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Weak negative responses of spider diversity to short-term 
‘kraaling’ 
Sicelo SebataA,B,* , Charles R. HaddadB, Moira J. FitzPatrickC and Stefan H. FoordD

ABSTRACT 

The influence of short-duration, concentrated kraaling (enclosure) has been documented for 
plants, wildlife, and macro-invertebrates. However, limited information is available on its impact 
on ground-dwelling spiders. The purpose of this study was to assess the effect of short-duration 
kraaling, time since cattle removal, and microhabitat variables on spider assemblages in 
Matabeleland North Province, Zimbabwe. We used a matched-pair and space for time design 
(inside vs outside previously kraaled inclusions) across 11 sites, using four cattle herds (H1, H6, H7 

and HNguni). Spiders were sampled in the early and late rainy season with pitfall traps left open for 
14-day sampling periods and emptied twice in each period. We captured 634 spiders, comprising 
63 species in 44 genera and 18 families. The most abundant family was Lycosidae (37%; 16 spp.), 
followed by Gnaphosidae (15%; 10 spp.) and Salticidae (14.5%; 7 spp.). Generalised linear mixed 
models showed that generic richness was greater in sites with more bare ground. However, this 
effect was reversed in previously kraaled sites, and was particularly evident for spider abundance 
that responded negatively relative to unkraaled sites. Furthermore, with a U-shaped recovery, 
generic richness increased with time since kraaling. Model-based multivariate models showed that 
short-duration kraaling had a significant impact on spider assemblage structure, but this impact was 
relatively small compared with the effect of seasonality. Most of the species that made significant 
contributions to this multivariate response were less abundant in kraaled sites. Spider diversity, 
therefore, had a weak negative response to short-term kraaling. However, these impacts should 
also be assessed at broader scales, including areas where cattle go to graze during the day.  

Keywords: Araneae, cattle, ground dwelling spiders, holistic planned grazing, rangeland, 
savanna, vegetation, Zimbabwe. 

Introduction 

Cattle enclosures, referred to as bomas (Stelfox 1986), livestock corrals (Augustine et al. 
2009) or kraals (Huruba et al. 2018), have been part of daily management within 
livestock practices in most African rangelands for decades (Augustine 2003), and are 
used as overnight protection enclosures from theft and livestock predators. In addition, 
kraals provide confinements that enable milk extraction and the concentrated manure 
production for crop cultivation (Abagale and Ayuegabe 2015). Kraals are usually con
structed of material ranging from thorn scrub branches (Augustine et al. 2009) and fences 
(Stelfox 1986). They are commonly circular or rectangular, the former being preferred to 
avoid bunching of livestock in corners (Borg 1996). 

During the day, cattle normally graze within a few kilometres from the kraal. When 
inside the kraals at night, cattle dung and urine redistribute nutrients consumed during 
the day, forming heterogeneous nutrient-rich patches (Augustine 2003). Enclosures can 
be short-term, usually lasting for 7 days or less (Huruba et al. 2018), or long-term, 
where kraal owners utilise the same location for decades within the vicinity of water 
resources such as boreholes or shallow pans (Kizza and Areola 2010). The former is a 
recently developed practice that has since been incorporated as part of the innovative 
management approach called holistic planned grazing (Savory and Parsons 1980;  
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Savory 1983). The latter comprises the traditional kraaling 
culture in most semi-arid regions in southern Africa. 

The influence of abandoned kraal sites has been well 
documented (Kizza and Areola 2010; Chikorowondo et al. 
2017, 2018). Abandoned kraal sites enhance the soil nutri
ent status, including nitrogen, phosphorus and potassium 
(Huruba et al. 2017, 2018; Muvengwi et al. 2018), and are 
important as nutrient sources utilised in crop production 
(Kangalawe et al. 2008). The nutrient-rich patches enhanced 
by kraaling have implications for vegetation diversity 
(Sibanda et al. 2016; Huruba et al. 2018), as well as their 
utilisation by wildlife (Huruba et al. 2018), as a result of 
grass resprouting and an increase in palatable grass species 
(Sibanda et al. 2016; Huruba et al. 2018). 

Apart from work on diversity and abundance (Muvengwi 
et al. 2018) and functional diversity of macro-invertebrates 
(Chikorowondo et al. 2018), limited knowledge exists on the 
influence of previously kraaled enclosures on invertebrates, 
in particular spiders. Spiders are a megadiverse arthropod 
order, with almost 50 000 described species (World Spider 
Catalog 2022). They also occupy almost all possible terrestrial 
microhabitats (Turnbull 1973; Foelix 2011). Ecologically, 
spiders are important predators (Nyffeler and Birkhofer 
2017) that commonly feed on insects, rendering spiders 
important natural control agents (Nentwig and Kobelt 
2010). Spiders also feed on small mammals such as bats 
(Nyffeler and Knörnschild 2013), aquatic organisms such as 
fish (Nyffeler and Pusey 2014), and even other spiders 
(Wise 2006). 

