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Abstract

Optical intensity noise in a light source easily degrades the sensitivity of a shot-noise-limited
interferometer which is directly detecting low frequency phase or displacement variations. In
this paper we describe and compare two experimental methods in which we use high frequency
optical phase modulation to shift low frequency phase signals in an interferometer to a shot noise
limited region of the photocurrent spectrum. This phase modulation is applied either within
the interferometer arms—internal modulation—or in a local oscillator beam tapped off the main
interferometer and coherently recombined with the interferometer output—ezternal modulation.
The photocurrent is mixed electronically with the high frequency modulating waveform to
extract the signal information free from laser intensity noise. In our experiments, we have been
able to detect interferometrically low frequency signals with true shot-noise-limited sensitivity.
We find, theoretically and experimentally, that the interferometric sensitivity achievable in
each scheme depends critically on non-ideal factors, such as imperfect interferometric fringe
contrast and electronic noise in the detectors or amplifiers. This paper examines the relative
merits and operating requirements of both modulation schemes in practical interferometers.

1. Introduction

Optical interferometry has long been recognised (e.g. Michelson and Morley
1887) as one of the most effective methods to obtain measurements of displacement
and other optical path length variations in a medium accurate to a small fraction
of an optical wavelength. In recent years, the quest to detect gravitational
radiation using large-scale Michelson interferometers (Weiss 1972; Hough et al.
1989; Sandeman and McClelland 1990; Vogt 1991; Brillet et al. 1992) is pushing
the technology of optical phase detection to new realms of sensitivity.

The simplest and most widely implemented scheme of two-beam interferometry
is known as direct detection (photon counting): Differential phase variations
between the two light beams interfering at the final beam combiner, caused
by movements of the mirrors for example, are sensed directly via changes in
photocurrent caused by intensity variations induced in either or both of the
output beams (Born and Wolf 1980).

The inherent sensitivity of an interferometer is determined by its achievable
signal-to-noise ratio. We may define the phase sensitivity of a given interferometer
at a particular signal frequency as the minimum phase oscillation amplitude at
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that frequency capable of producing a signal-to-noise ratio of unity at the output.
The signal-to-noise ratio depends in turn on the response of the interferometer to
phase variations between the interfering beams, and on the nature and magnitude
of the optical noise in the interferometer at the signal frequency.

The ultimate limit to the phase sensitivity of an interferometer in the direct
detection scheme is set by the Heisenberg Uncertainty Principle. Quantum
mechanical noise manifests itself in two ways in an interferometer (Caves
1980, 1981; Loudon 1981): Fluctuations in the number of photons emerging
from the instrument (photon counting error), and radiation pressure-induced
fluctuations on mechanical components of the device (radiation pressure error).
At currently available laser powers, the radiation pressure error is negligible, and
the photon-counting error limits the phase sensitivity of an ideal interferometer
in practice.

While a rigorous quantum mechanical treatment is required to describe fully
the origins and manifestations of quantum noise in an interferometer, it turns out
that a simple phenomenological model of the photon counting error is sufficient for
our purposes, and provides the same basic sensitivity predictions. In the analysis
to be described in this paper, the photon counting error appears as ‘shot noise’,
a Poissonian statistical variation in the photocurrent which scales in proportion
to the square root of the detected light intensity, and which possesses a flat noise
spectrum (Bachor and Fisk 1989; Bachor and Manson 1990). Over most of the
frequency spectrum, this is an accurate description applicable to interferometers
operated with lasers, LEDs or bright incandescent sources. Interferometers
operated with ‘squeezed states’ of light (Caves 1981; Gea-Bannacloche and Leuchs
1986, 1987; Xiao et al. 1987) require a detailed quantum mechanical analysis to
predict their sensitivity, and will not be considered in this paper.

The large photon number flux generally detected in an interferometric
measurement ensures that shot noise fluctuations are very small compared to the
DC photocurrent. If all other sources of noise in the interferometer are made
negligible (not a straightforward task), true shot-noise-limited interferometry
becomes possible, permitting extremely fine phase resolution.

Operating with quantum-noise-limited sensitivity also achieves an intensity-
scaling advantage: Increasing the input light intensity increases signals proportion-
ally, but shot noise only increases as the square root of the input intensity, so the
shot-noise-limited phase sensitivity improves as the inverse square root of the input
intensity. It may not be possible to exploit direct increases in the input intensity
due to limited power available from the light source, but the intensity-scaling
advantage just described may be realised through the use of ‘optical recycling’
techniques (Drever 1983; Meers 1988; Vinet et al. 1988; Strain and Meers 1991;
Fritschel et al. 1992) which effectively boost the input power by using a mirror
to return to the interferometer light otherwise wasted at an unused output port.

Shot noise is not the only optical noise contribution in interferometric sensors,
generally. Most light sources used in interferometry exhibit intensity fluctuations,
particularly at low frequencies, known as technical noise (or alternatively classical
noise or relative intensity noise). This type of noise appears just like a signal
in the photocurrent, in direct proportion to the detected light level, so the
intensity-scaling advantage just described is lost at signal frequencies where
technical noise dominates.
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Fig. 1. Typical laser intensity noise spectra obtained from a Nd:YAG non-planar ring laser
(‘MISER’ ) with 17-5 mW of optical power detected on a standard InGaAs detector: A, the
intensity noise output of the free running laser system; B, the intensity noise output with
opto-electronic feedback control; C, the standard shot noise floor for identical photocurrent
and receiver bandwidth as used in A and B, obtained with a quiet incandescent source (some
electronic detector noise is evident at frequencies below 0-1 MHz); and D, the electronic noise
floor of the detection system with no light on the detector. (Reproduced with permission
from Harb et al. 1994.)

Technical noise is either narrowband or broadband in nature, but tends to be
more prominent at low frequencies where it may be orders of magnitude greater
than the shot noise. In particular, many solid state lasers exhibit a very strong
relaxation oscillation at low frequencies, driven by random internal processes
(Yariv 1985). Measurable intensity fluctuations may persist at low frequencies
in spite of elaborate measures taken to stabilise the source (Robertson et al.
1986; Kane 1990; Hough et al. 1991; Harb 1991; Tsubono and Moriwaki 1992;
Rowan et al. 1994). Fig. 1 (Harb et al. 1994) shows photocurrent noise spectra
obtained from a diode-pumped Nd:YAG non-planar ring laser operating at around
17-5 mW, running free and running with feedback stabilisation, compared to the
shot noise spectrum associated with the same average photocurrent. Below a
few MHz, the relaxation oscillation dominates the flat shot noise floor in the
free-running laser. Even with intensity stabilisation active, the residual technical
noise still dominates shot noise out to at least 5 MHz.

The standard technique to overcome technical noise in the direct detection
scheme is by common-mode cancellation: The interferometer is operated exactly
midway between the bright and dark fringes, both output ports of the final
beam combiner are detected and one photocurrent is subtracted from the other.
Technical noise from the light source, being common to both outputs (correlated),
is cancelled. Differential phase signals in the interferometer produce intensity
variations out of phase (anticorrelated) at each detector, and are recovered by
the subtraction process. Shot noise, however, is completely uncorrelated at the
two outputs for quantum mechanical reasons and is therefore not susceptible to
common-mode cancellation.
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When shot noise is taken into account in the direct detection scheme, the
balanced detector operating condition is no longer found to be optimal. Rather,
setting the interferometer very closely to a dark fringe and detecting only that
output results in the optimum sensitivity in the limit of the ideal interferometer.
While this may appear paradoxical, we have already shown analytically and
experimentally (Stevenson et al. 1993) that operating near the dark fringe minimises
technical noise, shot noise and signals in such a way that the signal-to-noise ratio
is maximised. In a direct detection demonstration, we were thus able to achieve
shot-noise-limited sensitivity using a reflective polarimeter to sense electric and
magnetic fields.

