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Abstract

We present two results in an investigation of reflection and diffraction of atoms by gratings
formed either by standing or travelling evanescent laser waves. Both results use the bare-state
rather than dressed-state picture. One is based on the Born series, whereas the other is based
on the Laplace transformation of the coupled differential equations. The two solutions yield
the same theoretical expressions for reflected and diffracted atomic waves in the whole space,
including the interaction and the asymptotic regions.

1. Introduction

The reflection and diffraction of atomic de Broglie waves by laser radiation
have attracted increasing attention in the developing field of atom optics (Cook
and Hill 1982; Balykin et al. 1988; Hajnal and Opat 1989a, 1989b; Deutschmann
et al. 1993; Zhang et al. 1992; Murphy et al. 1993; Stenlake et al. 1994). Atomic
mirrors and gratings formed by evanescent laser waves are expected to be used
as optical elements in highly sensitive atom interferometers (Hajnal and Opat
19894, 1989b). Experimental and theoretical studies of the characteristics of
such optical elements have been carried out (Hajnal and Opat 1989a, 1989b;
Deutschmann et al. 1993; Murphy et al. 1993; Murphy et al. 1994). A schematic
of such a grating is shown in Fig. 1.

The original treatment by Cook (Cook and Hill 1982) was semiclassical.
Fully quantum mechanical analysis of the reflection and diffraction of atomic
de Broglie waves has been undertaken by several authors (Hajnal and Opat
1989a; Deutschmann et al. 1993; Murphy et al. 1993, 1994). The dressed-state
approach (Deutschmann et al. 1993) gives great insight into the mechanisms of
reflection and diffraction and, with the aid of multi-slice techniques (Murphy et
al. 1994), has yielded results consistent with experiment (Stenlake et al. 1994).
The successful dressed-state method may be understood as follows. To reflect
atoms, a strong laser beam is required to form a high potential barrier for the
incoming atomic de Broglie waves. However, the strong laser field also causes a
large amount of Rabi oscillations at a frequency proportional to the amplitude
of the laser field. As Rabi oscillations represent energy exchanges between the
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atoms and the laser field, it is also accompanied by high-speed atomic population
changes between different diffraction orders (defined by the atomic momentum
states, i.e. bare states). The behaviour of the atomic populations is complicated
and thus makes direct numerical calculations using the bare-state description
difficult. In the dressed-state description, the atomic states are redefined to
include the high-frequency Rabi oscillations. As a result, the populations of such
‘dressed atoms’ will show less complicated variations in the interaction region
and the numerical calculations are much easier than in the bare-state case.
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Fig. 1. Schematic diagram of the atomic reflection grating. The grating consists of an
evanescent wave produced by total internal reflection of two counter-propagating laser beams.

On the other hand, in the dressed-state description the populations of each
diffraction order are not explicitly expressed in the interaction region. Instead, a
mixture of them is included in the dressed states, and the reflected and diffracted
atoms of each diffraction order are obtained by the asymptotic solutions of the
dressed states in the region where the atom-field interaction disappears. If we
go to the inside of the interaction region, populations of each diffraction order
can only be obtained under a bare-state description.

The dressed-state and bare-state descriptions are complementary. In the
asymptotic region, each description has states corresponding to the various
diffraction orders. However, in the interaction region they are quite different; this
fact allows us to study the diffraction mechanism from different points of view. In
the dressed-state description, quasi-potentials are defined for each state, enabling
us to study the trajectories of the atom along the quasi-potential curves within
the interaction region. On the other hand, in the bare-state description each
state is defined by a particular momentum (or wave number) in the z direction
(Fig. 1), providing us with a way to study the problem in the momentum space.