Spider diversity is dependent on several factors (Foelix 
2011), including vegetation structure (Baldissera et al. 2004;  
Roberson et al. 2016), prey availability and competitive exclu
sion (Dennis et al. 2015; Rodriguez-Artigas et al. 2016). 
Spiders possess several characteristics that make them good 
bio-indicators (Churchill 1997; Marc et al. 1999) of environ
mental disturbances such as fire (Pryke and Samways 2012;  
Haddad et al. 2015), habitat modification (Haddad et al. 
2010), habitat quality (Halaj et al. 1998) and grazing 
(Fuller et al. 2014; Schwerdt et al. 2018). They have also 
been used to determine the influence of other environmental 
changes, including leaf-litter structure (Castro and Wise 2009;  
Butler and Haddad 2011; Podgaiski et al. 2013), seasonality 
(Niemela et al. 1994; Weeks and Holtzer 2000; Mineo et al. 
2010) and rainfall gradients (Churchill 1998). According to  
Podgaiski et al. (2013), spiders have the potential to re- 
occupy affected habitats within less than a month, and are 
therefore an appropriate taxon for testing the effect of short- 
duration kraaling (7 days) on spider assemblages inside previ
ously kraaled inclusions and their surroundings. 

This study examined the response of spider assemblages 
to short-duration kraaling. It was predicted that spider 
assemblages would be less diverse in kraaled sites than in 
adjacent non-kraaled (control) sites, because of grazing and 
trampling by cattle. Second, we assessed whether spider 
assemblages varied with time since kraal occupation. We 

predicted that spider assemblages between the kraaled and 
non-kraaled sites would be more diverse with time since 
disturbance because of vegetation regrowth and recolonisa
tion by mobile spiders. Last, we sought to identify the micro- 
habitat variables that influence spider assemblages around 
previously kraaled inclusions and their control sites. We 
predicted that spider diversity would be more diverse in 
structurally more complex vegetation, mainly through var
ied substrates, opportunities for web attachments, and shel
ter from predators (Fuller et al. 2014). 

Materials and methods 

Study sites 

The study was conducted on the Debshan Ranch, a privately 
owned commercial cattle ranch 100 km northeast of Bulawayo 
within Insiza district, Matabeleland North Province, 
Zimbabwe (Fig. 1). The Debshan Ranch (19°35′S, 29°15′E) 
occupies 800 km2 (Huruba et al. 2018), and utilises a holis
tic management approach (Mberi 2013). Mean annual rain
fall is 639 mm, the rainy season starts in November, peaks in 
December, averaging 144 mm, and ends in March–April. 
Annual average temperature is 18°C, October is the hottest 
month (average temperature 21°C), and July the coldest 
(average temperature 12.4°C). Average daily humidity is 
55% (Climate-data.org 2019). 

The ranch falls under agro-ecological natural region IV 
(Cousins 1992), a livestock production area that also cultivates 
drought-tolerant crops such as sorghum, millet and rapoko. It 
is also a semi-extensive savanna biome suitable for forestry, 
wildlife and tourism (Mugandani et al. 2012). Elevation is 
between 1230 and 1414 m above sea level (Dunham et al. 
2003), and soils are coarse-grained yellowish-brown loamy 
sands, resulting from granite, forming soils that are usually 
infertile and poorly drained, ultramafic or mafic rocks that 
give rise to productive red soils, and dark brown clayey soils 
(Robertson 2013). The soils support floral types that are 
normally dispersed in a catenae pattern (Dunham et al. 
2003) that comprises bushlands, grasslands, wetlands and 
woodlands, such as (1) Julbernadia–Stereochlaena wood
land, (2) Combretum hereroense–Hyparrhenia mixed bush
lands, (3) Colophospermum bushlands, (4) Terminalia– 
Schizachyrium bushlands, (5) Riverine woodland, and 
(6) Hyperthelia vlei grassland (Robertson 2013). 

Spider sampling 

Ground-dwelling spiders were collected using pitfall traps at 
22 sites × 4 herds = 88 sites during the early rainy season 
sampling period (November 2017) and at 22 sites × 3 
herds = 66 sites during the late-summer sampling period 
(March 2018). Herd 7 was not sampled in the late-summer 
sampling period because of the inaccessibility of roads 
caused by heavy rainfall (Appendix Table A1). The 88 
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sites comprised kraaled and adjacent non-kraaled (control) 
plots (Fig. 1). Each herd was considered a replicate, and 
contained approximately 350–396 cattle (Huruba et al. 
2018). At each site, a matched-pair design was employed, 
consisting of two plots, each containing five pitfall traps, 
with one plot inside the kraal and one outside the kraal. The 
pitfall traps in a plot were arranged in a cross (Fig. 2), for a 
total of 880 pitfall traps (22 sites × 4 herds × 10 traps) 
across all sites. Pitfall traps were 10 m apart, and the plots 
(kraaled and non-kraaled) were 50 m apart (Fig. 2). Pitfall 
traps consisted of glass bottles 14 cm deep and 9 cm wide at 
the mouth, filled with 100 mL of 70% propylene glycol, 
placed inside a plastic PVC pipe and buried to their rims. 
Pitfall traps were left open for 14day sampling periods, and 
emptied twice in each sampling period. To reduce seasonal 
influences on spiders (Whitmore et al. 2002; Muelelwa et al. 
2010), sampling was conducted in early summer (November 
2017) and late summer (March 2018), because these are the 
periods when spider activity is considered to be relatively 
high within the savanna region (Muelelwa et al. 2010). At 
the end of each sampling period, the contents of the sam
pling bottles were collected, and sorted. Adult specimens 
were sorted into morphospecies and identified to species 
level where possible, with all the juveniles being identified 
at least to genus level. Spider identification to family level 
was undertaken using the keys of Dippenaar-Schoeman and 
Jocqué (1997), and further to morphospecies by the first 
and third authors. All adult spider specimens collected were 

deposited in the Department of Arachnology, Natural 
History Museum in Bulawayo. 