Direct detection interferometry reveals a serious drawback when unrelated
noise is present, for example, electronic noise in the detector and amplifiers, or
unwanted shot noise due to transmission of light at imperfect dark fringes. To
optimise the signal-to-noise ratio in the presence of unrelated noise, it is necessary
to detune the interferometer significantly from the dark fringe condition. The
resulting extra optical transmission reintroduces technical noise from the light
source, which can prevent shot-noise-limited measurements at low frequencies.

Phase modulation interferometry is a useful technique to circumvent this
technical noise problem encountered in direct detection interferometry and achieve
true shot-noise-limited phase sensitivity at low signal frequencies. The basic
scheme is to impose high frequency phase or frequency modulation on the
light, either within or outside the interferometer, to frequency-shift the phase
signals from low frequencies into a shot-noise-limited region of the photocurrent
spectrum. This has the side-effect of frequency-shifting the technical noise also.
Because the technical noise is correlated in each beam while signal information
is anticorrelated, operating the interferometer exactly on a dark fringe cancels
optically the frequency-shifted technical noise while retaining the frequency-shifted
signal information. The baseband signal information is extracted or ‘demodulated’
by multiplying the resulting photocurrent with the original modulating waveform
and low pass filtering to remove higher harmonics. Dark fringe operation has
three important effects in phase modulation interferometry:

(i) the demodulated signal is maximised;
(ii) the demodulated technical noise is suppressed; and
(iii) the shot noise is minimised.

In recent years, phase modulation techniques have received attention in a variety
of interferometric sensing applications ranging from microscopic surface profiling
(Sasaki and Okazaki 1986), electric and magnetic field measurements (Heinrich
et al. 1986; Weigarten et al. 1988; Stevenson et al. 1993) and displacement
measurements (Yoshino et al. 1987). In this paper we discuss two particular
RF modulation techniques, internal modulation and ezternal modulation (Weiss
1972; Hello 1990; Man et al. 1990; Strain 1991; Fritschel 1991; Stevenson et
al. 1993), which have been investigated for their potential use in interferometric
gravity wave detection, and can be usefully employed in other interferometric
sensing applications to overcome the effects of technical noise in light sources
and enable shot-noise-limited interferometry. The primary objective of this paper
is to inform other potential users of high-sensitivity interferometry about these
useful new techniques.
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In recent experiments in our own laboratories (Stevenson et al. 1993; Gray et
al. 1995), we have successfully demonstrated that both the internal and external
modulation schemes are capable of suppressing technical noise from the light
source by many orders of magnitude. Recently, using external modulation in
conjunction with a Michelson interferometer, we achieved true shot-noise-limited
sensitivity at frequencies where technical noise completely dominates the direct
detection photocurrent spectrum.

In part, this paper reviews the material covered in Stevenson et al. (1993)
and Gray et al. (1995), with a view to comparing the two modulation schemes
theoretically and experimentally. In Section 2 we describe the generic internal and
external modulation configurations used in our analytic models, and compare their
inherent sensitivities when non-ideal practical considerations, such as imperfect
interferometric fringes and electronic detector noise, are taken into account.
Section 3 describes our benchtop experiments which we performed to verify our
simple analytic models of phase modulated interferometers, and outlines some
important practical implications of these experiments. We discuss in Section 4
some broader issues which may affect the choice of scheme to be used in practice,
and in Section 5 we present our conclusions.

2. Internal and External Modulation Interferometry:
Physical Description and Analytic Results

(2a) Internal and External Modulation Configurations

The two generic modulation schemes to be compared here apply also to other
interferometric configurations (e.g. Mach-Zehnder, Polarimeter, etc.) but here,
for illustration, we consider mainly the Michelson configuration. The measured
‘signal’ is a differential phase variation or optical path difference between two
arms induced by any mechanism or transducer (e.g. mirror displacement changes,
refractive index or birefringence changes in an electro-optic crystal etc.).

Internal modulation: Electro-optic crystals (Pockels Cells) phase modulate
the light within one or both interferometer arms, superimposing a high-frequency
oscillation in the differential phase on the existing low-frequency differential
phase signal. A broadband photodetector senses both slow (baseband or signal)
variations and fast (modulation frequency) oscillations in the intensity at the
output. Fig. 2 shows the generic configuration for the internal modulation scheme.

External modulation: This configuration separates the tasks of signal and
high-frequency phase modulation into two locations. The Michelson interferometer
hosts the low-frequency differential phase signals again, but in this scheme, the
electro-optic crystal imposes its high-frequency phase modulation onto a local
oscillator beam, tapped off a convenient beam in the system (e.g. the Michelson
input beam). A second beam combiner coherently superimposes the rapidly
modulated local oscillator beam and slowly modulated Michelson output beam
onto a pair of detectors. This constitutes a Michelson interferometer within
a Mach-Zehnder interferometer. Fig. 3 shows the generic external modulation
arrangement.

We now consider each modulation configuration to illustrate how the low-
frequency signal of interest is shifted into the high-frequency regime and subsequently
demodulated.
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Fig. 2. Generic internal modulation configuration described in this paper.

(2b) Signal Extraction in the Internal Modulation Scheme

Consider the basic Michelson interferometer in both of the modulation schemes
of Fig. 2 and Fig. 3. The end mirrors exhibit an average reflectivity of R, say,
where 0 < R <1, and the interferometer is characterised by a fringe ‘visibility’
V = (Pmax — Pmin)/(Pmax + Pmin), where Ppa.x and P, are the maximum
and minimum detected output powers at the bright and dark fringes respectively
(note: 0 < V <1 always). Visibility below unity indicates that the interferometer
is ‘non-ideal’, in that it still transmits some light at its ‘dark fringe’ condition.
The output power from the interferometer varies with the total instantaneous
optical phase difference 6(t) between the two beams, as measured at the output,
and without loss of generality, we may write this output power as

Pout = P R[1 4+ V cos6(t)]/2, (1)

where Pi, is the effective input light power. In the internal modulation
configuration, the total optical phase difference between the two arms is simply
the sum of the DC phase setting 6y due to static arm length differences etc., the
signal phase 6,(t) due to the quantity being sensed, and a high-frequency phase
variation 6y, (t) due to the modulation in the arms. We may then write

0(t) = 6o + bssin(ws t + xs) + O sin{wm t + Xm) - (2)
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Here 6, and 4, are the phase modulation depths for the signal and high-frequency
modulations at frequencies w, and w,, respectively, and xs and X, represent
phase offsets of the signal and modulation waveforms. In the external modulation
scheme, the second modulation term 6,(t) is absent in the Michelson.
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Fig. 3. Generic external modulation configuration described in this paper.