In this paper we base our studies on the bare-state picture. The traditional
Born series (Hajnal and Opat 1989a) is used to solve both the standing and
travelling wave gratings. A solution for the travelling wave grating problem,
based on a Laplace transformation method, is also given and is compared directly
to the Born-series calculation.
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2. Atom-Field Interaction Model and Coupled Differential Equations

Fig. 1 shows schematically the atomic mirror considered in this paper. A laser
beam inside a quartz block is totally reflected at the quartz-vacuum interface
with an angle ¢ larger than the critical angle. Thus on the surface of the quartz
block an evanescent travelling wave is produced. Two such counter-propagating
laser beams produce an evanescent standing wave. In the case of an evanescent
standing wave, the wave vector is given by Qi+ iqj with

« = (w/c) Nsind, q = (w/c) (N?sin%0 — )7,

and the electric field can be written as

E(t,z,y) = exp(—qy) {Eoexp i(wt — Q)] + Egexpli(wt — Q1))
T Egexpli(wt + Quz)] + Egexpli(wt + Qua)]} -

Here, the electric field E of the laser beam is assumed to be linearly polarised
in the z direction with E = kE. We consider the de Broglie wave of a two-level
atom whose level spacing is near the laser frequency. Its incoming momentum
is Py = (hky, hik,). We ignore the motion in the z direction where the atomic
momentum is constant. The wavefunction in the Schrodinger picture may be
written in the rotating wave approximation as

U(t,z,y) = Y exp(—iQot) exp[(i(kz + nQ:)2)dn(y) Ye

neven

Z exp[—i(Qo + w)t] exp[i(ke + 1Qz)T]dn(Y) Ve , (1)

nodd

where the initial energy fiQ0 = (h? 2M)(k2 + k2), and w is the angular frequency
of the laser beam. Here, vy and 1), are the 1nterna1 atomic ground and excited
states. The function ¢,(y) for even n in the first term represents the spatial
dependence of atomic waves with the atom in the ground state, and for odd n
in the second term, that of atomic waves with the atom in the excited state. To
solve for ¢,(y) for various orders n forms the main work of this paper.

The Hamiltonian governing the motion of the atom is given by

. . P2
H=H,+— —LAE, 2
+oup A (2)

where H, is the Hamiltonian of the atomic internal energy, P is the atomic
momentum, and /i is the electric dipole moment operator.

The Schrodinger equation i7(0/0t)¥ = HV leads to the following differential
equations coupling the wave functions ¢, (y) of different diffraction orders (Hajnal
and Opat 1989a):

2
(&5 + 8 )ont) = -2 cploqlbuna() + 6], @)
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where

k2, = k2 + k2 — (k, +1Q.)%,  (n even)

2M
k2, = k2 + k2 — (ks +1Q,)% + —(@-w),  (nodd)

and we set u = (a|i]b) = (b|i|a), and Ey = E3. Further, w, is the atomic
transition frequency, and M is the atomic mass.

3. Solution Based on Born Series—Standing Wave Case
With the Green function

Gn(?/? yO) = exp(ikyn]y - yOl) s

2ikyn

which satisfies an outgoing wave boundary condition, the differential equations
(3) can be transformed to the following integral equations (Hajnal and Opat
1989a):

$n(y) = bno exp(—ikyoy) (4)
_ 2M,U,E0 1
R? 2iky,

/O exp(ikyn ]y — 0/)exD (—g30) [ns1(¥0) + Sn—1(30)] dyi

The first term represents the incoming de Broglie wave, and the second term
represents the outgoing scattered waves. We solve equation (4) with the Born
series method, which starts with a weak-field assumption. Here the incoming wave
is in the ground state ¢o(y) = exp(—ikyoy). When the field E; is weak enough,
the scattered zero-order wave contributes much less to the whole zero-order wave
compared to the original incoming wave. Therefore, one can assume that the
zero-order wave is approximately given by exp(—ik,oy), and use it as a source to
generate scattered waves ¢1(y) and ¢_;(y). These scattered waves become new
sources for the generation of waves ¢, 2(y) and ¢_5(y), as well as for higher-order
contributions to the zeroth-order wave ¢o(y). The newly generated ¢o(y) includes
both an outgoing wave component exp(ikyoy) and an incoming wave component
exp(—ikyoy). Repeating such processes, we obtain ¢, (y) in the form of Born
series:

N}, N, Nb
$n(y>0) = Burexp[(=bg —ikyo)yl + > > anapexp|(—bq + ikya)y]. (5)
b=0 a=—N, b=0

Here the index a corresponds to the wave number k,, in the y direction which
contributes to the nth-order wave ¢, (y) through scattering in the interaction
region. These waves do not contribute uniformly throughout the interaction
region. The damping term exp(—bgy) becomes sharper with increasing b. We
show in the next section that for the case of a simple travelling evanescent waves
the coefficients B,; and anq, converge at large b. Hence we set an upper limit
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N, for the index b. We also set a lower limit —N, and an upper limit +Ng for
the index a (i.e. we limit the waves considered in a given calculation).