Micro-habitat variables 

Micro-habitat variables were assessed by placing a 1 m × 1 m 
quadrat over each pitfall trap and taking a photograph. 
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Fig. 1. Map of Debshan Ranch and its location within Zimbabwe, showing the distribution of the 
spider sampling points within each replicate herd (Herd 1, Herd 6, Herd 7 and Herd Nguni) during 
the early (November 2017) and late (March 2018) rainy seasons.    
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Fig. 2. Format used for the arrangement of pitfall traps used to 
sample spider diversity inside and outside the previously kraaled sites 
at Debshan Ranch, Zimbabwe. Pitfall traps were placed 10 m apart 
and at least 25 m from the kraal boundaries.   
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Each sampled pitfall trap was photographed in both 
November and March. Images were visually inspected and 
the percentage cover of the following micro-habitat variables 
was estimated: grass, bare ground, leaf litter, coarse woody 
debris (wood with a diameter >5 cm), cow dung, and rock, 
by utilising the methodology of Dethier et al. (1993). In each 
of the 88 kraaled and adjacent non-kraaled (control) sites, a 
40 m transect was established inside and outside the kraal 
within the plots. Along each transect, 10 grasses approxi
mately 1 m apart were selected and marked with plastic ear 
tags and the tallest vertical point of each grass with the leaf 
blade extended was measured, and mean grass height (cm) 
determined at each site. 

Data analysis 

All statistical analyses were performed using R statistical 
software version 4.1.2 (R Core Team 2021). Data for spiders 
were pooled within a plot, i.e. catches from five pitfall traps 
in a plot within each 14day sampling period were pooled. 
Sample coverage was calculated using the iNEXT package 
(Hsieh et al. 2016), to enable estimation of the percentage of 
total species obtained in a sample. Its inverse counterpart is 
the likelihood that the following sampled individual may be 
a previously unsampled species (Chao and Jost 2012). 

The relationships between micro-habitat structure vari
ables were summarised using principal component analysis 
(PCA). By reducing data, collinearity that hinders interpreta
tion and analysis of ecological data (Graham 2003) is avoided 
while retaining information from such variables. These 
derived variables are then included as predictors in regression 
models (Ellison 2004). The first component (PC1, explained 
variance = 41%) was moderately negatively correlated with 
microhabitat variables such as percentage grass cover 
(−0.52) and mean grass height (cm; −0.46), and positively 
with percentage bare ground cover (0.41; Appendix Fig. A1a). 
The second component (PC2, explained = 16%) was corre
lated positively with percentage rock cover (0.73) and nega
tively with percentage leaf litter cover (−0.60; Fig. A1a). The 
third component (PC3, explained variance = 15%) and was 
positively correlated with percentage coarse woody debris 
cover (0.44), percentage leaf litter cover (0.44) and percent
age rock cover (0.49), and negatively with percentage dung 
cover (−0.48; Fig. A1b). Original variables that were 
strongly correlated with individual PCA axes with a cut-off 
point of 0.4 (Legendre and Legendre 1998) were utilised in 
the discussion of the results (Table A2). 

Factors affecting spider abundance and generic richness 
were modelled using generalised linear mixed models with a 
log-link function, with either Poisson or negative binomial 
distributions, using the ‘glmer’ or ‘glmer.nb’ functions in the 
lme4 package (Bates et al. 2015), depending on the degree of 
over-dispersion of dependent variables. Candidate models 
were subsets of the global model that contained all predictors, 
namely time since kraal removal, PC 1, 2 and 3, and the paired 

treatment (kraaled vs non-kraaled), as well as the interactions 
between treatment and these variables. A quadratic term for 
time since kraaling was also included to account for any 
non-linear responses of abundance and generic richness over 
time. Herds nested within survey were included as random 
factors. Model residuals were inspected for overdispersion, 
heteroscedacity and normality, as well as influential obser
vations (Zuur and Ieno 2016). Model selection was con
ducted using an information-theoretic approach based on 
Akaike Information Criterion (AIC; Burnham and Anderson 
2002). The best model was that with the lowest AIC, but we 
also report on those models that differed by less than 2 AIC 
values from the best model. To determine variation 
explained by fixed factors and that explained by the whole 
model, marginal Rm

2 and conditional Rc
2 respectively were 

also calculated (Nakagawa and Schielzeth 2013). 
Model-based multivariate analysis using generalised lin

ear models with negative binomial distribution and log-link 
functions was used to test for differences in composition 
between kraaling and no kraaling, time since kraaling, 
PC1, PC2 and PC3. This was undertaken using the R package 
mvabund (Wang et al. 2018). This approach accounts for 
confounding mean–variance relationships, which are com
mon in abundance data containing many zeros (Warton 
et al. 2015). The likelihood-ratio statistics for each species 
were summed, resulting in a community-level measure for 
each predictor. The PIT–residual bootstrap method was 
utilised by resampling 999 rows of the dataset to derive 
P-values for the variables (Warton et al. 2017). Model 
assumptions were evaluated by visually examining plots of 
residuals for any non-random patterns. 

