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Abstract

This paper provides a systematic treatment of the finite temperature field theory which will
be required for the subsequent calculation in detail (given in the second paper in this series) of
the linear response properties of the electroweak plasma at finite temperature at the one-loop
level in the R, gauge. Following a brief summary of the path integral formalism in field
theory, the finite temperature theory is introduced with emphasis on the relevant Feynman
rules and Matsubara sums. The polarisation tensor for the electroweak plasma is calculated by
analysing the appropriate Feynman diagrams. The contributions to the one-loop polarisation
tensor are calculated for the tadpole, loop and balloon diagrams in a form suitable for the
subsequent investigation of electroweak plasma properties.

1. Introduction

The standard electroweak theory of Glashow, Salam and Weinberg (Glashow
1961; Salam 1968; Weinberg 1967) describes the interacting system of leptons and
scalar bosons coupled to the gauge vector bosons W%, Z9 and +. Together with
the quark sector and gauge bosons of the strong interaction, this theory forms
the Standard Model, the foundation of present day elementary particle physics.

A key feature of the standard electroweak theory is the spontaneous symmetry
breaking transition, whereby the higher symmetry of the theory is broken through
the appearance of a non-zero vacuum expectation value of the scalar field in
the theory (0|¢|0) # 0. This corresponds to a finite fraction of the scalar field
particles residing in the ground state, a phenomenon known as Bose—Einstein
condensation. This scalar field, the Higgs field, and this mechanism provide the
vector gauge bosons and certain leptons with mass. The symmetry breaking
transition also manifests itself as a phase transition in the electroweak plasma,
a system of mobile leptons, scalar particles and vector bosons, each coexisting
with appropriate density at finite temperatures. So at temperatures greater than
some critical value, T > T, the full symmetry of the theory is restored, i.e.
vector bosons become massless.

There are a number of motivations in the study of electroweak plasmas. As
a realisation of the symmetry breaking transition and the Higgs mechanism,
the electroweak plasma allows aspects of the Standard Model to be formulated,
investigated and tested in a more general setting. This system therefore may be
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regarded as a generalisation of the more conventional charged plasma interacting
purely electrodynamically. The novel features for the electroweak plasma include
the finite masses of the W* and Z°® mediating bosons, as opposed to the massless
photon of conventional plasma physics, the effects of Bose condensation of the mas-
sive bosons, whereby a macroscopic fraction of these particles reside in the lowest
energy state, and the self-interaction effects of non-abelian gauge fields. As the en-
ergy scale of the transition is set by the size of the Higgs field vacuum expectation
value, the relevant energy or temperature scale is estimated to be 250 GeV. The
electroweak transition is thought to be one of the sequence of transitions occur-
ring in the early Universe and determining its consequent evolution. While precise
astrophysical implications are uncertain, any progress in understanding the ther-
modynamics and excitations of the phases at this energy scale would be important
in the construction of cosmological models.

The linear response properties of the 0-spin pair plasma at finite temperature
both in the presence and absence of a strong uniform magnetic field were studied
by Witte and co-workers (1987-90) and the collective properties of the ideal mag-
netised system were presented. The linear response tensor for both the spin-0 and
spin-1 boson/anti-boson plasmas was given by Williams and Melrose (1989).

Ferrer et al. (1987, 1988) have calculated the effective potential at high tem-
perature for the electroweak model using two methods. The first method used was
an expansion around zero field in the Feynman gauge. The second method was
to imbed the gauge conditions in the definitions of the mean values of the fields
and expand out the functional determinant. The coefficients of the polynomial
representing the functional determinant were related to the coefficients of the high
temperature expansion of the effective potential by the Viete theorem. Using con-
ditions on the effective potential, the transition curve for W# condensation has
been obtained and the critical temperature calculated. In two later papers (Ferrer
et al. 1990a,b) the effect of the W= condensate on the spectrum of fermions was
examined using an iterative approach. It was shown that with increasing tem-
perature, the W* condensate evaporates before the Higgs condensate. There is a
mixing between the gauge fields which leads to a redefinition of the gauge fields
and the appearance of a massive photon.

The one loop thermodynamic potential was calculated by Kapusta (1990) in
the R, gauge using the Viete theorem of Ferrer et al. (1988). The phase diagram
for the variation of the leptonic chemical potential was shown. An important note
was made that the loop expansion is an expansion in powers of the Lagrangian,
while the high temperature expansion is an expansion in powers of the interaction
and the terms from these two expansions need to be kept to the same order in the
approximation.

Kalashnikov et al. (1990) calculated the one loop effective potential in the R
gauge using a determinant method with the chemical potentials embedded via non-
zero expectation values in the relevant field. These results were compared to those
obtained from the unitary gauge and a phase transition curve for W# condensation
was given.