The internal modulation system feeds the Michelson output directly to a
detector which produces a photocurrent i(t) = p P(t), say, where p is the detector
responsivity (usually expressed in Amps per Watt). The phase expression (2)
can be inserted into the interferometer output power equation (1). A standard
harmonic expansion of cosf(t), performed using Bessel function coeflicients shows
that this photocurrent contains a DC component, and oscillatory components at
the signal and modulation frequencies, as well has higher harmonics of each, and
also components at the sum and difference frequencies wstw,,. Each term varies
with the DC phase setting 6y. Rather than detail this expansion and subsequent
analysis, it is perhaps more illustrative to consider some schematic plots of the
time-dependent output current from this device, as shown in Fig. 4.

When the high-frequency modulation is relatively strong, the second harmonic
of the modulation frequency (2wy) dominates the photocurrent when the
interferometer is set to a dark fringe since the output of the interferometer
varies quadratically with phase at that point. Fig. 4a shows this component in
the absence of any applied low-frequency signal. Because its amplitude varies
only weakly near the dark fringe, this harmonic conveys little or no information
regarding the instantaneous magnitude or sign of the low-frequency signal.
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Fig.4. Waveforms obtained in the internal modulation scheme:
(a) High-frequency sinusoidal phase modulation about the dark
fringe condition leads to a constant amplitude second harmonic
appearing in the photocurrent. (b) A low-frequency phase
signal superimposed on the high-frequency internal modulation
in the interferometer produces a corresponding asymmetry in
the photocurrent waveform.

Adding a low-frequency phase signal to the high-frequency phase modulation in
the interferometer introduces into the waveform of Fig. 4b a measurable asymmetry,
whose magnitude and parity tracks the instantaneous signal at frequency ws.
This type of asymmetry, in which subsequent peaks of the waveform alternate
in height, indicates the existence of components at or near the fundamental
modulation frequency wy,. In this case, the sinusoidal time variation of the
asymmetry around the symmetric waveform condition indicates the presence of
sum and difference frequencies ws+w,, in the waveform. These sidebands contain
the frequency shifted signal information we seek to recover. In fact, in the
example shown in Fig. 4b, there is no component present in the output of the
interferometer at the fundamental modulation frequency wy,.

We extract baseband signal information by multiplying or ‘mixing’ the AC
components of the output waveform with the fundamental modulation waveform,
to ‘pick out’ the fundamental harmonic and nearby frequencies. Low-pass filtering
(integrating) the resulting waveform yields the required signal information. Fig. 5
shows both the complicated mixer output waveform and the low-pass filtered
result. A symmetric input (second modulation harmonic only) to the mixer would
yield a flat ‘zero signal’ output after filtering.
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Fig. 5. Electronically mixing the asymmetric photocurrent waveform
of Fig. 4b with the original high-frequency modulation waveform
produces a complex waveform (light shading) containing several
modulation harmonics. Low-pass filtering reveals the original baseband
signal waveform.

(2¢) Demodulated Noise in the Internal Modulation Scheme

An important question must be asked: What happens to the laser intensity
noise after this modulation and demodulation process? In other words, will the
laser intensity noise appear in the demodulated output?

To survive the demodulation process and appear as an output variation at
some frequency wpoise, there must exist a component in the interferometer output
at frequency wy, twpoise- This would show up as another time varying asymmetry
with an envelope frequency of wyoise, just as the signal did in Fig. 4b. To create
an asymmetry of this nature in the interferometer output waveform when the
interferometer is set to a dark fringe, there must be some differential phase noise
Onoise(t) within the interferometer at that frequency, just as a differential phase
signal at frequency w, was required to create an output at frequency wmztws.
Clearly, input intensity noise is not the same thing as interferometric phase
noise. In fact, the intensity noise can only fractionally modulate the height of the
entire waveform, so at most, it appears on the output signal as a small fractional
modulation of that signal. This means that operation at the dark fringe has
simultaneously mazimised the observed signal and minimised the observed noise
in the demodulated output of the system.

In summary then, the key to the simultaneous suppression of input intensity
noise and maximisation of the interferometric phase signal in the final demodulated
output is to exploit waveform symmetry near a dark fringe: The phase signal
within the interferometer affects the symmetry of the interferometer output
waveform, in both magnitude and parity, while intensity noise is not able to do
this.

It is not possible, of course, to maintain a practical interferometer ezactly at
any fixed phase condition, due to vibrations in the interferometer or frequency
noise in the light source, for example. Minute deviations from the dark fringe
reintroduce the first harmonic of the modulation frequency. Intensity noise will
modulate the amplitude of this harmonic as it modulates the entire waveform.
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The resulting fluctuations will appear now in the demodulated output and can
easily dominate shot noise and comparable signals at low frequencies, even for
small phase deviations from the dark fringe. The rms phase deviations from the
dark fringe may be made extremely small by the use of high gain servo loops
which compensate the vibrations to lock the interferometer phase. As the phase
deviations are reduced, the residual noise decreases, and it is possible to operate
at lower frequencies with shot-noise-limited sensitivity.

It might be asked: Why not lock the interferometer to the midpoint between
the bright and dark fringes, and demodulate instead using the second harmonic
of the high-frequency modulation, at frequency 2w,,? It is certainly true that the
signal information can be obtained this way, but the frequency shifted components
at frequencies 2wy +ws have smaller amplitudes [proportional to J3(6,,) instead
of J1(6w)], and more importantly, the extra light detected leads to much greater
shot noise.

(2d) Optimising Sensitivity in the Internal Modulation Scheme

This brings us to the final point of interest: If the technical noise from the laser
is properly suppressed by tuning to a dark fringe, can the signal-to-shot-noise
ratio be optimised further in any way?

To answer this question, it must first be recognised that in any practical
interferometer, laser intensity noise is not the only type of noise which degrades
sensitivity. There are always two other principal sources of noise in any real
system which must always be addressed if shot-noise-limited operation is required:

(i) electronic noise in the detectors and amplifiers, and
(ii) extra shot noise due to imperfect fringe contrast in the Michelson.

Even after the interferometer and detection electronics are optimised, these two
noise sources will remain at some level, capable of obscuring small signals, unless
steps are taken to compensate for them. Other noise sources, such as beam
pointing noise, vibrations in optical components etc., are not universal, so for
simplicity and clarity these will not be treated here.

In the internal modulation scheme, the chief degree of freedom, apart from
the DC phase setting 6y of the Michelson interferometer, is the high-frequency
phase modulation depth 6,. The larger the modulation depth, the stronger
is the demodulated signal—this appears to be the best available method for
increasing signal strength to overcome unwanted noise. However, the modulation
itself drives the interferometer away from the dark fringe twice in each cycle,
leading to extra optical transmission and hence further shot noise. A trade-off
exists, therefore between signal strength, unwanted electronic and shot noise and
extra modulation-induced shot noise, and there is an optimum modulation depth
required to maximise the signal-to-noise ratio. A careful analysis is needed to
calculate this optimum 6, for the given level of background noise.