Results 

In total, 634 individual spiders in 63 identified species repre
senting 44 genera and 18 families were collected (Table A3). Of 
these, 451 were adults identified to species level, and 183 were 
juveniles identified to genus level. In total, 430 individuals 
were collected in December 2017, and 204 in March 2018. 
The most common families were Lycosidae and Gnaphosidae 
(Table A3). Nearly one quarter of the mature spiders were 
either Allocosa umtalica (Purcell, 1903) (101 specimens) or 
Asemesthes paynteri Tucker, 1923 (61 specimens). The four 
most common species represented 40% of the total spiders 
sampled. One species is possibly new, on the basis of the 
identifications of specialists; 45 species were encountered 
only once. Sample-based rarefaction curves showed higher 
genera richness of spider assemblages in the unkraaled sites 
than in the kraaled sites, although confidence intervals did 
overlap (Fig. 3). Furthermore, sample coverage for both 
the kraaled and the adjacent non-kraaled (control) sites was 
relatively high (>94%), suggesting that sampling captured a 
significant portion of the spider assemblages at Debshan 
Ranch. 
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Effects on spider abundance and generic richness 

Spider generic richness was related to microhabitat variables, 
increasing with PC1RICH (Rm

2 = 0.15, P = 0.1; Table 1), sug
gesting more genera and individuals in sites that have lower 
vegetation cover, i.e. that are more open PC1 (bare ground, 
logs), and have more dung. However, this effect was reversed 
in plots that were previously kraaled, and was particularly 
evident for spider abundance where the interactions of kraal
ing with PC1ABUN (Rm

2 = 0.18, P = 0.05; Table 1, Fig. 4) and 
PC3ABUN (Rm

2 = 0.18, P = 0.1; Table 1, Fig. 4) affected spi
der abundance negatively relative to plots that were not 
kraaled. Furthermore, there was also an effect of time since 
kraal removal, with generic richness increasing with time 
since kraaling (Rm

2 = 0.15, P = 0.1; Table 1, Fig. 4), with a 
non-linear component where there is an overall decrease in 
richness and then a recovery. 

Effects on spider assemblages 

The multivariate generalised linear models showed signifi
cant effects of short-duration kraaling, but those were rela
tively small when compared with that of sampling season 
and time since kraaling on spider genera composition 
(Table 2). In other words, the differences among the spider 
assemblages were more evident between sampling season 
and time since kraal removal than were those observed 
between previously kraaled sites and their surroundings. 
Furthermore, there was a weak but significant effect of two 
interactions, namely, short-duration kraaling interacted with 
both PC1 (bare ground, logs) and also PC3 (dung). Most of the 
genera that responded significantly to short-duration kraaling 
had a negative response, including Diores, Ranops, Thanatus, 
Evippomma and Langona. Only Proevippa responded nega
tively to more open habitat, whereas Ranops and Hermippus, 
in particular, responded positively. The negative response 
of spider diversity to short-duration kraaling is further exem
plified by the presence of several genera that generally were 

less diverse within the short-duration kraaled sites with 
comparable microhabitat characteristics than were those 
found in the control (non-kraaled) plots (Fig. 5). 

Discussion 

Effects of short-duration kraaling 

In line with our first prediction, non-kraaled (control) sites 
were more diverse than kraaled sites. De Keer and Maelfait 
(1988) observed that spiders mostly oviposit or overwinter 
in ungrazed areas to avoid unfavourable climatic conditions. 
Despite the limited variation (18%) explained by the mod
els, even with the random factors (herd nested within sur
vey), there were weak negative responses of spider diversity 
to short-duration kraaling. We found lower generic richness 
and abundance in the kraaled sites than in the adjacent non- 
kraaled (control) sites, with the greatest variation being 
explained by seasons. These patterns were consistent with 
previous studies (Gibson et al. 1992a; Bromham et al. 1999;  
Sebata 2020), which found less diverse spider assemblages 
in grazed areas. Grazing leads to the modification of vege
tation by cattle through trampling (Fuller et al. 2014), 
reducing the suitability of the biotope, because structure 
of vegetation is a key element that affects habitat choice 
by most spiders (Štokmane and Spuņģis 2016; Lafage et al. 
2019) and other invertebrates (Crist et al. 2006). 