As a further complication, Boyd et al. (1993) calculated the effective potential
for the electroweak model in the unitary gauge and examined the infrared diver-
gences present. They have cast doubt on the validity of the one loop expression,
and have used the set of ring diagrams to give a correction to the one loop result.
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This gave a phase transition which was more weakly first order than previously
obtained and indicated that the baryon asymmetry would not be generated at this
transition.

The expressions for the effective potential using the various calculational meth-
ods and choices of gauge given above are not in agreement, and further evaluation
of the electroweak plasma is required. Thus to date the general topology of the
phase boundary of the symmetry breaking phase transition is not known, and the
nature and strength of the transition is unclear.

The aim of the present work is to step back from the details of the early Uni-
verse and provide a broad general discussion, within the framework of gauge field
theory, of the behaviour of the particles involved using the polarisation tensor in
the one loop approximation. From the polarisation tensor, the thermodynamics
and dispersion relations of the system can be obtained and the consequences of
the appearance of an electroweak plasma in the early evolution of the Universe
and any phase transitions that the electroweak plasma may undergo can then be
evaluated. By using a systematic approach, the set of particles which make the
main contribution to the phase transition can be obtained, which gives insight into
the development required to extend the calculations.

This paper (designated Paper I) and Paper II (Smith et al. 1995, present is-
sue p. 775) to follow will provide the framework for further study of the plasma
physics consequences of finite temperature electroweak theory for which the collec-
tive interactions typical of the plasma state are of great importance. This point
of view will make it possible to formulate a linear many body theory which will
be the electroweak analogue of the quantum electrodynamic plasma first studied
by Tsytovich (1961). Thus the direction of the work presented here and in Pa-
per II is towards the development of a general theory of the electroweak plasma.
Further detailed consideration of the early Universe should await the completion
of this development since it is not only the phase transitions which are important
for the evolution of the early Universe but the various dissipation processes acting
in a plasma may be of even greater significance. The existence of the imaginary
parts in the response function of the electroweak plasma to be discussed in Paper
IT constitutes the first hint for the important concept of such collective dissipation
effects in the early Universe.

The present paper (Paper I) has as its aim the determination of all contribu-
tions to the polarisation tensor of the electroweak plasma at the one-loop level.
The generic forms for the polarisation tensor for the tadpole, loop and balloon
diagrams are given in equations (81), (94) and (101) respectively. An example of
the procedure used to obtain the polarisation tensor for a specific diagram from the
generic form is given at the end of Section 5.3. Paper IT will contain a detailed de-
velopment of this polarisation tensor, including real and imaginary parts, in a form
that will be used to calculate the physical properties of the electroweak plasma.
The correspondence between each diagram and the equations and functions used
to describe it is given in Table 5 of Paper II.
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2 Lagrangian
2.1 Generating Functional

Classical field theory can be quantised using two equivalent approaches. The canon-
ical formalism involves taking the variables of the system to be operators that
satisfy canonical commutation relations. The time evolution of the system is ob-
tained from the quantised Hamiltonian and the transition amplitude for the system
changing from an initial state to a final state can be calculated.

The path integral formalism is standard and appears in a number of textbooks,
for example Cheng and Li (1988), Pokorski (1987) and Bailin and Love (1986).
This formalism involves expressing the transition amplitude as a functional integral
over all possible paths between the final and initial states. Each possible path is
weighted by the probability of that path being taken, which is the exponential of
1 times the action.

Using the path integral formalism, the vacuum-to-vacuum transition amplitude
in the presence of a source J(x) is given by the generating functional

Wi~ [iaglesp {i [atlctoto) + J@oto} (1)
The vacuum matrix elements or Green functions are generated by functional

differentiation of equation (1):

§"WJ)
71)...6J(xn)

(2)

mm@hnwﬁgzéﬂ
J=0

The Green function in momentum space is defined by the Fourier transform of the
particular Green function in configuration space

G (py,...,pn)(2m)*6(pr + -+ Pn)
= [ [deplipen + ot ) GO @)

The connected Green functions are obtained by functional differentiation of the
connected generating functional

Z[J] = W[J], (4)

while the one particle irreducible Green functions are obtained by functional dif-
ferentiation of the effective action generating functional

I(de) = Z1J] - / 2] (2)be(), (5)

where ¢.(z) is the classical field. The classical field is defined as the field which
minimises
T(¢) + /d4:r.](a:)¢(a:).

The classical field can be defined in an equivalent manner by

6T (¢)

5 = —J(). (6)

p=dc
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Using the relationship between the Green functions and the generating func-
tional, an expansion is made for the generating functional

Wi =3 %/d“zl‘../d“znG(")(xl,...,xn)J(xl)...J(xn), 7)

which is equivalent to the standard Taylor expansion of functions.

We see later in the interacting field theory that the connected Green functions,
obtained from the connected generating functional, are represented by Feynman
diagrams that are connected. The one particle interacting Green functions, ob-
tained from the effective action, are represented by Feynman diagrams that are
connected and that cannot be disconnected by cutting a single internal line. The
one particle interacting Green functions have the factors associated with external
legs divided out.

