between years, and extracted the variogram parameters of 
nugget, sill, partial sill, and range for further comparison. 
We also used two-sample sign tests to compare APG values 
of grassland, teatree woodland and eucalypt woodland in 
AANR in 2001 and 2020. 

Data limitations 

The following data limitations were considered in our inter
pretation. Differences in raster resolution may have obscured 
any relationships between APG (30 m pixels), fire scars 
(250 m), rainfall (0.025°) and rainfall anomalies (0.05°), 
thus creating Type II, rather than Type I errors. Further 
blurring of relationships may have arisen from the smooth
ing of APG through the full time series to reduce the 
influence of seasonal changes in FPC (Department of 
Environment and Science 2022). Therefore, any immediate 
impacts of fire and rainfall on APG were likely to be 
underestimated. 

Although, of the Persistent Green products, APG (March– 
May) would be least affected by current-year fires, high 
cloud cover at the start of Autumn would tend to push the 
selection of images towards the end of the season, at a time 
when fires are beginning to occur (Fig. S1). This could 
obscure the relationship between APG and previous-year 
fires. Conversely, images derived from the start of the season 
would have been extracted before the wet season rains 
stopped (Fig. S2). This could obscure the relationship 
between FPC and 1-year rainfall anomalies, and to a lesser 
extent, 2- and 3-year rainfall anomalies. 

Cloud cover also possibly obscured storm-burns, the 
fires that are considered most effective at reducing 
woody encroachment (Crowley et al. 2009). Storm- 
burning is undertaken within a couple of days of the first 
heavy rains, usually in December or January. Wet soils 
usually mean that grass cover recovers rapidly after a 
storm-burn, recolonising fire scars by the time the sky 
clears enough to show in imagery. Storm-burns are there
fore likely to have been under-mapped, and their temporal 
variability means that mapping of both EDS and LDS fires 
could have included storm-burns in some years. In sum
mary, these data limitations are likely to have reduced the 
strength of real relationships, rather than fabricated rela
tionships that do not exist. 
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Results 

Fire 

Between 2001 and 2018, an average of 28.0% of our study 
area was burnt each year; 5.1% by EDS fires and 22.9% by 
LDS fires (Fig. 3). The best-fit model explaining EDS fire 
occurrence included a smooth function of vegetation and 
year with 18 knots as a fixed effect, and previous-year fire 
season, grazing land tenure, 1-year rainfall anomalies and 
location as random effects (Supplementary Appendix S5). 
The best-fit model explaining LDS fire included a smooth 
function of vegetation and year with 18 knots as a fixed 
effect, and previous-year fire season, grazing land tenure, 
3-year rainfall anomalies, EDS fire occurrence in the current 
year and location as random effects. These models explained 
a low proportion of the deviance of EDS and LDS fire 
probability (16.6 and 16.2%, respectively). The maximum- 
smooth models (three knots) containing the same significant 
fixed and random effects explained only 14.9 and 13.8% of 
the deviance, respectively. In both seasons, the probability 

of burning differed significantly between vegetation types, 
being lowest in rainforest and highest in teatree woodland. 
EDS fire occurrence varied little through the study period, 
with lowest extents in about 2008. LDS fire occurrence 
decreased until about 2010, and continued to do so in rain
forest; but levelled out in eucalypt woodland, grassland and 
unclassified vegetation; and increased in teatree woodland 
and floodplain forest. 