Furthermore, most spiders have excellent dispersal powers, 
with many Lycosidae and Gnaphosidae ballooning, especially 
as juveniles (Mrzljak and Wiegleb 2000). Ballooning is a 
‘tiptoe’ behaviour, where an individual straightens its legs, 
balancing on the tips of its tarsi while raising its abdomen, 
thereby releasing a silken dragline in the air, while a drag- 
induced lift of the spider’s body by wind is achieved (Weyman 
1993; Zhao et al. 2017). Ballooning allows dispersal, but 
mainly over short distances (Pedley and Dolman 2014). For 
example, Pardosa monticola (Clerck, 1757) may disperse no 
more than 280 m over its lifetime (Bonte et al. 2003), with 
females able to balloon between 30 and 40 m per day during 
natal dispersal (Bonte et al. 2007). Several negative and posi
tive factors that elicit ballooning behaviour have been 
reported (Weyman 1993), ranging from temperature, humid
ity, wind, vibration, light and stress. Grazing and trampling by 
cattle usually causes vibration that can be detected by the 
spider legs, and may induce ballooning of spiders away from 
the kraaled sites. This suggests that the small differences 
between the inside and outside of kraals may have been the 
result of the high dispersal power by either walking or bal
looning (Weyman et al. 2002), which enabled spatial 
exchange among spider assemblages, because the sites 
among the treatments were separated by only 50 m. 

Beta diversity has been generally defined as the variation 
in species composition of assemblages among sites (Whittaker 
1960), and is determined by two different phenomena acting 
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Table 1. Best models for the relationship between spider generic richness and abundance and its associated predictor variables. Only the models that were within 2 AIC values of 
the best model and predictors that were included in these models are shown.                 

Variable PC1 PC2 PC3 TimeA Time2 KraalB PC1 × Kraal PC3 × Kraal d.f. AICc ΔAICc Weight R2 conditional R2 marginal   

Generic richness  

Model 1 *  n.s. * * † ** *  10  1046.28  0  0.25  0.15  0.07  

Model 2    * *     5  1046.99  0.71  0.17  0.12  0.04  

Model 3 †   * * n.s. *   6  1047.38  1.10  0.14  0.14  0.05  

Model 4    * * n.s.    6  1047.58  1.3  0.13    

Model 5   n.s. * *     6  1047.81  1.52  0.12    

Model 6  n.s.  * **     11  1048.12  1.84  0.1    

Averaged 
coefficent  
(full average)  

0.1  −0.006  0.04  0.09*  0.12*  −0.09  −0.13  −0.09       

Spider abundance  

Model 1 † † n.s. n.s. † n.s. ** *  11  1237.40  0  0.37  0.18  0.1  

Model 2 †  †  † n.s. ** *  10  1237.83  0.43  0.5  0.17  0.09  

Model 3 †  n.s. n.s. † n.s. ** *  10  1238.65  1.25  0.2  0.17  0.09  

Model 4 † †    n.s. ** **  9  1239.35  1.95  0.14  0.16  0.08  

Averaged 
coefficent  
(full average)  

0.23†  0.17  0.05  0.07  −0.2  −0.42**  −0.37*       

ATime, time since kraal removal. 
BKraal, Kraal treatment. 
Significant effects: †P < 0.1; *P < 0.05; **P < 0.01.  
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on spider assemblages, namely spatial species turnover (the 
changeover of species between seasons) and nestedness (the 
loss and gain of species across time; Carvalho et al. 2012,  
2013). Whereas richness differences are determined by the 
net loss (or gain) of species from site to site or from one 
date to another, replacement refers to the substitution of 
species between sites or points in time. Although the contribu
tion of both sources of dissimilarity is usually not disentangled 
(Baselga 2010), the dissimilarity of spider assemblages 

between the short-duration kraaled sites and their surround
ings is most likely due to the change in generic richness and 
abundance. In all likelihood, short-duration kraaled sites do 
not complement the unkraaled (control) sites, but are a 
smaller subset of the species found around the kraals. 

Despite the sampling being conducted in the rainy season, 
seasonality was an important predictor of spider assemblages, 
with a lower spider abundance caught in the late rainy season 
(March) than in the early rainy season (December). These 
findings support those of Muelelwa et al. (2010), who 
recorded higher spider abundance and species richness in 
early summer (November) than in autumn (March). They 
attributed their results to maturing of overwintering juveniles 
and subadults, captured as adults ready for mating during the 
rainy season of the early summer. By the late-summer rainy 
season, most adults have died and assemblages are dominated 
by juveniles (Foord et al. 2008; Muelelwa et al. 2010). 
However, in this study, the differences in spider abundance 
may have been affected by the heavy rains that fell during the 
late summer season, which may have led to a reduction in 
spider activity, as reported elsewhere (Haddad et al. 2015;  
Queiroz and Gasnier 2017). 

Effects of time since kraal removal 

In line with our second prediction, with a U-shaped recovery, 
spider generic richness increased with time since kraaling. 
The lowest generic richness was recorded when cattle occu
pied the short-duration kraals, most probably a consequence 
of livestock trampling, which resulted in the development of 
bare soil (Gibson et al. 1992a, 1992b). Bare soil implies 
reduced raw materials for minerals and nutrients for most 
organisms (Rampai 2017), and has been negatively associ
ated with spider species richness under trees (Barton et al. 
2017). At the time of abandonment, short-duration kraals are 
usually bare and mostly covered by dung above the soil- 
surface layer (Sibanda et al. 2016), which indirectly leads 
to the subsequent increase in grass cover with time since 
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Table 2. Results of model-based analysis of multivariate abundance 
data (mvabund) of the response of ground-dwelling spider 
communities to kraaling treatment (inside vs outside previously 
kraaled inclusions), time since kraal removal (<2, 2, 4, 6, 8 and 
10 months), season (early sampling season (November) vs late 
sampling season (March)) and PC1, PC2 and PC3 microhabitat 
characteristic variables.       