Each generating functional can be evaluated exactly only if it involves Gaussian
integrals. For an interacting gauge field theory, a perturbative expansion is made
in terms of a small parameter. The Lagrangian is split into interacting and non-
interacting parts

L=Lo+Ly, (8)

where the interacting Lagrangian £; is proportional to a small parameter, \.
The generating functional is written as

W[J] = [exp / d*Ly (%)} WolJ], (9)

where
WolJ] = / (dg] exp [ / dt (Lo + J¢)] (10)

is the generating functional in the absence of interactions.
The exponential is expanded in a power series to give

W] = {1 +/d4a:£1 (%) +} WolJ]. (1)

Equation (11) can be represented by Feynman diagrams. For the 2-point Green
function or propagator we have

Tzzopozoc = c--eee--- + "”'“ + o \

where the full field propagator is represented by the double dashed line, the free
field propagator by the single dashed line and the one particle irreducible diagrams
by the shaded blob. The diagrams form a geometric series which is summed to give
the Dyson equation

S (12)

1
D= DTy (13)
ol —

or equivalently
D =Dy + DoXD, (14)
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where D is the full propagator, Dy is the free propagator and ¥ is the self energy
operator given by the one particle irreducible diagrams with the external legs trun-
cated. Hence the full propagator can be obtained by a study of the one particle
irreducible diagrams.

Equation (13) can be inverted to give

Dl =D;! -3, (15)

which shows that in the presence of interactions, the propagator shifts from the
bare propagator to the full propagator with the magnitude of the shift determined
by the self energy operator.

The one particle irreducible diagrams are defined as those diagrams that cannot
be broken into two separate diagrams by cutting a single internal line. Hence the
one particle irreducible diagrams are given by

e+ D+

e e e O )

The diagrams shown in equation (16) correspond to the self interactions between a
particular boson. For the electroweak theory considered in this work, the particles
propagating in the internal parts of the diagrams will be determined from the
electroweak Lagrangian.

Since L is proportional to A, each loop of a diagram contributes A2 to the final
results, due either to two 3-vertices or one 4-vertex. At the lowest order, the self
energy operator is given by the diagrams containing one loop. Expressed in terms
of Feynman diagrams, the one loop self energy operator is given by

s = e+ 0+ (17)

The diagrams that contribute to the self energy operator for each particle de-
pend on the interactions between the particles given by the Lagrangian. Each
diagram is divided by a symmetry factor S given in Cheng and Li (1988), which
corresponds to the number of permutations of internal lines that can be made for
fixed vertices. There is an additional minus sign for each closed fermion loop or
ghost loop.

The perturbative expansion of the generating functional in powers of L1 used
in the path integral formalism is shown to be equivalent to the Wick expansion of

the transition amplitude used in the canonical quantisation method in Cheng and
Li (1988) and Bailin and Love (1986).

2.2 Finite Temperature Theory
2.2.1 Imaginary-Time Formalism

The imaginary-time formalism uses the correspondence between the partition func-
tion at finite temperature and the generating functional of zero-temperature theory
given in Bernard (1974). This work is summarised and extended in a number of
reference works on this subject, for example, Morley and Kislinger (1979), Kapusta
(1981) and Landsman and Van Weert (1987).
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The statistical thermodynamics of a system at finite temperature is given by

the partition function
Z = tr e~ AH+LN) (18)

where H is the Hamiltonian governing the behaviour of the system, N is the number
operator, u is the chemical potential and 3 = T~ is the inverse temperature.

The partition function for bosons can be written as a summation over the
eigenstates ¢(x) of the system

7= ($(a),t=0] e PHEN) | §(),1=0). (19)
()

The partition function for fermions will be examined later.
For vacuum field theory, the transition amplitude for state |¢”(x),t”) going to
| ¢'(x),t') is given by the path integral

(¢ (), t=0] e~ FHME=E) g/ (2), 1= 0)
~ /D¢/D7rexpi t dt/d3m (w%% —H(w,qﬁ)—uN(w,qﬁ)),
o
(20)

where ¢(x) represents the field and 7 represents the associated momentum. The
correspondence with finite temperature field theory is achieved by introducing the

variable
T =1t, (21)

and using the limits of integration t' = 0, ¢/ = —3. Then we get
(" (2), 1=0] e=BH+M | ¢(2) 1=0)
B ¢
~ /qu/Dwexpi/ dr/d% (mg —H(7r,¢)—,uN(7r,¢)).
0
(22)

This expression can be made identical to the transition amplitude given in equa-
tion (19) by imposing the condition

|6"(z),t=0) = |¢'(z),t=0) = |4(z),t=0), (23)

and summing over the eigenstates. This gives the result for the partition function
[P 3 (. O

Z ~ D¢ | Drexpi [ dt [ dx|in—— — H(m,$) — uN(m, ¢)|. (24)
periodic 0 or

The 7 integration can be carried out explicitly to give
B _
7z~ D¢expi/ dt/d%/.'(qb, 09), (25)
periodic 0

where

8 = (ig—f, v¢> . (26)
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As ¢(z,T) is periodic in the interval 0 < 7 < 3, an expansion can be made in a
Fourier series

3
s =53 [ e e o), (27)

where w, = 27n/f.