Instead of performing the iteration as stated above (which was carried out
in Hajnal and Opat 1989a), we can calculate the coefficients Bns and qpap bY
solving the following two sets of coupled linear equations, which satisfy the
integral equations (4) or the differential equations (3),

Brb = Bub(Brt1,6+41 + Brn-1,6-1)s (b=1,...,Np),
/BnO = 5n0» (b = 0) ) (6)

and

Qnab = Anab(an+1,a,b—1 + an—l,a,b—l) (b =1,..., bea = _Naa ceey Na) s

anaozanéna (b:O7’l=_Na7~-~aNa)7

Nb Na Nb
Qp = Z Xob /Bnb + Z Z Yiab Anaby (b =0,a= 0) ) (7)
b=1 a=—N, b=1
where n = —Ng,..., Ny, 1= 2M,uE0/h2 and
_n? 2
Bnb = U Anab = il

kyn + (—ikyo — bg)*’ Kyn + (ikya —bg)*’

_ bg + itkyo — tkyn Y, = bq — ikyq — tkyn

X,
b ikyn 2ikyn

(8)

Equations (6) for B0 and (7) for auqo arise from the boundary conditions.

As y approaches infinity, the damping terms disappear, and equation (5)

becomes
Jim ¢n(y) = éno exp(—ikyoy) + anexp(ikyny) - 9)
Thus, o, gives the amplitude of the nth-order reflected wave.

We notice that the coefficients a4, are not involved in equations (6), so we can
solve them in two steps. First, on solving the set of (N, 4+ 1)(2Ng + 1) equations
in (6), we get the solution for all the (N, +1)(2Ng +1) coefficients of B,p. This
can be done by calculating an inverse matrix of the size [(Nj + 1)(2Na + 1)]?
numerically. With the result for 8,5, we can then solve all the ayqp in equation
(7) in the same way but for a larger matrix of the size [(Ny +1)(2Na + 1)2)2.

Finally, disregarding the presence of the quartz block for a moment, we may
also calculate the outgoing waves in the region y < 0, produced by scattering
in the interaction region 0 < y < 1/q. We suppose that such waves go into the
quartz block and are completely absorbed without any reflection into the region
y > 0. Such an assumption was made in equation (4) (Hajnal and Opat 1989a).
From the original integral (4) and equation (5), we find

(/)n(y) = 6noexp(—iky0y) + ﬁnexp(—ikyny) (y < 0) s (10)
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where

a

N, Ny
D > Yoo Cnan, (11)

a=—N, b=1

Ny
ﬂn = Z X,:bﬂnb +
b=1

X_ — bq + ik‘yo + Zkyn

nb 2ikyn ’
bg — ikyq + ik
Y-, = ——2 v 12
nab 2Zkyn ( )

and Bpp and angp are those in equations (6) and (7).
The above analysis reduces to the travelling wave case if we limit the waves
to only the zeroth and first orders by making the change

1

a=—N,

This Born series method has the weak-field assumption built in from the
outset. It is questionable whether it can be extended to the strong-field case
(as is required for the reflection of the atom) by including terms of sufficiently
high order in the Born series of equation (5) (i.e. sufficiently large Ny). We
will address this question in the next section by solving the original equation
(5) analytically for the simple travelling evanescent laser wave case. It will be
shown that the same wavefunction of (5) is also obtained from the Laplace
transformation method (which does not depend on the weak-field assumption).
Therefore, we might expect that the Born series method is applicable also to
the strong-field standing wave case if a sufficiently large number of terms are
included in equation (5).