Item Residual 
degrees of 
freedom 

d.f. diff Deviance P   

Intercept  176    

Season  175  1  84.01  0.001** 

Herd  172  3  63.36  0.04* 

Kraal  171  1  29.5  0.02* 

Time since kraal 
removal  

170  1  23.76  0.11 

PC1  169  1  8.96  0.87 

PC2  168  1  14.89  0.41 

PC3  167  1  12.92  0.57 

Kraal: time since 
kraal removal  

166  1  16.42  0.18 

Kraal:PC1  165  1  25.22  0.03* 

Kraal:PC2  164  1  14.04  0.16 

Kraal:PC3  163  1.32  32.47  0.002** 

P-values from *0.05 to 0.01; **0.01 to 0.001.  
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kraal removal (Huruba et al. 2018). Similar to other studies, 
grass re-establishment at Debshan was rapid following kraal 
removal (Reid and Ellis 1995), most probably a consequence 
of nutrient-reserve patches (a consequence of dung and urine 
deposition) that develop in previously kraaled inclusions 
(Augustine 2003). Grass cover can increase faster during 
shorter periods of cattle occupation (4 and 7 day treatments) 
than in corals where cattle occupation was longer (14 and 
28 day treatments), owing to the more hospitable conditions 
of moderate versus excessive cattle waste deposits (Veblen 
and Porensky 2019). In addition, there is usually less grass 
trampling in short-duration kraals, allowing for more rapid 
regrowth after rains than with excessive trampling in long- 
duration kraals. Vegetation structure such as plant height 
can reflect the diversity of potential invertebrate prey and 
habitat for spiders (Gallé et al. 2011), thereby potentially 
supporting the different species composition at each time 
interval. Spiders can benefit from higher grass cover, 
which provides essential services to most invertebrates 
(Gibson et al. 1992a, 1992b); hence, the observed increase 
in spider diversity recorded with time since kraal removal. 

Effects of microhabitat variables 

Contrary to our third hypothesis, spider genera abundance 
and richness did not benefit from greater vegetation struc
ture and cover, but instead, several genera and individuals 
were obtained in sites that had less vegetation cover, i.e. 
areas of bare ground and coarse woody debris. Lycosidae 

have been reported to increase in abundance with increased 
disturbance (Pedley and Dolman 2014). Similarly, in this 
study wolf spiders were sampled at higher densities inside 
than outside kraals, indicating a preference for increased 
levels of disturbance, making this group good indicators of 
these changes (Piacentini and Ramírez 2019). There are 
several possible reasons for this, namely that wolf spiders 
chase their prey at ground level, thereby making open habi
tat the optimal foraging ground. Also, because this groups 
hunts actively by running, warmer and drier ground is 
usually more suitable than the unkraaled plots with usually 
lower numbers of suitable prey (Suominen 1999). 
Furthermore, the most abundant species collected belonged 
to Lycosidae, which are usually found in high numbers in 
open and disturbed habitats (Nyffeler 1999; Mallis and Hurd 
2005), because they are normally the first species to inhabit 
disturbed lands (Pedley and Dolman 2014). For example, 
Pardosa species have been reported to achieve dense popu
lations in open barren lands (Buddle and Rypstra 2003;  
Mallis and Hurd 2005). Here, two species, P. manubriata 
Simon, 1898 (15%) and P. crassipalpis Purcell, 1903 (5%), 
were the second- and third-most abundant lycosid species 
sampled, after Allocosa umtalica (32%). However, since 
sampling took place only within the miombo woodlands, 
further research in other woodland types is recommended, 
to determine their degree of habitat specificity and biomo
nitoring potential. 

In conclusion, diversity and abundance of ground- 
dwelling spiders were enhanced in sites with more bare 
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ground within the miombo woodlands of the Debshan 
Ranch. However, this effect disappeared in sites previously 
kraaled. The differential response of spider assemblages to 
short-duration kraaling in the present study showed the 
importance of structurally complex habitats, essential for a 
wide variety of invertebrates with contrasting life traits. 
Despite the initial decrease in spider fauna because of short- 
duration kraaling, spider richness did show a U-shaped 
recovery, suggesting that the 10 month resting period is essen
tial to ensure recovery of the spider diversity. Further research 
on the impacts of spider assemblages within a broader 
landscape context would contribute to the knowledge on 
short-duration kraaling effects on spider assemblages, and 
help develop management recommendations within south- 
western Zimbabwe. 