The partition function for fermions is defined with | —¢(x),t =0) as the final
state in the sum as the fields are anti-periodic. This gives a summation over the
anti-periodic boundary conditions and an expansion in Fourier series with w, =
(2n+1)m/B.

The integration over eigenstates, as it stands, does not allow for the fact that
some eigenstates are equivalent as they are connected by a gauge transformation.
The Faddeev—Popov Lagrangian is included into the electroweak theory and this
Lagrangian is expressed in terms of ghost fields. These fields do not correspond
to physical particles but are a mathematical construct used so that a perturbation
series can be generated. The ghost fields are defined to be anti-commuting variables
and the anti-symmetry means that there is a minus sign for a diagram with a
closed ghost loop, the same prescription as that for a closed fermion loop. The
spin statistics of the ghost particles are the same as for bosons.

The imaginary-time formalism is structured so that the perturbation expansion
generated can be represented by the same diagrams as in the vacuum theory, a
point made in Landsman and Van Weert (1987). The difficulty that occurs is that
the propagators have imaginary time arguments and an analytic continuation is
required to give physically meaningful results.

2.2.2 Finite Temperature Feynman Rules

The finite temperature Feynman rules follow from the manipulations used in the
imaginary-time formalism to obtain the correspondence between the vacuum theory
and the finite temperature theory. Following Bernard (1974) and Landsman and
Van Weert (1987) these rules are obtained from the vacuum Feynman rules with
the substitutions

Glat,- - an) — (—0)"GPF(q1,...,qn), (28)

dq 1 1 d3q
ﬂ%ﬁ‘*ﬁ;/mw (29
i2m)46(q 4+ @n) = Blurtetuon (2m)36P (@1 + -+ gn), (30)

wp = 2n7T Boson,

wp = (2n+ 1)7T Fermion. (31)

¢ — dwnt+p {
Equations (28) and (29) together imply that the propagators lose a factor of —i
and equation (30) implies that at each vertex effectively a factor of i disappears.
Landsman and Van Weert (1987) gave a specification for equation (29) where 3
multiplies the sum, an obvious typographic error.
The statistical and symmetry factors of vacuum theory are used unchanged
in the finite temperature formalism, along with the standard renormalisation pre-
scriptions.
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2.2.83 Matsubara Sum

At zero temperature, conservation of momentum is applied at each vertex and an
integration is performed over any undetermined 4-momenta. For finite temperature
the same type of procedure is applied and as can be seen from equation (27),
integration is performed over any undetermined 3-momenta and a summation is
performed over any undetermined w,,. The summation is known as the Matsubara
summation and can be performed by an analytic continuation of the time contour
and the standard Regge pole analysis detailed in Fetter and Walecka (1971).
When the particle with undetermined momentum is a boson, periodic boundary
conditions are required. The summand is multiplied by an analytic function with
poles of residue 1 at the even integers and the contour integration is over this
combination. The Matsubara sum for a boson with component ¢° = i2N#T + p is

% > f(g® =i2NxT + p)
N

= [ E G -wf@ e i+ [ ape), @
C

. 2mL oo 2T

which is given in a number of references including Morley and Kislinger (1979),
Landsman and Van Weert (1987) and Kapusta (1989).

When the particle with undetermined momentum is a fermion, anti-periodic
boundary conditions are required and the same procedure is followed. The Mat-
subara sum for a fermion with component ¢° = i(2N + 1)7T + p is

-;- S 7@ = i@N + )T + )
N

+ioco dz

S / L (s — ) F(2) + (= + W) f(—2)] + / 3@, (33)
C

n 271 —ico

where

[eP® —1] ~! Boson,
= _ 34
n(z) { [eﬁa’ + 1] ! Fermion. (34)

The presence of the temperature distribution functions is anticipated as we started
with the partition function of thermodynamics.

These formulae are valid for any function f(z) which is analytic in the neigh-
bourhood of the imaginary axis and has the property that the product f(z)e™??
vanishes sufficiently fast at infinity. The contour C, circumscribes clockwise all
singularities of the functions f(z) and f(—2z) in the right half plane but none of
the singularities of the Bose-Einstein/Fermi-Dirac distribution functions at the
Matsubara frequencies. The integral over the C contour is the finite temperature
dependent part of the Matsubara sum.