It turns out that the signal amplitude varies in proportion to J;(fy,) where
O is the modulation depth while the rms shot noise amplitude varies like
V1=V Jo(8s)Jo(Om)+ VJo(6s)J2(0m)]. The first two terms inside the ,/ sign
relate to the demodulated shot noise associated with the average DC intensity at
the detector—a combination of residual dark fringe transmission and unavoidable
modulation-induced average transmission.
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The origin of the third term is not so obvious—it is a correction arising
from the demodulation of ‘non-stationary’ shot noise (Meers and Strain 1991;
Niebauer et al. 1991; Mio and Tsubono 1992; Gray et al. 1993). The sinusoidal
demodulating waveform varies in step with the time-varying shot noise associated
with the oscillating light intensity at the detector. Synchronous demodulation of
the varying noise leads to an overestimate of the shot noise by up to 50% (worst
when the output light is fully intensity modulated, i.e. when the interferometer
produces perfect dark fringes). It is not possible to avoid this penalty by the
use of the other demodulating quadrature (i.e. by demodulating with a wave 90°
out of phase with the shot noise variation), because that would not demodulate
any signal whatsoever. The optimum demodulating phase is still the one which
maximises the demodulated signal.

After a detailed analysis of the internal modulation system, it can be shown
that the ratio of signal power to total noise power measured by a phase insensitive
receiver at the demodulator output is given by

S/N = (pPin/eB)RV>J;(6s) J3 (Om)
T 1426 — VIo(85)Jo(Bm) + Vo (85) J2(6m)

©)

where p is the detector responsivity, P;, is the input power, B is the resolution
bandwidth, e is the fundamental electronic charge (1-6x107!® C), R is the
average end mirror reflectivity, V is the interferometric fringe visibility, Jo, J;
and Jo are Bessel functions of the first kind, 6, and 6, are the phase modulation
depths for the signal and high-frequency phase modulation respectively, and ¢ is
a normalised electronic noise factor, given by the ratio of broad band electronic
noise power seen at the receiver to the demodulated shot noise power which
would be observed in the same bandwidth if all of the input light was incident
on the detector.

Equation (3) assumes that dark fringe operation has been arranged and that
the only reason for imperfect dark fringes is mismatched mirror reflectivities in
the Michelson (i.e. perfect beam matching has been assumed in the derivation for
simplicity). Equation (3) also assumes that the optimal demodulating waveform
quadrature is used. The interferometer can be regarded as ‘shot noise limited’
when the 2¢ factor in the denominator is negligible compared to the remaining
terms, but some of the shot noise is due to unwanted transmission from the
imperfect dark fringe.

It is worth noting that the shot noise power due to a simple DC photocurrent
of magnitude ipc at a detector, and measured in a bandwidth B by a receiver
with input impedance R, is given by

Shot noise power = (i3, .,) R = 2eipc BR. (4)

This is extremely small, even if a high gain amplifier is inserted between the
detector and the receiver. For example, if a detector photocurrent of 10 mA is
impedance matched into a broadband amplifier with 60 dB gain, and from there
to matched receiver, the shot noise power is only ~1071° mW per Hz receiver
bandwidth, so a noise factor of € =1 in this analysis represents a very quiet
detector system, especially when dealing with milliWatt optical powers.
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The signal-to-noise ratio of equation (3) is plotted as a function of modulation
depth in Fig. 6 for various different fringe visibilities, ranging from almost ideal
(V =0-9999) to very non-ideal (V =0-5), assuming no measurable electronic
noise (e = 0). Similar plots are also obtained for different electronic noise levels
€ > 0. Clearly, the greater the unrelated shot noise due to the imperfect dark
fringes, the more high-frequency modulation is required to optimise sensitivity. On
each curve, the optimum signal-to-noise occurs when the modulation-induced shot
noise becomes the dominant noise contribution. The general sensitivity roll-off
at modulation depths beyond the optimum indicates that the extra modulation
produces more noise than signal.
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0.0 —_— n "
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Fig. 6. Internal modulation signal-to-noise ratios plotted against
internal modulation depth 6y, from equation (3) for several non-ideal
interferometers with imperfect fringe contrast but no detector noise
(V <1 and € =0). These values have been normalised to the best
achievable signal-to-shot-noise ratio in the direct detection system for
the same input power and signal strength. In the ideal limit (V =1
and € = 0) the normalised internal modulation signal-to-noise ratio
approaches 2/3. The greater the light leakage at the dark fringe, the
greater the required 6, for optimal performance.

As V — 1 and € — 0, the optimum modulation depth (0, )ops approaches zero.
In this limiting condition, the signal-to-noise ratio in the internal modulation
scheme approaches

(S/N)max — %PPin 03/46B . (5)

Here we assume very small signals, so that J;(6s) — 6s/2. The shot-noise-limited
sensitivity of an ideal internally-modulated interferometer is the phase signal
(fs)min which produces a demodulated output with the same amplitude as the
rms demodulated shot noise at the receiver:

(0s)min — \/% (43B/p-Pin)l/2 ~1- 225(05)direct . (6)

This represents a 22-5% penalty compared to the best possible shot-noise-limited
sensitivity (0s)direct achieved with direct detection using the same signal, bandwidth,
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input power and detectors. Provided the interferometer fringe contrast is kept
sufficiently high, and electronic noise is kept extremely low, it is possible to come
arbitrarily close to the sensitivity in equation (6) in the internal modulation
scheme.

The / % phase sensitivity penalty relative to the direct detection scheme is
entirely a result of demodulating non-stationary shot noise associated with the
100% intensity modulation at the output of an ideal interferometer (Niebauer
et al. 1991; Mio and Tsubono 1992; Gray et al. 1993). The only way to
avoid this penalty is to use the information contained at higher frequencies in
the noise spectrum. This requires the use of more sophisticated modulation
and demodulation waveforms containing higher harmonics of the modulation
frequency to exploit frequency correlations in the modulated noise spectrum,
thereby reducing the demodulated noise towards the standard shot noise limit
(Meers and Strain 1991; Gray et al. 1993).

Fig. 7 shows the optimum modulation depth (6im)opt as a function of electronic
noise and interferometric fringe visibility in non-ideal systems. When the
interferometer and detectors are nearly perfect, very weak modulation is required.
However, even extremely small levels of electronic noise or dark fringe transmission
necessitate large internal modulation depths to optimise the sensitivity.
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Fig. 7. Internal modulation depth 6, required to optimise the signal-to-noise ratio in the
internal modulation scheme, plotted against fringe visibility V' and electronic noise factor
€, when the interferometer is non-ideal. Very small levels of unrelated background noise
necessitate strong modulation depths.
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Finally, in Fig. 8, we plot the best-case signal-to-noise ratio in the internal
modulation scheme (normalised to the ideal direct detection limit) as a function
of interferometric fringe visibility V, for different levels of electronic noise €,
assuming that the optimum modulation depth (fim)opt is used, and assuming
that the average Michelson mirror reflectivity R is as large as possible for the
given value of V. [In our analysis V <1 only if the two mirrors differ; mode
matching is considered perfect here. Modal imperfections leading to imperfect
fringes can be readily modelled by equivalent mirror losses for most purposes. In
this picture, the range of possible V values is constrained by R: for R < 0-5,
all V' values from 0 to 1 are physically allowed, while for R > 0-5, V must lie
between /(2R—1)/R and 1. Likewise, for any V, there is a maximum possible
value of R. This maximum value of R is assumed here because it sets an upper
limit on the signal-to-noise ratio for a given V]

Imperfect fringes or measurable amounts of electronic noise severely reduce the
overall interferometric sensitivity in this scheme, even if the optimum modulation
depth is used. The ideal (¢ =0) curve in Fig. 8 approaches a normalised
signal-to-noise ratio of 32- at V =1. The attainable sensitivity in the internal
modulation scheme is reduced by a factor of 2 when the dark fringe transmission
represents just under 4% of the input light (or when electronic noise corresponds
to the shot noise which this leakage would produce at the detector). In this
condition, Fig. 7 shows that an internal modulation amplitude of ~1 rad is
required to maximise sensitivity.
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03+ =0.1
0.2
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0.1 1
00 1 L 1
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Fig. 8. Maximum possible signal-to-noise ratio obtainable in the internal modulation scheme,
as a function of fringe visibility V, for various different electronic noise levels. The optimum
modulation depth 6 as plotted in Fig. 7 has been assumed, and again the S/N is normalised
to the best achievable direct detection S/N value for the same signal and input power.