Conservation significance and management 
recommendations 

In Zimbabwe, conservation approaches currently consider 
vertebrates and plants, believing that protection given to 
these groups will benefit arthropods such as spiders. This 
approach usually does not provide for the protection of 
threatened and rare spider species (Lovell et al. 2009). 
Spiders contrast in their responses to disturbance, and man
agers may decide to protect spider communities by targeting 
species of concern and implementing species-specific man
agement plans. However, such information requires long- 
term monitoring of spider assemblages within a region, so 
as to provide a complete database of all possible spiders in 
each biotope, which will later contribute to recognising the 
rare, endemic, and threatened species within that region. 
Species need to be ranked according to the effects of grazing 
and trampling of the holistic management approach. 
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Fig. A1. Biplots of (a) PC1 and PC2, and (b) PC2 and PC3 of the principal-component analyses of micro-habitat structure variables measured 
inside previously kraaled inclusions and their surrounding areas at Debshan Ranch, Zimbabwe.  

S. Sebata et al.                                                                                                                                   The Rangeland Journal 

72 



Table A1. Geographic coordinates of each of the 22 sites sampled in each herd at the Debshan Ranch, Shangani, Zimbabwe, in November 2017 and March 2018.            

Site Herd 1 Herd 6 Herd 7A Herd Nguni   

1 No kraaling S 19.69107 E 29.36696 S 19.64025 E 29.28051 S 19.64025 E 29.28051 S 19.65937 E 29.30470 

2 During cattle occupation S 19.67682 E 29.35800 S 19.62839 E 29.26832 S 19.62839 E 29.26832 S 19.66359 E 29.30591 

3 Cattle removed 2 weeks S 19.70195 E 29.37732 S 19.63600 E 29.27242 S 19.63600 E 29.27242 S 19.65645 E 29.30718 

4 Cattle removed 4 weeks S 19.70400 E 29.38647 S 19.64098 E 29.28668 S 19.64098 E 29.28668 S 19.64968 E 29.31193 

5 Cattle removed 6 weeks S 19.70825 E 29.38339 S 19.64497 E 29.28898 S 19.64497 E 29.28898 S 19.64270 E 29.31764 

6 Cattle removed 8 weeks S 19.72186 E 29.39313 S 19.63866 E 29.30556 S 19.63866 E 29.30556 S 19.63724 E 29.32519 

7 Cattle removed 10 weeks S 19.71991 E 20.39707 S 19.64994 E 29.29533 S 19.64994 E 29.29533 S 19.63164 E 29.32266 

8 Cattle removed 12 weeks S 19.71873 E 29.40114 S 19.64422 E 29.30052 S 19.64422 E 29.30052 S 19.63172 E 29.32062 

9 Cattle removed 14 weeks S 19.73152 E 29.39768 S 19.64205 E 29.30202 S 19.64205 E 29.30202 S 19.69245 E 29.32191 

10 Cattle removed 16 weeks S 19.74315 E 29.42289 S 19.62868 E 29.31593 S 19.62868 E 29.31593 S 19.63012 E 29.33309 

11 Cattle removed 18 weeks S 19.73836 E 29.42373 S 19.62694 E 29.31413 S 19.62694 E 29.31413 S 19.63012 E 29.33611 

12 Cattle removed 20 weeks S 19.74376 E 29.42631 S 19.62601 E 29.31075 S 19. 62601 E 29.31075 S 19.63163 E 29.33611 

13 Cattle removed 22 weeks S 19.74297 E 29.41851 S 19.63155 E 29.30695 S 19.63155 E 29.30695 S 19.63722 E 29.33861 

14 Cattle removed 24 weeks S 19.74234 E 29.40565 S 19.62930 E 29.30505 S 19.62930 E 29.30505 S 19.63723 E 29.33862 

15 Cattle removed 26 weeks S 19.74806 E 29.39758 S 19.62251 E 29.30556 S 19.62251 E 29.30556 S 19.63806 E 29.34593 

16 Cattle removed 28 weeks S 19.75067 E 29.40096 S 19.61911 E 29.30643 S 19.61911 E 29.30643 S 19.64313 E 29.35061 

17 Cattle removed 30 weeks S 19.74418 E 29.40181 S 19.61567 E 29.30366 S 19.61567 E 29.30366 S 19.65482 E 29.35157 

18 Cattle removed 32 weeks S 19.74141 E 29.39508 S 19.60712 E 29.29185 S 19.60712 E 29.29185 S 19.64731 E 29.34930 

19 Cattle removed 34 weeks S 19.74192 E 29.39731 S 19.61065 E 29.29114 S 19.61065 E 29.29114 S 19.64973 E 29.34956 

20 Cattle removed 36 weeks S 19.74323 E 29.39994 S 19.62635 E 29.26821 S 19.62635 E 29.26821 S 19.66277 E 29.33269 

21 Cattle removed 38 weeks S 19.73297 E 29.39868 S 19.61976 E 29.27555 S 19.61976 E 29.27555 S 19.65349 E 29.32700 

22 Cattle removed 40 weeks S 19.71975 E 29.38755 S 19.61897 E 29.27895 S 19.61897 E 29.27895 S 19.64792 E 29.33011 

ANot sampled in late-summer (March 2018) because of inaccessibility of roads caused by heavy rainfalls.  
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Table A2. Eigenvectors of PCA Axes 1, 2 and 3 (used in further analyses) for original variables characterising micro-habitat characteristics 
measured at each site.      