Foliage projective cover 

Autumn Persistent Green increased by an average of 
5.11 ± 0.04% through the study period, with the slope 
varying slightly between years (Fig. 4). It increased most 
in eucalypt woodland and least in grassland and rainforest 
(Table 1). The GAM model APG trend across vegetation 
types alone explained 37.6% of the deviance in APG 
(Supplementary Appendix S6). The best-fit model explaining 
APG deviance included the following fixed effects: a smooth 
function of vegetation type and year with 18 knots, and 
vegetation type, along with previous-year fire season and 
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Fig. 3. Generalised additive models for changes in fire occurrence in the (a) early and (b) late dry season in each of six vegetation types 
over time on Cape York Peninsula. Solid lines indicate the model explaining the most deviance with the least effective degrees of freedom 
for the relationship between fire occurrence and year in the six vegetation types, after accounting for random effects of grazing land 
tenure, average rainfall, rainfall variation and spatial variation, and, in (b) current-year early dry season fire. These models had 18 knots 
corresponding to the 18 years of the study period. Dashed lines show the maximum-smooth model, which has the same fixed and random 
effects as the best-fit model, but has been reduced to three knots to delineate the general trends. Confidence bands are in grey.    
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grazing land tenure, and their individual interactions with 
vegetation type; and the following random effects: average 
rainfall, 3-year rainfall anomalies and location. This model 
explained 58.6% of the deviance in APG, significantly more 
than the vegetation trend model (P = 0.0000; Fig. 4b). APG 
differed significantly between vegetation types, being high
est in rainforest and lowest in grassland. Fire had a signifi
cant negative effect on APG in the subsequent autumn in all 
vegetation types, with the greatest effect in rainforest and 
least in eucalypt woodland (Fig. 5a). The impact of EDS fire 
on APG was consistently greater than that of LDS fire. 
Grazing land tenure had a significant positive impact on 

APG in grassland and teatree woodland, and a significant 
negative impact in all other vegetation types (Fig. 5b). 

Vegetation structural change 

Between 2001 and 2021, the number of small woody plants 
(1–3 m) in the monitoring plots in and around AANR 
increased five-fold, from an average of 586 ± 5 to 
2921 ± 29 plants per hectare. The number of large woody 
plants (>3 m) increased four-fold in the same period, reach
ing an average of 1529 ± 23 plants per hectare. Two-sampled 
sign tests comparing the eight sets of plots in 2001 and 2021 
indicated that the increases in the number of small and large 
plants were equally significant (S = 0; P = 0.0078; Fig. 6). 

In each of the three vegetation types, APG increases in 
AANR between 2001 and 2018 were substantially higher 
than CYP averages for the same period, with those in grass
land and teatree woodland being roughly twice as high 
(Table 1). Two-sample sign tests indicated that median 
APG significantly increased in grassland from 14 to 21 
(S = 2073, P = 0.000), and in teatree woodland from 26 to 
38 (S = 6136, P = 0.000; Fig. 7e). Woody encroachment 
within the grassland/teatree woodland complex between 
2001 and 2021 (Fig 7a-b) was also evident in the APG 
images and variograms (Table 2, Fig. 7c-f). High sill values 
for this complex indicated a highly variable structure in 
2001, and its increase of 48% by 2020 indicated patchy 
woodland encroachment, rather than a general thickening 
of the foliage of existing plants. Although eucalypt woodland 
had a significant APG increase of similar magnitude (from 35 
to 42; S = 12 984, P = 0.000), variography suggested this 
was not caused by structural change. The low sill indicated a 
relatively uniform canopy; and low change-in-sill indicated 
moderate structural change over time. Low nugget-to- 
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Fig. 4. Generalised additive models for changes in Autumn 
Persistent Green in each of six vegetation types of over time on 
Cape York Peninsula (±95% confidence intervals) (a) before and 
(b) after accounting for interactions with previous-year fire occur
rence and grazing land tenure, and the random effects of average 
rainfall, rainfall variation and spatial variation. Both models had 
18 knots corresponding to the 18 years of the study period. 
Confidence bands are in grey.   

Table 1. Changes in Autumn Persistent Green (APG) across Cape 
York Peninsula and in Artemis Antbed Nature Refuge (AANR) 
between 2001 and 2018.        

Vegetation 
type 

n Cape York 
Peninsula 

AANR 

Mean 
APG 

change 

s.e.m. Mean 
APG 

change 

s.e.m.   