(2e) Signal and Noise Demodulation in the External Modulation Scheme

The signal and noise analysis of the external modulation system is reasonably
involved (Man et al. 1990; Gray et al. 1995), and we shall not describe it in great
detail here, apart from pointing out key features for comparison to the internal
modulation scheme. The external modulation configuration of Fig. 3 exploits
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waveform asymmetry to extract signal information in much the same way as the
internal scheme, to the extent that the output waveforms at each detector can,
in some instances, appear very similar to those obtained by internal modulation
(see Fig. 4b) with the exception of a significant DC offset due to the average
power seen at the detectors. This average power is due mostly to the local
oscillator, since the Michelson is tuned closely to a dark fringe and contributes
little light in the optimal configuration.

The high-frequency modulation in the local oscillator arm serves to rapidly
re-arrange a small fraction of this total power between the two detectors, much
as in any Mach—Zehnder interferometer. If the DC phase of the local oscillator
beam is set so that each detector receives equal power in the absence of any
signal phase in the Michelson interferometer, the waveform asymmetries induced
by low-frequency signals in the Michelson are equal and opposite in each detector.
It proves beneficial, therefore, to detect both beam combiner outputs and to
subtract one from the other—this eliminates much of the common mode noise and
more importantly doubles the amplitude of the frequency-shifted signals entering
the mixer. The mixer output in these cases can exactly resemble that produced
by the internal modulation system (see Fig. 5), depending on the amount of dark
fringe transmission by the Michelson.

The shot noise, which is uncorrelated at each detector, is only increased by
a factor of /2 by the subtraction process, and hence detecting and subtracting
the two beam combiner outputs improves the signal-to-noise ratio by a factor of
v/2 compared to detecting only one output.

The important controllable parameters in the external modulation scheme
are the external modulation depth 6, (rad), and the optical power fraction a
transmitted to the interferometer. The remaining fraction 1—a is tapped off into
the local oscillator beam.

Here, as with the internal modulation scheme, the demodulated signal is
proportional to Jy(6,). However, in this scheme, the demodulated shot noise is
independent of 6, since the total optical power detected by the two detectors
does not vary with the phase of the Mach-Zehnder interferometer. Hence, the
optimum modulation depth is simply that which maximises Ji(6,), namely
0n = 1-84 rad. The fact that shot noise does not depend on 6, also eliminates
the non-stationary shot noise effects which penalise the signal-to-noise ratio in
the internal modulation scheme.

In the external modulation scheme, the optimal optical power fraction «
transmitted to the interferometer is subject to a tradeoff similar to that which
determined the optimum value of the modulation depth 6, in the internal
modulation scheme. Here, the frequency-shifted signal strength at wptws is
proportional to the product of the electric field amplitudes interfering at the
detector from the Michelson and local oscillator beams, which are in turn
proportional to /o and ,/(1—a) respectively. Hence the demodulated signal
strength at the mixer output should vary as /[a(1—a)].

The demodulated noise varies in proportion to (1—a) + a (R/2)[1— VJo(6s)] + 2e,
due to shot noise contributions from the local oscillator and Michelson interferometer
and also electronic noise.

After some careful analysis (Gray et al. 1995), the demodulated signal-to-noise
power ratio, measured at a receiver at the mixer output, can be shown to be
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(4pPiu/eB)R(1L + V)a(l — 0) J3(6./2) J(6w)

S/N = 1—a+a(R/2)[1—VJy(6,)] + 2 ’ @

where p, Pi,, B, e, R, V, 65 and 6, are exactly as previously defined below
equation (3), a is the power fraction of the input light which is transmitted
to the Michelson (0 < @ < 1), and € is once again a normalised electronic noise
factor, calculated based on the performance of each detector just as it was in
the internal modulation scheme. Again, the use of optimal optical phases and
demodulation quadratures has been assumed in deriving (7).

Increasing the optical power in the local oscillator arm (decreasing ) leads
initially to larger demodulated signals and larger shot noise. This happens at the
expense of light passing to the Michelson. Optimum signal-to-noise will occur
when the optical tap-off fraction has increased to the point where the shot noise
contribution from the local oscillator just dominates the overall noise. Greater
tap-off ratios yield no further signal-to-noise improvement, since the dominant
1—a factor in the denominator would cancel the 1—a in the numerator, and the
signal-to-noise would decrease with a.

0.0 1 L 1 1
0.0 0.2 0.4 0.6 0.8 1

Local oscillator beam optical tap-off fraction 1—-a

Fig. 9. External modulation signal-to-noise ratios, plotted against the optical tap-off fraction
1—a from equation (7), for several non-ideal interferometers with imperfect fringe contrast
but no detector noise (V <1 and € = 0). This normalised plot is very similar to Fig. 6. In
the ideal limit (V =1 and ¢ = 0) the normalised external modulation signal-to-noise ratio
approaches 0-676. The greater the light leakage at the dark fringe, the greater the required
optical tap off fraction 1—a for optimal performance.

Fig. 9 plots the demodulated signal-to-noise ratio in the external modulation
scheme as a function of the optical power tap-off fraction 1—c«, assuming perfectly
quiet detectors and various interferometric fringe visibilities V in the Michelson
interferometer. Evidently greater levels of unrelated noise (shot noise in this case
due to light leakage from the Michelson at lower values of V') necessitate greater
tap-off ratios 1—a to optimise the signal-to-noise, and lead to lower achievable
signal-to-noise ratios. Increasing levels of electronic noise have a similar effect.
This plot resembles Fig. 6 in many ways.

Fig. 10a plots the optimum value of the tap-off ratio as a function of unrelated
electronic noise, while Fig. 1006 shows the optimum optical tap-off ratio as a
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function of interferometric fringe visibility. The required tap-off increases very
rapidly for small unrelated noise factors, just as the optimum value of internal
modulation depth 6, did in Fig. 7 above. Any practical system will require a
measurable amount of light in the local oscillator arm, in general.
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Fig. 10. Optical tap-off fraction depth 1-a required to optimise the signal-to-noise ratio in
the external modulation scheme, plotted against fringe visibility V' and electronic noise factor
¢, when the interferometer is non-ideal. Very small levels of unrelated background noise
necessitate large levels of light in the local oscillator beam.

Fig. 11 plots the resulting demodulated signal to noise seen at the output of
an external modulation system as a function of the fringe visibility V of the
Michelson interferometer, assuming that optimum tap-off fractions, modulation
depths, optical phases etc. are used, and again assuming the largest value of
R for each V, to give an upper limit on the achievable signal-to-noise. This
is very reminiscent of the best case plots obtained for internal modulation,
except that here, the signal-to-noise drops off more slowly with V for imperfect
interferometers, and does not rise quite as high for V =1.