Variable PC1 PC2 PC3   

Mean grass height (cm)  −0.46  0.03  −0.08 

Grass cover (%)  −0.53  −0.03  0.06 

Leaf-litter cover (%)  0.30  −0.60  0.44 

Rock cover (%)  0.05  0.73  0.49 

Coarse woody debris (%)  0.36  0.01  0.44 

Dung cover (%)  0.35  −0.05  −0.48 

Bare ground (%)  0.41  0.37  −0.37 

PCA included the variables mean grass height, grass cover, leaf-litter cover. Cut off for important loading was 0.4.  

Table A3. Family composition of the ground-dwelling spider fauna collected from Debshan Ranch, Zimbabwe.        

Family Genera and species Functional group Control Kraal Total   

Ammoxenidae Ammoxenus daedalus Free-living ground dwellers  4  3  7 

Araneidae Neoscona hirta Web dwellers  1  0  1 

Nephila inaurata Web dwellers  2  0  2 

Cheiracanthiidae Cheiracanthium furculatum Plant wanderers  0  1  1 

Cheiracanthium minshullae Plant wanderers  1  0  1 

Corinnidae Copa flavoplumosa Free-living ground dwellers  2  7  9 

Ctenidae Afroneutria velox Free-living ground dwellers  1  0  1 

Gnaphosidae Asemesthes paynteri Free-living ground dwellers  43  35  78 

Ibala minshullae Free-living ground dwellers  0  1  1 

Nomisia varia Free-living ground dwellers  2  6  8 

Trephopoda aplanita Free-living ground dwellers  1  0  1 

Trephopoda parvipalpa Free-living ground dwellers  1  0  1 

Xerophaeus vickermani Free-living ground dwellers  1  0  1 

Zelotes bastardi Free-living ground dwellers  1  0  1 

Zelotes brennanorum Free-living ground dwellers  0  1  1 

Zelotes frenchi Free-living ground dwellers  0  1  1 

Zelotes tuckeri Free-living ground dwellers  1  0  1 

Hersiliidae Hersilia sericea Plant wanderers  2  0  2 

Liocranidae Rhaeboctesis secundus Plant wanderers  1  2  3 

Rhaeboctesis trinotatus Plant wanderers  2  0  2 

Lycosidae Allocosa faberrima Free-living ground dwellers  1  0  1 

Allocosa lawrencei Free-living ground dwellers  5  0  5 

Allocosa marshalli Free-living ground dwellers  0  1  1 

Allocosa schoenlandi Free-living ground dwellers  6  9  15 

Allocosa umtalica Free-living ground dwellers  62  53  115 

Amblyothele ecologica Free-living ground dwellers  1  0  1 

Evippomma plumipes Free-living ground dwellers  1  0  1 

Evippomma squamulatum Free-living ground dwellers  3  0  3 

(Continued on next page) 
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Table A3. (Continued)       

Family Genera and species Functional group Control Kraal Total   

Pardosa crassipalpis Free-living ground dwellers  6  12  18 

Pardosa leipoldti Free-living ground dwellers  3  0  3 

Pardosa manubriata Free-living ground dwellers  30  27  57 

Proevippa albiventris Free-living ground dwellers  2  3  5 

Proevippa fascicularis Free-living ground dwellers  3  0  3 

Schizocosa darlingi Free-living ground dwellers  1  1  2 

Trabea purcelli Free-living ground dwellers  0  1  1 

Zenonina albocaudata Free-living ground dwellers  0  2  2 

Oxyopidae Oxyopes dumonti Plant wanderers  0  1  1 

Oxyopes hoggi Plant wanderers  1  0  1 

Philodromidae Hirriusa variegata Plant wanderers  0  1  1 

Suemus punctatus Free-living ground dwellers  0  1  1 

Thanatus dorsilineatus Free-living ground dwellers  3  0  3 

Tibellus minor Plant wanderers  0  1  1 

Pisauridae Euprosthenopsis armata Web dwellers  0  1  1 

Maypacius roeweri Plant wanderers  1  1  2 

Perenethis simoni Web dwellers  1  0  1 

Prodidomidae Theuma parva Free-living ground dwellers  0  1  1 

Salticidae Euophrys purcelli Plant wanderers  0  1  1 

Hyllus brevitarsis Plant wanderers  0  1  1 

Langona bethae Free-living ground dwellers  3  3  6 

Pellenes bulawayoensis Plant wanderers  0  1  1 

Pellenes tharinae Plant wanderers  1  1  2 

Stenaelurillus guttiger Free-living ground dwellers  19  5  24 

Stenaelurillus termitophagus Free-living ground dwellers  37  21  58 

Segestriidae Ariadna corticola Web dwellers  0  1  1 

Selenopidae Selenops kruegeri Plant wanderers  0  1  1 

Sparassidae Olios correvoni Plant wanderers  2  1  3 

Olios freyi Plant wanderers  1  0  1 

Panaretella minor Plant wanderers  1  1  2 

Zodariidae Capheris fitzsimonsi Free-living ground dwellers  1  0  1 

Diores magicus Free-living ground dwellers  2  1  3 

Hermippus loricatus Free-living ground dwellers  1  0  1 

Hermippus tenebrosus Free-living ground dwellers  2  1  3 

Ranops caprivi Free-living ground dwellers  4  0  4 

Total number of species  45  38  63   
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