Rainforest 959 3.69 0.31 – – 

Eucalypt 
woodland 

5246 6.17 0.08 7.88 0.04 

Floodplain 
forest 

5742 5.87 0.08 – – 

Teatree 
woodland 

5591 5.70 0.08 9.64 0.06 

Grassland 4836 3.34 0.07 6.99 0.10 

Other 5248 4.50 0.09 – – 

Study area 27 622 5.11 0.04 – –   
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partial-sill ratios in grassland/teatree woodland suggested 
that – in both years – the main source of APG increase was 
an increase in canopy area between pre-existing patches of 
trees and patches of grasses. By contrast, higher nugget-to- 
partial-sill ratios in eucalypt woodland indicated a predomi
nance of within-pixel (and therefore within-canopy) varia
tion in FPC, and the drop in this metric by 2020 indicated 
increasing within-canopy uniformity. As we confined our 
measurements inside the two vegetation communities, nei
ther the range (154 and 124 for grassland/teatree woodland; 
185 and 145 for eucalypt woodland) nor form (all exponen
tial) of either variogram changed substantially, and there 
were no secondary peaks. In summary, the variogram param
eters are consistent with teatree invasion of grassland, as 
shown by the high and increasing sill; and that eucalypt 
woodland – rather than undergoing structural change – has 
experienced infilling of the existing canopy, as shown by the 
reduced nugget-to-partial-sill ratio. 

Discussion 

This study confirmed that FPC increased in our study area 
between 2001 and 2018, with APG averaging an increase of 
5.11 ± 0.04%. This increase is commensurate with a CO2- 
driven 10–15% NDVI increase across a similar study area 
over the last 38 years found using two other satellite products 
(Surface Reflectance provided by NOAA’s AVHRR (Advanced 
Very High Resolution Radiometer) and the MODIS product 
provided by NASA (National Aeronautics and Space 
Administration); Rifai et al. 2022). The novelty of our study 
is that it begins to unpick the nature of this remotely-sensed 
greening. Our findings showed FPC increases in both woody 
vegetation and grassland, and our on-ground monitoring and 
variography linked these increases in grassland – but not in 
eucalypt woodland – to structural vegetation change (as per  
Fig. 1d). We were also able to identify the factors driving FPC 
increase. 

Measuring changes in FPC and vegetation 
structure 

The Persistent Green product, specifically designed to cap
ture FPC at a fine (30 m) resolution, allowed us to separate 
out changes in canopy foliage from those in the grass layer. 
Other measures of primary productivity with a coarser reso
lution (500 m for MODIS and 0.5° for AVHRR), and that do 
not remove the effect of ground cover (e.g. NDVI), will 
provide less accurate measures of FPC. 

When combined with variography, APG was also useful for 
tracking the conversion from grassland to woodland, and for 
assessing within-canopy changes in woodland. Vegetation 
structure was reflected in the variogram sill, which was higher 
in grassland in the process of being invaded by woodland than 
it was in the relatively uniform eucalypt woodland. The 
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Fig. 5. Impact of (a) early and late dry season fire and (b) grazing 
land tenure on Autumn Persistent Green values on Cape York 
Peninsula (2001–2018) based on the generalised additive model of 
best fit.   

N
um

be
r 

of
 w

oo
dy

 p
la

nt
s

0

1–3 >3

Size class (m)

20

40

60
Year

2001
2021

Fig. 6. Changes in number of woody plants in eight 200 m2 mon
itoring plots in and around Artemis Antbed Nature Refuge between 
2001 and 2021. Whiskers represent 1.5 times interquartile range.   
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documented patchy transition from grassland to woodland 
was captured in the 48% increase in sill, while the reduction 
in the nugget-to-partial sill ratio suggested only within-canopy 
FPC increases in eucalypt woodland. Variography applied to 
coarser-scaled products would be less able to detect such 
changes, as within-pixel variation at a 500 m resolution 
would be less able to differentiate between within-canopy 
and between-canopy changes in FPC. 