In the limiting case of a perfect interferometer (R =1 and ¥V =1) and no
electronic noise (¢ = 0), it can be shown that the signal to noise approaches a
value almost identical to that which applies to the internal modulation scheme:

(S/N)max —0- 676(pPin 93/46B) . (8)
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Fig. 11. Maximum possible signal-to-noise ratio obtainable in the
external modulation scheme, as a function of fringe visibility V, for
various different electronic noise levels. The optimum tap-off ratio
1—o as plotted in Fig. 10 has been assumed, and again the S/N is
normalised to the best achievable direct detection S/N value.

The resulting sensitivity limit is given by

(85)min — V0-676(4eB/pPiy)? ~ 1-216(6,)direct - (9)

The 21-6% sensitivity penalty relative to the direct detection scheme is due to
inefficiencies inherent in the simple signal recovery process modelled here, i.e. the
use of simple sinusoidal modulation and demodulation waveforms. The strong
modulation in the local oscillator arms produces large sidebands at many higher
harmonics of the modulation frequency, but only the fundamental harmonics
are demodulated; the remaining modulation sidebands represent wasted optical
power. In principle, it is possible to approach the direct detection sensitivity
(05) direct by the use of more sophisticated modulation and demodulation waveforms
(involving higher harmonics) to create and exploit frequency correlations in the
signal spectrum, and thereby improve the demodulated signal towards the level
obtained by direct detection.

The similarity between the inherent limiting sensitivities experienced in the
internal and external modulation scheme is largely coincidental—the mechanisms
leading to these two penalties are only distantly related. Both penalties can be
ascribed mathematically to non-optimal modulation and demodulation strategies
(for signal in the external modulation scheme, and shot noise in the internal
modulation scheme). Even in non-ideal cases (¢ >0 and V < 1), the internal
and external modulation schemes possess very similar sensitivities in general. In
practice, this means that the choice of modulation scheme depends entirely on
practical and experimental considerations.
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3. Experimental Demonstration of Shot-noise-limited Phase Measurements using
Phase Modulation Interferometry

Our analysis in the previous section of non-ideal modulated interferometers
only accounts for a few physical features of a practical interferometric system,
for simplicity, but even a simple generic model has little application until it can
be experimentally verified in controlled conditions. Here we describe briefly some
laboratory benchtop-scale experiments performed to investigate both the internal
and external modulation schemes, to compare the achievable sensitivity with the
theoretical predictions, and to assess key experimental issues which affect the
usefulness of each scheme. Sections 3a and 3b below summarise experiments
performed using a polarimetric electric field sensor to investigate the internal
modulation scheme. These experiments and theoretical background are described
in detail in Stevenson et al. (1993). Section 3¢ is a summary of experiments
performed using a Michelson interferometer to investigate the external modulation
technique. A full description of these experiments and theory can be found in
Gray et al. (1995).

(3a) Direct Detection Ezperiments using a Reflective Polarimetric Sensor

A polarimeter is topologically identical to other simple two-beam interferometers
in that it splits light into two independent beams (orthogonal polarisation states).
These propagate independently through a medium which imposes a differential
phase signal (an electro-optic crystal whose birefringence changes in response to
external electric fields, thus altering the retardance or optical path difference for
the two orthogonal polarisation states) and the two beams are recombined at a
beam combiner (polarising beamsplitter/combiner) which allows them to interfere
to produce complete interference fringes. A polarimeter has an advantage over
other two-beam interferometers—both beams traverse the same optical path to
and from the birefringent medium, so most phase disturbances and drifts are
‘common mode’ and have no effect on the output intensity. In particular, very
stable, high quality dark fringes are possible without active locking techniques,
since birefringence variations across the optical wavefronts only arise within optical
components, and are generally are extremely small and constant in time.

Our sensor was configured as a reflective polarimeter, using the same polarising
cube to split the light into its orthogonally polarised components and to recombine
them on return from a mirrored sensing crystal. Initially we used this device in a
direct detection configuration, to investigate its viability as a non-invasive sensor
scanning high-frequency oscillating electric field distributions in the vicinity of
test circuit patterns. These trials proved very successful at signal frequencies
above 12 MHz, where the detected light was shot noise limited. The visibility
V of the interferometer was measured to be around 0-9998, and with 18 mW of
input light at 1064 nm, the detector and amplifiers were quiet enough to achieve
an effective electronic noise factor € of just 0-0066.

Despite the low level of unrelated noise, it was still necessary to detune the
polarimeter significantly from a dark fringe to allow the signal to be measured.
The optimum signal-to-noise ratio was observed when the polarimeter was tuned
0-37 rad away from its dark fringe, and the resulting phase sensitivity was
0-25 urad in a resolution bandwidth of 1kHz at the receiver, very close to the
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theoretically predicted 0-26 urad. The corresponding measured spectral phase
sensitivity was 8x10~° rad Hz~%, only 11% above the ideal limit for a noiseless
interferometer operating at a dark fringe. The polarimeter was also found to be
less sensitive with less input light, exactly in accordance with the theory that
the signal strength varies in proportion to the optical power while shot noise
scales as the square root of the optical power.

(3b) Internal Modulation Ezperiments

Having verified the simple analytic model for direct detection in the non-ideal
interferometer, we measured the sensitivity achievable using internal modulation
for signals below 12 MHz, where laser technical noise dominated. The light source
was a Nd:YAG MISER very similar to the one whose intensity noise spectrum
is plotted in Fig. la; in particular, our MISER exhibited a, large relaxation
oscillation at around 0-5 MHz. Internal retardance modulation at 25 MHz was
produced by means of an electro-optic crystal inserted in the beam path between
the polarising cube and the reflective sensing crystal.
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Fig. 12. Results of the internal modulation trials using a reflective polarimeter sensing a
signal at 621 kHz, well within the technical noise band of the laser source. (a) Signal and noise
power spectra obtained using the direct detection method—the signal is just visible (arrow)
above the wings of the relaxation oscillation peak of the laser. () Electronic noise floor of
the detector and receiver system in the direct detection configuration. (¢) Frequency-shifted
signal and noise floor in the internal modulation configuration, showing ~70 dB suppression of
the technical noise spectrum, and a net improvement of more than 30 dB in the signal-to-noise
ratio. The system is still limited by electronic noise in this case.

Low-frequency signals were again induced in the reflective sensing crystal, and
at 621 kHz, the signal was deliberately applied in a region of large technical
noise on the wings of the relaxation oscillation peak. The signal amplitude was
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made large enough so that we were just able to resolve, on a spectrum analyser,
the signal peak above the technical noise floor of the laser using the direct
detection system. Fig. 12a shows the resulting signal and noise spectra obtained
using the direct detection method. The chief feature on this noise floor is the
giant relaxation oscillation peak. Clearly, signals at this particular frequency
comparable to the shot noise using this resolution bandwidth would be obscured
by optical noise many orders of magnitude larger.

When internal phase modulation was imposed and the interferometer was
tuned to a dark fringe at its output, Fig. 12b shows how the same signal now
appeared 33 dB above the electronic noise floor in the frequency-shifted spectrum.
Technical noise was suppressed by about 7 orders of magnitude (the relaxation
peak was barely discernable in the frequency-shifted power spectrum) confirming
how well the dark fringe is passively maintained in a polarimeter. Experimentally,
we found that optical phase displacements of just a few milliradians re-introduced
high levels of technical noise into the output power spectrum. Clearly, large
signal-to-noise improvements are possible using internal modulation in frequency
ranges dominated by light source noise, provided very strict dark fringe stability
is maintained.