The second integral in equation (32) or (33) gives the zero temperature part of
the Matsubara sum. A Wick rotation is performed on this integral. In specifying
the direction of rotation, a specific real axis integration is defined leading to +i¢ in
the denominator. As detailed in Section 2.2.2, each propagator loses —i and each
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vertex loses 7. Since a vertex and propagator will always be paired together in a
Feynman diagram, the zero temperature part of a diagram specified through finite
temperature field theory will give the same contribution as that obtained from the
zero temperature vacuum theory.

The first contour integral of equations (32) or (33) gives the temperature de-
pendent part of the diagram, hence only this part will be considered in calculating
the finite temperature parts of the polarisation tensor.

From complex variable theory, the Cauchy theorem states

/f z—27rzz R~ezsj f(z (35)

where the integral is taken counter-clockwise around the poles, and f(z) has m
poles at z,...,zm. As C, encloses poles in a clockwise direction, for the finite
temperature parts

VT

G =NaT +p) = =30 B nle —wf() (e +wf (-2,
N

j=1

(36)

% Z (2N +1)nT +p) = + Z zfiezsj [n(z — p)f(z) + n(z + p)f(—2)].
N j=1

37)

We can combine the Matsubara sum for the odd and even statistics by intro-
ducing a factor
sign type of contour
—  boson,
—  ghost,
+  fermion,

which takes account of the signs in equations (36) and (37). This is similar to the
spin statistics factor which is

sign type of closed loop
+  boson,
—  ghost,
—  fermion.

The general distribution function
F(z,p) = n(z — p) + n(z + p). (38)

is defined where the number distribution function n(z) will be a Bose-Einstein
distribution function for a boson or ghost particle and a Fermi-Dirac distribution
function for a fermion.

2.8 Analytic Continuation

Any function obtained under the imaginary-time formalism is defined at a discrete
set of points in the imaginary plane, given by ¢° = iw, + p. This result must be
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analytically continued to the real axis by the prescription given in Landsman and
Van Weert (1987)

Flw,q) = ]:'(qﬂ = iwy, + 4, q) . - (39)
qg —w+1ie
The infinitesimal part +ie corresponds to imposing the causal condition on the
polarisation tensor. The analytic continuation procedure is well-defined only when
analytic continuation is performed after the Matsubara summation has been done.

The notation used here is

Imaginary time function: F(q°,q) where ¢% = ¢°% — Q2,
Analytic function: F(w,q) where ¢% = w? — Q2,
where Q = |q].

2.4 Renormalisation and Running Coupling

For a zero temperature gauge field theory, calculation of Feynman diagrams in-
volving loops will yield infinities due to ultra-violet divergences. This is due to the
fact that there is no large scale momentum cutoff, the variable in the momentum
integration ranging from zero to infinity. In order to remove the infinity and obtain
a meaningful calculation, renormalisation is required.

The Lagrangian for the theory contains bare parameters, i.e. parameters in the
absence of an interaction. Since it is not possible to turn off the interaction for a
gauge field theory the bare parameters are not measurable. The renormalisation
scheme consists of isolating the infinity in the integration and canceling this against
the unrenormalised quantities to give a finite result.

The finite temperature calculation for a particular Feynman diagram has a loop
integration composed of two parts, the temperature-independent integral and the
finite temperature integral. The finite temperature integral is ultra-violet con-
vergent due to the Bose-Einstein/Fermi-Dirac distribution functions, which are
proportional to e ?/T for large momenta. The temperature-independent integral
is identical to the zero temperature integral for that diagram and as such needs
to be renormalised. The renormalisation procedure is well-defined and can be per-
formed in a consistent manner for the standard electroweak model, for example as
in Cole (1985) or Aoki et al. (1982). The finite temperature results shown here will
depend on the standard renormalised parameter.

The renormalisation scheme used has some arbitrariness related to the choice
of kinematic points in defining the physical parameters such as the mass and the
coupling constants. Since the physics of the system should not be dependent on
the choice of kinematic points then there should exist relationships between the
physical parameters based on transformations of the renormalisation conditions.
These relationships are given by the renormalisation equation. In particular, the
coupling constant in any renormalisation scheme is energy dependent, a function
of the subtraction point used.

Further work that could be considered is to examine how the the presence of
finite temperature in the calculations changes the functionality of the running cou-
pling constants or conversely, how the running coupling constant changing with
energy changes the calculations at finite temperature. That is, given that the run-
ning coupling constant is energy dependent it could also be temperature dependent.
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3 Electroweak Model
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The Lagrangian density for the standard electroweak theory (Glashow 1961, Salam
1968, Weinberg 1967) in the manifestly renormalisable R; gauge will be described

by separate sections as follows:

L = EHiggs + EGauge Fixing + [:Gauge Kinetic
+£Ghost + ‘CFermion Kinetic + cYukawa-

The Higgs sector of the Lagrangian is
LChigs = (D"®)' (Du®) - V(®),
where the Higgs sector fields are

Gi +iG
¢ = "*\/5[ H+iG°2]’

- 2]
v
V(@) = m2'd+ LA (318)%,
and the covariant derivative is
D,® = (8,+ %ig' B, + 3igWir%) ®.
The gauge kinetic part of the Lagrangian is
LGauge Kinetic = —3Fm, F** — 1GL,GH,

where the field strength tensors are

Fe, GWe — Qe — ge®*WyWy,
Guw = 8B, —AaB,.