Our assessment of vegetation change from grassland to 
teatree woodland was greatly enhanced by access to 
permanently-marked vegetation plots that were first mea
sured over two decades ago (Murphy et al. 2021). Site photo
graphs (Supplementary Appendix S1) showed that woody 
invasion of grasslands between 2001 and 2021 was patchy, 
creating textural relief that was captured in the increasing sill. 
Several other sets of relocatable monitoring sites exist in the 
Australian tropical savannas, including the on-ground assess
ments made for the initial calibration of the Persistent Green 
Product (Scarth et al. 2015). Remeasurement of these plots 
should form the basis of assessing the relationship between 
APG and vegetation change, particularly of whether increases 
in APG have coincided with increases in tree number and 
basal area or just crown density, and whether these relation
ships have changed through time. However, a dearth of per
manent plots in our study area means investment in new plots 
will be required to track structural change in most vegetation 
types into the future. Economic stringencies and insecurity of 
tenure make establishing long term monitoring plots difficult 
(Lindenmayer and Likens 2018). We propose that a network 
of camera traps, which are now being used as an economical 
means of canopy monitoring (Chianucci et al. 2021), could be 
established in key areas to capture changes in canopy cover 
and vegetation structure as an economical adjunct to physical 
tree monitoring, and that the results be linked to change in 
APG and its variography over periods of at least 10 years. 

Relationship between increases in FPC and 
woody biomass 

In theory, CO2-driven increases in foliage production should 
result in increases in woody biomass – and hence carbon 
stocks – in the form of tree recruitment, tree height and/or 
tree basal area (Cook et al. 2015). Such changes would be 

consistent with CO2 fertilisation improving water-use effi
ciency and releasing the trees from strong water limitation. 
While increases in APG could be linked to increases in stem 
density in grassland in our study area, the variography sug
gests that this relationship breaks down once a uniform 
woodland canopy is established. Eucalypt woodland appears 
to be the most stable vegetation type on CYP (Crowley and 
Garnett 1998). Indeed, there is little evidence of elevated tree 
recruitment in eucalypt woodland anywhere in Australian 
tropical savannas, even where fire has been excluded for up 
to 23 years (Murphy et al. 2015; Prior et al. 2020). 
Landholder perceptions to the contrary (Lankester 2006) 
are possibly based on selective memory of increases in the 
wetter parts of rainfall-driven thickening and thinning cycles 
(Fensham et al. 2009). Furthermore, CO2-enhanced growth 
was found in only one of the two savanna eucalypts tested in 
pot trials (Duff et al. 1994). 

Variography may not differentiate between simple 
increases in leaf density and the production of new stems 
or branches that occurs without extending the existing can
opy outline. However, in a global review of tree growth 
rates, Rahman et al. (2019) found no evidence of accelerated 
growth that could be attributed to CO2 fertilisation, and 
concluded either that this was because of a decoupling of 
leaf production from wood production, or that any enhanced 
sequestration was being directed underground. They con
cluded that the positive effects of CO2 on leaf growth may 
be offset by the adverse effects of associated temperature 
rise. Any extra carbon assimilated by the leaves may also be 
lost through respiration (Jiang et al. 2020b), or not con
verted to woody biomass when soil nutrients are limiting 
(Jiang et al. 2020a), as they are through much of CYP (Biggs 
and Philip 1995). Hence, both the variography and literature 
indicate that FPC increase is unlikely to indicate elevated 
carbon sequestration in the dominant eucalypt woodlands of 
northern Australia. 

Increases in APG in our study may not even indicate 
increased leaf production, but simply result from the same 
biomass of leaves being retained in the canopy for longer, 
having less horizontal overlap, being held at a more hori
zontal angle, or having an increased surface area-to-mass 
ratio. Of these factors, extended period of leaf retention is 
known to occur under elevated CO2 (McCarthy et al. 2007). 

Table 2. Variogram parameters for Autumn Persistent Green in Artemis Antbed Nature Refuge, as shown in  Fig. 7f.            