4. Solution with Laplace Transformation—Travelling Wave Case

In this section we present the results of a Laplace transformation method; for
the derivation and further mathematical properties of the solution the reader
should consult Witte (1994). For a mirror formed by evanescent travelling waves,
we have only two diffraction orders, 0 and +1 (or —1 depending on the relation
between the directions of the atomic and laser beams) and equation (4) becomes

d2
(@5 + k?)) do(y) = —nexp(—qy) ¢1(y),

d2
(@5 + k?) $1(y) = —n° exp(—qy) do(y) (13)

where ko = kyo and ki = k1.
In the interests of simplicity the following scalings have been made:

ko El v=1

1
= —— , Z = 2 , = -, = 5 - .
¥(z) 57 #(y) qy Ho =5 =g %
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The solution for to(z) (the other component is simply related to this one by
symmetric interchange of arguments) was found to be (Witte 1994)

b= % {Fl ot xpl(—L — i10)2] + Py i expl(—1 + ifio)]

m=0 [=0

+F3 mexp[(—=l — % —ip1)2] + Fy miexpl(—1 — -%— + iul)z]} , (14)

where
Y
Fi i = Fi mi(po, p1) = V4™ m(m—%_—)ﬁ
N { ¥o(0)
(—1 = 2ip0)m (=1 + & —ilpo — pa])m (1 + 3 — ilpo + p1])m
B V24, (0) }
(= = 2p0)mr1 (=1 + £ —i[to — pal)mr1 (=1 + 3 = ilko + 1 Dm
Y
Fy i = Fa mi(po, p1) = V4™ ﬁ%—,
« { Po(0)(m — 1)
(=1 + 2ip0)m41 (=L + 5 +i[no — p])m (=1 + 5 +ilso + p])m
_ V2 1(0) }
(=1 + 2ipt0)mt1 (=1 + 3 +i[po — p1])m (=1 + 2 +ifpo + mmar )
Y
F3 i = F3 mu(pio, p1) = V4™ l—'-z(m_l—)_ﬁ
y { ¥o(0)(m — 1)
(—1 = 2ip1)m (=1 = & +i[po — pa])mt1 (=1 = 5 —ilpo + t])m
_ V24,(0) }
(—1 = 2ip)m (-1 — 5 + i[liol— ) ma (1 — 5 —ilpo + p1)mar )

-1
Fy mi = Fymi(pio, 1) = V4™ (1)

i(m —1)!
y { Yo (0)(m —1)
(=14 2ip1)m (1 — 5 — i[uo — pa])m (=1 — 2 +ilpo + p1))mi1
) V246, (0) (m — 1) }
(—l + Qiﬂl)m+1 (—l - % - i[,U«O - Hl])m-i—l (_l - % + i[,uo + P’l])m+1 '

(15)

and (@) =z(z+1)(z+2)...(x+m—1).

In order to compare equation (14) with equation (5), we change the order of
the summations over m and l. Thus (14) can be written in a similar form to
equation (5) as
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%aﬁo(y > 0) = Yo(2)

=3 { Fuyexp|(—2ql — iko)y] + Fo exp(—2ql + iko)y] (16)
=0

+Fy exp[(—q(2l + 1) — ik1)y] + Fy exp[(—q(20 + 1) + ik; )y] } ,
with

Fu = Fua(po, 1) = D Frmi(pto, 1),  k=1...4. (17)

m=l

The summations in equation (17) should converge for fixed Ho, 1,V and [ at
large values of m, i.e. (m—1) > V. This is ensured by the coefficient V" /(m — I)!
appearing in F,, and by the denominators, which grow factorially. Furthermore,
l! appearing in the denominators in (15) ensures the convergence of the coefficients
Fy; in (16) at large values of .

Exchanging pio and py (or ko and k1) in ¢o(y), and the positions of ¢o(0) and
#1(0), in equation (15) we get the solution for ¢;(y) as

[e o)

510> 0) = Y {Guel(-2a — )yl + Guespl-2al +iky] (1)
=0

G expl(~a(2l + 1) — iko)y] + Carexpl(—g(2l + 1) + iho)y] } ,

with
le=Fk[(0<—>1), k=1...4. (19)

In equations (16) and (18), the numbers 2! and 2/ + 1 correspond to the
number b in (5). We notice that in (16) and (18) there are additional terms for
the wave exp(—ik1y) in comparison with (5). The existence of such higher-order
waves propagating toward the quartz surface seems to be reasonable. Indeed, if
we add terms SB,1p exp[(—bg —ik1)y|, (n =0,1) to (5), it still satisfies the original
integral equation (4). However, it is interesting that we find that the initial
condition B,19 =0 leads to Bn15 = 0 (for b > 1), which means that terms like
Brib exp[(—bq — ik1)y] exist neither in ¢o(y) nor in ¢;(y). Thus, we can say that
in equation (16)

F3=0 and Gy =0, (20)

for all I > 0.