Il

The fermion kinetic part of the Lagrangian is
L¥ermion Kinetic = éRi'Y“DueR + Q—SL";'YMD,uqb»

where the left-handed field is

and the right-handed field is eg. The covariant derivatives are

Dupr = (Gt Ligr*Wg — 3ig'B,) 61,
(8.~ 3i9'By) er-

Dper
The Yukawa coupling is

Lyaawa = —Gi(¢rPer+erdsL),

(42)

(43)

(44)

(45)

(51)
(52)

(53)
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where G is the Yukawa coupling constant.
The gauge fixing term for the R¢ gauge is

1 " a2 1 2
‘CGauge Fixing = "% (a,uW“ - '% va ) - —2—5 (6”BM - %ég’vH) . (54)
The ghost part of the Lagrangian is
Lonost = 0" (Qn® + ige®*n"Wy) (55)
£ Vi TT?, (56)
where
o T fora=1,2,3,
= { 9'/g fora=4, (57)
et = 0 foraorborc=4. (58)

4 The Polarisation Tensor
4.1 Definition of the Polarisation Tensor

The self-energy operator was defined by equations (13) and (15). For gauge bosons
propagating in the external legs of the Feynman diagram the same procedure is
used. The shift in the propagator is expressed in terms of the polarisation tensor

D;x} = DO,:,/I - H/_LIM (59)
and the polarisation tensor for a particular gauge boson is given by the one particle
irreducible diagrams with that gauge boson in the external legs.

4.2 Symmetries of the Polarisation Tensor

The polarisation tensor for a propagating particle should reflect the symmetries
of the physical situation. The symmetry requirements on the polarisation tensor
quoted here follow Melrose and McPhedran (1993).

4.2.1 Reality Condition

The analytic polarisation tensor II,,(w,q) is defined in Fourier space and hence
has real and imaginary parts. The reality condition

H/:u(wy q) = H#,,(—w, _Q)v (60)

where the star indicates a complex conjugate, must hold for the polarisation tensor.
This condition ensures that a real quantity is obtained when the polarisation tensor
in Fourier space is inverted to give the polarisation tensor in space and time.

4.2.2  Hermitean and Anti- Hermitean Parts

The polarisation tensor can be separated into hermitean and anti-hermitean parts
to give
O (w,q) = Hﬁly(w, q) + H;}u(w7 q), (61)
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where the hermitean and anti-hermitean parts are defined by

H;PI,IV (OJ, q) = % [H/»W(wa q) + H:/.L (wa q)] ) (62)

N

03, (w,q) = 3[w(waq)-I5,wq). (63)

The anti-hermitean part describes the dissipative processes occurring in the plasma
while the hermitean part describes the non-dissipative processes. For a symmetric
tensor

H;w(‘”» q) = HV/.L(w7 Q), (64)

then
Hﬁly(w’ Q) = Re H;w(wa Q)a (65)
Hﬁu(w, q) =14 ImII,,(w,q). (66)

4.2.3 Onsager Relations

The Onsager relations describe the required behaviour of the polarisation tensor by
considering the time-reversal properties of the equations of mechanics. For particles
in a magnetic field, the equation of motion is

dp _

L — @(®+vxB) (67)

where g, is the charge on the particle. The equation of motion is unchanged under
time-reversal when the direction of both the magnetic field and the direction of the
momentum are also reversed.

The anti-hermitean part of the polarisation tensor is an odd function under
time-reversal reflecting the fact that it describes dissipative processes. The her-
mitean part of the polarisation tensor describes non-dissipative processes and is an
even function under time-reversal. Hence we have

B -B

Hf}(w,q)’ = —Hf}(—w,q)‘ : (69)
B —-B

These relations can be combined using the reality conditions to give the standard
form of the Onsager relations
Hij (wv q)i = Hji(“"? _q)l . (70)

B -B

The Onsager relations relate to the spatial sector of the polarisation tensor be-
cause the time-reversal symmetry is dependent on the equations of motion of the
propagating particle.

4.2.4 Causality

The analytic continuation used in obtaining the analytic polarisation tensor, given
in Section 2.3, applies a causal condition to the polarisation tensor. That is, the
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polarisation tensor at a given time ¢ can only depend on interactions occurring at
earlier times. The causal condition leads to a dependence between the real and
imaginary parts of the polarisation tensor given by the Kramers—Kronig relations
specified in Melrose and McPhedran (1993) and Jackson (1975)

1 t°  ImII,, (v,
Re Tl (w,q) = ;][ ), (1)
—o0
1 RelIl,,(«/,
I (w,q) = = dw'———wf‘—_(w—g)- (72)
—o0

where the integration is a principal value integration.