Interestingly, despite the massive suppression of technical noise and excellent
dark fringe stability of our polarimeter, we were not able to achieve true shot-
noise-limited sensitivity in our internal modulation trials. The principle problem
here was electronic noise in the detection system. Fig. 6 above shows that as the
unrelated noise increases, greater modulation depth is required to optimise the
signal-to-noise ratio. For an electronic noise factor € = 0-0066, the signal-to-noise
ratio varies with modulation depth in a manner similar to that plotted in Fig. 6
for V =0-99. Surprisingly perhaps, to make the measurement shot-noise-limited
and optimise the sensitivity with this low level of electronic noise, we would need
around 0-7 rad of modulation amplitude, far larger than the 0-11 rad we were
able to achieve with our available electro-optic modulator and associated driving
electronics. Alternatively, we could have made a shot-noise-limited measurement
with this particular modulator, if the input power had been 60 times larger (1-1 W)
or if the electronic noise had been reduced by a factor of 60 (€= 1-1x107%).

With a modulation depth of 0-11 rad, the measured signal-to-noise ratio only
reached 15% of its ideal maximum value, compared to a theoretical prediction
of 18%, a reasonable agreement with the analysis given the experimental errors
involved in this type of measurement. The minimum resolvable phase retardance
turned out to be 0-85 urad in a 1 kHz bandwidth, corresponding to a spectral
phase sensitivity of 2-6x10~% rad Hz~ %, about 2-6 times larger than the ideal
theoretical limit of 1-0x10~® rad Hz~% for this input light level.

(3¢) External Modulation Experiments

We constructed a Michelson interferometer and tapped a local oscillator off
the input beam in much the same way as shown in Fig. 3. The light source
was again a Nd:YAG MISER, emitting at 1064 nm and with a strong relaxation
oscillation peak in the noise spectrum at around 300 kHz. A low-frequency phase
signal at 2 MHz was introduced into one arm of the Michelson using a phase
modulator. The Michelson had arm lengths of around 0-15m, and was tuned
to a dark fringe. The attenuation due to the modulator was compensated by a
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neutral density filter in the second arm, and the geometric foreshortening of the
diverging beam inside the high-index modulator was offset by placing the other
mirror slightly closer to the beamsplitter. This geometric modematching measure
actually increases the mismatch between the two-way optical propagation times
in each arm, in this case, equivalent to a length mismatch of around 60 mm
experimentally. This in turn is capable of converting laser frequency noise into
unwanted intensity noise at the output, but this effect proved to be negligible
over most frequencies of interest here.

Maximum interferometric fringe visibilities V of up to 0-9967 were attained
(corresponding to fringe contrast ratios of about 600:1), but this could only be
maintained by active servo locking. To lock the interferometer to its dark fringe,
with minimal rms phase excursions, the 75 MHz component in the output of the
signal subtractor (see Fig. 3) must be nulled. This was monitored by looking
at the DC output of the mixer. The resulting ‘error signal’ was integrated,
filtered and fed to a piezo-electric mirror mount at the end of one arm of
the Michelson. This locked the interferometer to its dark fringe automatically,
cancelling out drifts, vibrations and accoustic noise out to about 5 kHz, provided
the local oscillator was set to within about 45° of its correct optical phase. The
local oscillator phase was adjusted manually in this experiment, which proved
satisfactory most of the time. The bright fringe from the Michelson was directed
towards the laser, so an optical isolator in front of the laser and a small amount
of mirror misalignment was required to prevent optical feedback effects.

A resonant tuned phase modulator in the local oscillator beam provided the
high-frequency phase modulation, in this case at 75 MHz. The Michelson output
beam and local oscillator were combined at a 50:50 beamsplitter cube, and the
outputs focussed onto a pair of balanced InGaAs detectors. The Mach-Zehnder
interferometer exhibited an effective fringe contrast of about 150:1 when equal
power was arranged in the local oscillator and Michelson output arms, more than
adequate for optimal operation of this experiment.

In this experiment, the input power was measured to be 9 mW, and € = 0-04.
The electronic noise dominated the background noise dictating the optimum
optical tap-off fraction 1—a for the local oscillator beam. The dark fringe
transmission of our interferometer would need to be around 60 times brighter
(V ~0-9) for the extra shot noise to be comparable to the measured electronic
noise. Fig. 9 shows how increasing background noise requires larger optical tap-off
ratios to optimise sensitivity. For € = 0-04, the signal-to-noise ratio varies with
the tap-off fraction in a manner very similar to the curve plotted in Fig. 9 for
V =0-9. The tap-off fraction was adjusted to its optimum value (roughly 20%
in this experiment) by means of optical waveplates and a polarising beamsplitter.

Shot-noise-limited performance was achieved in this external modulation
experiment. From the analysis described in Section 2, we could predict how
sensitivity would vary with the modulation depth imposed in the external beam
arm. As it happened, we were only able to impose a maximum of 1-18rad
of modulation in the local oscillator arm, well short of the 1-84 rad required
for optimum performance, as the inductive core inside the resonant modulator
saturated above a particular driving voltage.

Phase sensitivity was inferred by adjusting the signal strength in the Michelson
to produce a demodulated signal-to-noise ratio of 1 at the receiver for each
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different modulation depth used. Fig. 13 shows how the predicted and measured
spectral phase and displacement sensitivity varied with the applied modulation
depth 6, in the local oscillator beam. Clearly, there is excellent agreement
with the theoretical predictions, indicating that the simple analysis is useful in
predicting performance in this kind of system. A similar test using a constant
strong signal in the Michelson (producing a signal-to-noise ratio in the vicinity
of 20 to 40 dB), and variable modulation in the external arm, also showed exact
agreement with theory.
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Fig. 13. Predicted and measured phase and displacement sensitivities in the external
modulation scheme, plotted against the external modulation depth 6m, obtained with a signal
at 2 MHz. This system successfully produced shot-noise-limited performance in a region of
the spectrum dominated by technical noise using direct detection.

The best shot-noise-limited phase sensitivity achieved experimentally using this
system was 2.0x10~8 rad Hz™ %, corresponding to a displacement sensitivity of
1-7x10~15 m Hz—#%, imposing a modulation depth of 1-18 rad on the external
beam. The sub-optimal external modulation depth cost us about 15% in sensitivity
for this electronic noise level. For the same input power, assuming optimum
external modulation depth, a perfect interferometer and noiseless detection system,
the predicted ideal sensitivity would have been 1-2x10~8 rad Hz"%, so our
system suffered a 66% sensitivity penalty relative to the ideal limit.

The shot-noise-limited performance for signals at 2 MHz was repeatable until
the signal frequency dropped to around 100 kHz, below which laser frequency
noise effects dominated the shot noise floor. A series of peaks appeared in
the output power spectrum, harmonics of a fundamental component at about
30 kHz, and were found to be associated with a laser frequency noise with an
estimated spectral density of 3 mrad Hz—#% at 30 kHz, coupled into the intensity
noise spectrum by the 60 mm arm length mismatch.