Equation (20) may also be proved by substituting the wavefunctions of (16)
and (18) into the original differential equations of (13). Also, corresponding to
the index b given by equation (5), we have either an even number 2! or an odd
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number 2/ +1 in (16) and (18). It may be easily proved that the number b in
(5) (in which a =0,1 only, for a mirror formed by travelling waves, as opposed
to the standing-wave case where a € [~Ng, +N,]) will also be either even or odd
for a fixed value of the index a. Therefore, the wavefunctions of (16) and (18)
derived from the Laplace transformation are identified with those of equation (5)
based on the Born series.

In the asymptotic region y — oo, only the non-evanescent terms survive. Thus,
as y — oo, equations (16) and (18) become

Yo(2) = Fio exp(—ikoy) + Fao exp(+ikoy)
P1(2) = Gro exp(—ik1y) + Goo exp(+ik1y) - (21)

We notice that there are two unknown coefficients 1o(0) and 11 (0) still involved
in Fio, Fa, G1o and Ggo in equation (21), as can be seen from (15) and (17).
These can be determined by the boundary conditions that we have only an
incoming wave in the ground state:

FlO = 1, and GlO =0. (22)

Here the second one is also included in equation (20). In (21) the terms exp(+ikoy)
and exp(+ik,y) represent the reflected de Broglie waves, and the amplitudes Ro
of zeroth-order and R; of first-order reflected waves are given by

Fy = Ry, Gy = Ry . (23)

After simple algebraic calculations for (22) and (23), it was found (Witte 1994)
that the reflection coefficients are

_ SpoWoi— SuWeo
S_OW_l - S_IW_O ’

B WaolWor =W Woo
LT T W — S W,

Ry

where in our notation we have set
Fio = S_0%0(0) + S_1v1(0),
Fao = S10%0(0) + S4141(0),
Gro = W_o¢0o(0) + W_191(0),

Gao = Wio9o(0) + Wi191(0) . (25)
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Definitions (15) and (17) give

S_o = S_o(po, p1)

_ i yam 1

S mb (=2ip0)m (5 — ilpo — p1])m (3 — iluo + p1])m |

S_1 = 5_1(po, p1)

et V4m __V2
B ,,;0 ml (=2ip0)m+1 (3 — ilko — p1])m1 (5 — o + p1])m

S+0 = Sio(po, p1)
s V4m

-5

= mb (i)t (5 4 ifro — pa])m (3 + i[so + 1))

m

Sy1 = S41(po, p1)

oo V4m _V2
= - - - , 26
2‘:‘0 ml (2ip0)mt1 (5 + 1o — pa])m (3 + ilko + 1)) m41 26)

and

W_o = S_1(p1, o), W_1 = S_o(p1, o),

Wio=S41(p,0),  Wir = Sio(pr, o) - (27)

And the solution, as expressed by equation (14), is completed by giving explicit
forms for the set of amplitudes that arise in equation (15), namely
— W,

S W - S W,

— —Woo

S oW1 - S W'

0(0)

$1(0)

(28)

5. Conclusion

The results obtained using two different bare-state methods for the investigation
of reflection and diffraction of atomic de Broglie waves by evanescent laser waves
have been presented. The Born series for the diffraction and reflection of atomic
beams from a standing evanescent wave was derived and expressions for the
solutions in the bare-state picture were obtained for the whole space including
the interaction region and the asymptotic region. Of particular interest is the
question of convergence of the series in the strong-field case. The simpler case of
a travelling wave grating was considered in both the Born series approach and a
direct solution by Laplace transformation, which is valid for all field strengths.
The two methods give the same form of the wavefunction, indicating that the
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Born series approach can be extended to strong fields, for the travelling wave case.
We foresee no reasons why this observation will not be valid for the standing
wave case.

To test the convergence of the Born series for the standing wave case a great
deal of numerical work must be undertaken. Such calculations will supplement
numerical calculations based on the multi-slice method, in which the interaction
region is divided into slices and the coupled differential equations (3) are solved
with the assumption that the laser light intensity is constant inside each of the
slices (Murphy et al. 1993, 1994). Thus the quantum mechanical analysis of the
standing evanescent wave grating is nearing completion.
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