Hence the real and imaginary parts are dependent on each other; for example,
when the analytic form of the real part of the polarisation tensor is known, the
imaginary part can be calculated.

5 Contributions to the One-loop Polarisation Tensor
5.1 Loop Expansion

The diagrammatic expansion of the generating functional in terms of Feynman
diagrams used for zero temperature vacuum theory can be carried over to the
finite temperature theory. At lowest order the self-energy is given by diagrams
containing one loop. These types of diagrams can be constructed from either two
3-vertices and two propagators (the loop and balloon diagrams) or one 4-vertex
and one propagator (the tadpole diagram).

The diagrams needed for the calculation of the photon polarisation tensor to 2
order are

Y
—eOe+WHW + W ,,\G+G|:§)G+n:,_§-n+§{:§w+§:_)G
Y

The diagrams needed for the calculation of the Z boson polarisation tensor to g2
order are

ZO
é = é e+W§§W+Z§;H+Wé;GJrGoé)H-i-Gé)G
ZO

+ §n+§{3}w+§ G+§ G°+§ H+§H{C}W+§H{}Z

+ %{{:"G"‘ ;‘1’_\) G°+ gh"\:“H + %i{f 0+ ; n” + %h@e
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The diagrams needed for the calculation of the W boson polarisation tensor to g2
order are

5 w@w g
Il

+ G{ H+n +ni

VRS £OTS YN )N §1

+ e i B W B+ 5000
+ %a,G + ;ﬁ:ﬁH + %‘L“_"’ﬂ + ; S+ %h@e

éu + W{§7+ W%Z+7§‘;G + Z§,>G+ W%H +G(§G°
H % g
H % §

Examples of the generic type of diagrams for gauge bosons propagating in the
external legs are

Tadpole )
AV
Loop vav{/ :V\/\/\/‘
O
Balloon St
A

This section gives the general result for the finite temperature contributions of
the three distinct Feynman diagrams to the one-loop polarisation tensor—tadpole,
loop and balloon. The contribution to the polarisation tensor depends on the
contraction of the vertex factors and the propagators for each of these diagrams.
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5.2 Tadpole

The tadpole diagram contains a 4-vertex and a propagator

7 v
4-vertex Vg, v; e, B)
]/1 l\l
l/ \1
l/ \l
e AN
@ g
p
Propagator M— @ —il— i Ppt— i —i~ f

[p02 _ Ef)(m1)}

where the external legs of the diagram are taken to be gauge bosons. The notation
used is that the particle propagating around the loop is labeled with a “1” on
the line and propagates with 4-momentum p, mass m; and chemical potential ;.
The propagator for any particle can be expressed either directly in the form shown
above, or in the case of gauge bosons as the sum of two parts where each part is
in the form shown above. The list of all the propagators in the imaginary-time
formalism of finite temperature field theory is given in Appendix A.6.
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The vertex and propagator are combined and the Feynman rules for finite tem-
perature are applied to give

(iwn + p1,P), M1

/1—’}\1

~
1/ 1\
/ 1
1 \

/ 1

1 \

d , I

ta _
Huu ( ) - 1\ 1’
1 /
\ 1
1 /
\1 /1
(iwns + 1, q') (iwn + 1,9)
N(p; o, B)
= oo V(,LL, v, ﬁ)
1’ /8 Z/ E2 (ml)]
xﬁawn,_wnmw)%“) (q - q). (73)
The combination of delta functions
A = B8, -, (27)*6P(d' — q) (74)

is dimensionless and shows that momentum and temperature are conserved at the
vertex. This combination will not be shown explicitly in the expression for the
polarisation tensor.

The function summed over is

X;W(P)
f@°) =+—""——7, (75)
p [p°2 _ Ef,(nn)]

where

£oop Contour (p; a, ﬁ)V(:u’, v, /B)a (76)

and the contour factor and the statistics factor discussed in Section 2.2.3 have
been included. The symmetry factor corresponding to the number of permutations
of internal lines that can be made for fixed vertices cannot be included until the
particle propagating in the loop is specified.

The propagators for the electroweak particles are given in Appendix A.6. When
gauge bosons are propagating in the external legs, the symmetries of the elec-
troweak Lagrangian show that only a gauge boson or a Higgs sector boson can
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propagate in the loop. The numerator of the propagator for these two cases can
be expressed as

9o — p;:SB one part of gauge boson,
N(p;e, B) = IJa_I;ﬂ other part of gauge boson,
m
-1 Higgs sector boson,

where the propagator for the gauge boson is split into two parts.