Habitat Year Variogram parametersA Variogram comparisonsB 

Nugget Partial sill Sill Nugget/partial sill Range n K–S statistic P-value   

Grassland/teatree woodland 2001 1.51 61.5 63.04 0.0239 154    

Grassland/teatree woodland 2020 0.00 93.7 93.71 0.0000 124 15 0.800 0.000 

Eucalypt woodland 2001 4.06 27.0 31.10 0.1305 185    

Eucalypt woodland 2020 4.35 30.8 35.16 0.1236 145 15 0.667 0.002 

AFor definition of variogram parameters, see Supplementary Appendix S4. 
BVariogram comparisons undertaken using Kolmogorov–Smirnov (K–S) tests.  
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Eucalypts in the study area include a mix of semi-deciduous 
species, which regrow their leaves annually (Myers et al. 
1998), and evergreen species, which can lose up to 40% of 
their leaves towards the end of the dry season (O’Grady et al. 
2000). However, impacts of CO2 on leaf retention through 
the wet season have not been studied. The impact of CO2 on 
leaf overlap and leaf angle has only been studied in a single 
eucalypt species, with no apparent effect (Pisek et al. 2021). 
Leaf-area-to-mass ratio decreases under elevated CO2, but 
increases in response to the associated improvement to 
water-use efficiency (Whitehead and Beadle 2004; Rahman 
et al. 2019). Without detailed knowledge of these responses 
for the species in our study area, it is not possible to link the 
APG increases to increased leaf biomass or carbon seques
tration (Jiang et al. 2020b). The predominance of recent 
NDVI increases in Australia may simply result from the 
foliage of sclerophyllous plants being most responsive to 
CO2 fertilisation (Niinemets et al. 2011), but nutrient limi
tations may prevent this advantage being converted to car
bon sequestration (Jiang et al. 2020a). We therefore 
conclude that an increase in FPC cannot be equated to 
increases in tree number or size, or above-ground biomass. 
While FPC does increase as stem density increases in open 
vegetation, such as in the case of grassland conversion to 
teatree woodland, our variography shows that it can also 
increase at an even greater rate in the absence of vegetation 
structural change. 

Drivers 

CO2 fertilisation is considered to be the main driver of 
recent increases in FPC (Ma et al. 2016; Zhu et al. 2016). 
The year-on-year APG increase shown in our data (year 
effect after the removal of the effects of other driving pro
cesses) would suggest this is the case. Our model also 
showed that both fire and grazing tenure affected FPC, but 
had little impact on region-wide increases. 

Fire in the previous year reduced APG, with EDS fires 
having a greater impact than LDS fires in all vegetation 
types. A negative effect of fire on APG was to be expected, 
as fires in Australian tropical savannas may scorch the 
canopy, or kill branches and whole trees to the point of 
elimination of fire sensitive species (Prior et al. 2009;  
Bowman et al. 2014; Murphy et al. 2014). Nevertheless, it 
seems counterintuitive that EDS fires had the greatest 
impact on foliage cover. Elsewhere in northern Australia, 
LDS fires are typically more severe than EDS fires, and thus 
more lethal to trees (Werner and Prior 2013; Murphy et al. 
2015; Cowley 2020). However, milder weather in our study 
area, driven by a maritime climate, and a shorter period of 
extreme fire conditions (Stanton 1992; Perry et al. 2020) 
may limit the capacity of LDS fires to damage the canopy or 
kill trees. EDS fires may simply be more detrimental to 
foliage because they occur when the plants are actively 
growing (Miller 2000; Prior et al. 2006), whereas LDS fires 

occur when the canopy has thinned, and leaves are senes
cing (O’Grady et al. 2000). Fire-sensitivity of actively grow
ing plants is the rationale behind using storm-burns to 
control woody encroachment. Storm-burns have been 
found to be effective at opening the vegetation structure 
in and around AANR (Crowley et al. 2009). Unfortunately, 
wet season cloud cover – and the fact that storm burns may 
be lit either side of the LDS-EDS boundary – mean APG 
imagery cannot assess their effectiveness at the regional 
level. Regardless of the effect of fire season, the overall 
decline in fire incidence through the study period is likely 
to have marginally facilitated the increase in APG, and the 
shift between LDS and EDS fires for carbon abatement 
(greatest in eucalypt woodland as a result of the Savanna 
Burning program; Edwards et al. 2021) has not been enough 
to reverse this effect. 