(3d) Key Points raised by the Modulated Interferometer Ezxperiments

Our internal and external modulation experiments raised some key points of
general interest to anyone contemplating using these schemes in a practical sensor:

(i) Direct detection interferometry provides the best sensitivity in general, but
only when the signal is at a sufficiently high-frequency that laser technical noise
is dominated by shot noise at the detector.
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(ii) Good dark fringe stability is essential in suppressing technical noise to
below the shot noise level. If this cannot be achieved passively, active servo
locking to the dark fringe condition should be arranged. An rms optical phase
stability of around 1 mrad is sufficient to suppress technical noise many orders of
magnitude greater than shot noise. The bandwidth of the servo system should be
chosen to handle the likely spectrum of mechanical disturbances to the Michelson
interferometer.

(iii) The phase sensitivity of the external modulation system is best when the
optical phase of the local oscillator beam is adjusted to produce equal outputs on
the two detectors (when the Michelson is set to a dark fringe). The sensitivity
only depends weakly on the local oscillator phase near this condition, so the
locking requirements are more relaxed than for the Michelson interferometer
phase.

(iv) Unrelated electronic and dark fringe shot noise in the system must be kept
to an absolute minimum in both modulation schemes. In general, one of these
contributions will tend to dominate the other, and most effort should therefore
be put into reducing the dominant noise source. It is desirable to reduce the
unwanted light leakage to less than about 1% of the input light level, so that
the achievable signal-to-noise is within about 1dB (~20%) of the ideal limit.
Similarly, electronic noise should be less than about 1% of the shot noise which
would be measured if all of the input light was detected on a single detector.

(v) To optimise the signal-to-noise ratio in the internal modulation scheme
when unrelated noise is present in the system, a modulator capable of imposing
a strong internal phase modulation must be available. When unrelated noise is
kept below the 1% level nominated in (ii), a modulation depth of 1 rad should
be sufficient to optimise the sensitivity of the instrument.

(vi) A modulator capable of producing 1-84 rad of modulation is required in
the external modulation scheme to optimise sensitivity.

(vii) Significant optical tap-off ratios are usually required in the external
modulation system when unrelated background noise exists in the system. This
requires detectors each capable of safely handling up to say 10% of the maximum
input light without saturation or destruction, otherwise the detectors may limit
the input power which can be used. There also needs to be a suitable adjustable
beamsplitting arrangement to optimise the tap-off ratio.

(viii) Optical path lengths in each arm of the Michelson interferometer need
to be well matched to avoid the conversion of laser frequency noise into laser
intensity noise. The degree of length matching required depends on the amount
of frequency noise in the laser in the signal frequency range of interest.

(ix) RF phase delays between detectors and mixers have to be chosen carefully
to match those between the high-frequency signal generator and the mixer, to
allow proper demodulation of the signal. The higher the modulation frequency,
the more critical is the RF path matching requirement. An adjustable RF phase
delay is desirable here.

4. General Considerations in selecting an Optical Modulation Scheme

So far in this paper, we have described the operation and implementation
of two interferometric modulation schemes. Because both schemes have similar
inherent sensitivities, the choice of which modulation scheme is best to use will
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usually depend on practical factors, peculiar to each application. Here we briefly
discuss two possible considerations affecting this choice.

(4a) Complezity of Implementation

The external modulation scheme is fundamentally more complex than the
internal modulation scheme. Three electric fields interfere at each of the two
detectors in the external modulation configuration, one field from each beam
arm of the Michelson interferometer and one from the local oscillator beam.
This complicates both the analysis and practical implementation of the external
modulation scheme relative to the internal modulation scheme as it is necessary
to control independently and perhaps servo-lock two DC optical phases in this
system: the differential phase in the Michelson interferometer, and the DC phase
of the local oscillator beam relative to the absolute output phase of the light from
the Michelson at the detectors. The two phase-locking servos will also interact,
and the overall stability is not simple to predict.

It is also necessary to optimise the fraction of optical power tapped off into the
local oscillator beam (the Michelson interferometer still requires equal amplitude
beams for proper dark fringe interference) and, of course, the high-frequency
phase modulation depth in the local oscillator. This very complexity may be
sufficient for many users to opt for the simpler internal modulation scheme.

(4b) Beam Distortion Effects

Interferometric gravitational wave detectors will not be using internal modulation
for the simple reason that the presence of optical modulators in the Michelson
arms distorts and partially absorbs the beams. The presence of phase modulators
in the beam arms can have several deleterious effects:

(i) Optical contrast is severely reduced by wavefront distortions. As a result
there is unwanted optical power at the output and unwanted shot noise.

(ii) Pockels cells have several percent loss. This will limit the build up of light
in optical recycling systems and reduce the achievable sensitivity gain.

(iii) Large scale gravitational wave interferometers will have large diameter beams
or very high optical power. It.is difficult to find high-frequency phase modulators
of sufficient optical quality and linearity of response for such applications.

It was to avoid these practical drawbacks in large scale high-power gravity
wave interferometers that the external modulation method was proposed in the
first place.

5. Conclusions

We have demonstrated analytically and experimentally that phase modulation
interferometry is a powerful method for extracting low-frequency phase signals
with shot-noise-limited sensitivity, when the same phase variations would be
obscured by technical noise of a light source many orders of magnitude greater
using direct detection techniques.

We have described two particular techniques of phase modulation interferometry
in this article: internal modulation and external modulation. In both schemes, high-
frequency phase modulation shifts low-frequency signals into a shot-noise-limited
region of the photocurrent spectrum, and subsequent mixing with the modulation
waveform recovers the low-frequency signal information, free of technical noise
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from the light source provided the sensing interferometer is set to produce a
dark fringe at its output. Internal modulation imposes its modulation within the
sensing interferometer, while external modulation imposes phase modulation on
a local oscillator beam which is subsequently recombined with the output of the
sensing interferometer.

We used a simple analytic model to predict the sensitivity of both modulation
schemes in the presence of non-ideal features—electronic noise in detectors
and amplifiers, and unwanted optical transmission at the dark fringe of the
interferometer. In both schemes, as the electronic noise and dark fringe transmission
is reduced, the shot-noise-limited sensitivity is predicted to approach about 67%
of the maximum shot-noise-limited signal-to-noise ratio achievable using direct
detection in an ideal noiseless interferometer. This penalty is due to the fact that
simple sinusoidal modulation and demodulation is inefficient as it loses signal or
noise information to higher harmonics in the spectrum. We found that, even
in non-ideal cases, the two interferometric modulation schemes have comparable
sensitivity, so that the choice of which scheme to use in a given situation depends
largely on practical and experimental considerations.

Experimentally we used these phase modulation interferometry techniques
to suppress technical noise power in the photocurrent spectrum by up to 7
orders of magnitude in an internally modulated polarimeter, and to retrieve
signals at frequencies as low as 100 kHz with shot-noise-limited sensitivity using
an externally modulated Michelson interferometer. Using only 9 mW of input
light in the external modulation configuration, we achieved a spectral phase
sensitivity of just 2-0x10™8 rad Hz~ %, comparable to the shot-noise-limited
sensitivity predicted analytically for an ideal externally modulated interferometer.
Comparable sensitivity was achieved in the internal modulation scheme, and
found to be consistent with the predictions of the simple analysis described
earlier. These two modulation techniques should be applicable to a wide variety
of interferometric sensors which require shot-noise-limited sensitivity.
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