APG was lower on grazing land than on non-grazing land 
in most vegetation types. This may also seem counter
intuitive, as grazing should release trees from competition 
from grasses and reduce fire intensity (Archer 1995; Ash and 
Corfield 1998; Liedloff et al. 2001; Beringer et al. 2007;  
Riginos 2009; Pillay and Ward 2021). In rainforest, this 
difference may be explained by cattle browsing on seedlings 
and saplings reducing the recruitment of trees to the canopy 
(Ondei et al. 2017). In eucalypt woodland, the grazing land 
effect may result from tree health being adversely affected 
by cattle stripping bark (Guerreiro et al. 2015). It may also 
be an artefact of the most densely-vegetated country being 
preferentially relinquished from grazing land, or not 
selected as grazing land in the first place (Holmes 2010). 
This is particularly likely for rainforest, with the most luxu
riant stands being conserved in protected areas. The reverse 
pattern of elevated APG on grazing land in grassland and – 
to a lesser extent – in teatree woodland is consistent with the 
woodland encroachment documented both in this study and 
elsewhere in grazed tropical savannas (Crowley and Garnett 
1998; Sharp and Bowman 2004; Bond and Midgley 2012;  
Archer et al. 2017). Our results confirm that – regardless of 
other drivers – woody encroachment of grasslands is likely 
to be most extreme under cattle grazing. 

Conclusions 

All vegetation types in our study area experienced increases 
in APG over the period 2001 to 2018. Based on unexplained 
year-on-year increases in APG, CO2 fertilisation may be 
responsible for most of this increase. A review of the litera
ture shows that sclerophylly makes the foliage of Australian 
plants most responsive to CO2 fertilisation, but the nutrient 
limited soils make them least able to convert this to biomass 
accumulation. Hence, FPC increase on CYP does not con
vincingly demonstrate elevated carbon sequestration. Nor 
does it indicate vegetation change, except in grassland, 
where both textural analysis of the APG imagery and on- 
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ground plot monitoring demonstrated woodland invasion. 
While FPC increase in eucalypt woodland was double that in 
grassland, variography indicated no change in stem density 
in this vegetation type. 

We demonstrated a clear link between fire regime and 
FPC, with EDS fires being more effective than LDS fires at 
restricting FPC increases into the subsequent autumn, par
ticularly in grassland and rainforest. Though counter
intuitive, this finding is consistent with foliage being most 
fire-sensitive when plants are actively growing. Given the 
differences in fire severity across northern Australia, this 
effect may not apply outside our study area. In grassland 
and teatree woodland, we also found that FPC was highest 
on grazing land, reflecting the role of grazing in driving 
woodland encroachment. That the reverse was true in all 
other vegetation types may be a true reflection of the impact 
of grazing on tree health, or an artefact of land-use decision 
making. 

Untangling whether CO2-driven APG increases result 
from changes in leaf morphology, longevity, number or 
size; canopy density or extent; or tree number or size is 
essential for understanding the implications of APG changes 
for carbon accounting. Further, given the poor correspon
dence between changes in APG and vegetation structure, we 
caution against using remote sensing to assess changes of 
carbon stocks without the assistance of variography, or to 
determine the relative importance of drivers of structural 
vegetation change. However, the questions raised about the 
contribution of grazing to – and the relative impacts of EDS 
and LDS fires on – woodland encroachment are worthy of 
further investigation. 

Supplementary material 

Supplementary material is available online. 
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Data availability. The APG data layers are openly available in the TERN Data Discovery Portal at https://portal.tern.org.au. All code used in this study and 
the stratified sample data for Cape York Peninsula are available in GitHub at https://github.com/GM-Crowley/CYP. The code for extracting APG from this 
repository to produce the variograms for our case study area is also available at the above GitHub address. 
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