All 4-vertices of the electroweak Lagrangian are independent of momentum.
The numerator N (p; o, B) for the particle propagating in the loop and the 4-vertex
are combined and the a and § indices are contracted to give X, (p). As N(p;a, B)
is in the form shown above, X, (p) can be expressed as a combination of Guv and
PuPv-

In the nght half-plane the only pole of f(p°) occurs at p° = Ep(m;) or alter-
natively, at p* = m?. Hence, the residue of f(p°) is

. Res X;w(p) _ qu(pzzm%). (77)
P =Ep(m1) [p02 _ Ef‘)(ml)] 2Ep(m1)

With the integration over p, there is the symmetry p — —p. Hence f (»°) =
f(—p°) and equation (32) yields

5I0) = Xup=mp TEE, (78)

where F' is the general distribution function defined in equation (38). The result
for the Matsubara sum means that the expression for the polarisation tensor has

the form p F(B
I~ (19

As shown above, X,,,(p2=m?) can be expressed as

;w(p ml) ’Cog;w + MOPI-LPIH (80)

where the general constants Ko and M are obtained from the calculation of X,w(p)
for each diagram. These constants are independent of the integration Varlable p
and may depend on m;.

Using this, the generic form for the polarisation tensor for a tadpole diagram is

tad d3p F(Ep(ml)».ul)
0 = [ 2Ep(mr)

(’Cog;w + MOpupu)' (81)

This shows that Htad(q) will be independent of q. In Paper II, the general K,
and Mo constants are calculated and used with this expression to give the generic
form for the polarisation tensor for a tadpole diagram expressed in terms of the
polarisation response functions.
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5.3 Loop

The loop diagram contains two 3-vertices and two propagators

U
q/
3-vertex Vild',p' iy, A)
1/l 2\2
120 4 % p'
1 \Z
7 ~
A a
p
Ni(p; A
Propagator _—@-’—’L AN —i— e (Pl — 1 — 1=
I:pOQ"EIQ)(ml)]
p/
Nao(p'; o,
Propagator 2(¢'s o f) Q@ —tmmi— 2P 2—m 22— 2= 3

[~ B3 ma)]

3-vertex Va(g,p,0'5v, 0, B)
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There are two particles propagating around the loop and they are not necessarily
the same. The notation used is that particle 1 is labeled with a ‘1’ on the line and
propagates with 4-momentum p, mass m; and chemical potential ;. Particle 2 is
labeled with a ‘2’ on the line and propagates with 4-momentum p’, mass mq and
chemical potential ps.

The vertices and propagators for the loop diagram are combined and the Feyn-
man rules for finite temperature are applied. This gives

(in' + H2, p’)7m2

, 2 "P 2 <
7 2
/2 \2
mEr W\/V /\/\%\/\/
(iwns + 4/, q') 1 /1 (iwn + 11, Q)
\1 /1
\1 \]4_1 1

(iwn + p1,p), M1

= oop 8 Z/(dap 1 / I;j(::l)]

Na(p'; a,ﬂ)
o' — B3, (my)

xVi(d',p',p; 0, ) [ } Va(q, p,0’5v, p, B)

X B8, +wn—wy, (27)36® (¢ + p — ')
X B8 s —won—ony (27)36®) (p’ — q — p). (82)

If the particles propagating in the loop are fermions, a trace over the gamma
matrices is performed. The summation over N’ and p’ can be done immediately,
yielding wy' = wy +wy,, P’ = p+q and the same combination of delta functions
as shown in equation (74). For the equilibrium situation considered, u + pu; = o,
and these relationships are combined to give

0/

P’ = iwns + po = dwy + 1 + w, +p=p° +q¢°. (83)

The function that has to be summed over is

Xﬂv(p)
|2 = B3 (ma)] [0 + )2 = Bpuqma)]

@) = : (84)
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Pole Residue

1 X (p;p° = Ep(my))

Ep(ml) 2Ep('m1) (E'p(ml) + ¢°)2 —Ef,+q(m2)

n(Ep(mi) — p1)

1 X (p;p° = Epyq(m2) — q°)
2Ep+q(m2) (Epiq(ma) —¢°)% — Ej(m1)

Epiq(m2)—¢° n(Ep+q(me) — p2)

Table 1: Poles of f(p°)n(p® — p) and the residue at these poles

Pole Residue

1 X (p;p° = —Ep(m1))

Ep(ml) 2Ep(m1) (Ep(ml) _ q0)2 _ E12)+q(m1)

n(Ep(mi1) + p1)

1 Xy (p;p° = —Ep4q(m2)—¢°)
2Ep q(m2) (Epiq(mz)+¢°)2 — Ep(m1)

Epiq(m2)+¢° n(Ep+q(ms) + p2)

Table 2: Poles of f(—p°)n(p® + p) and the residue at these poles

where
Xuw(p) = oioz, C(S,fgw Ni(p; A, p)Vi(q,p + 4, p; s @, A)
XN2(p+q;avﬂ)VQ(q7pvp+q;V7p)ﬂ)a (85)

and the loop and statistical factors have already been included.

Now, the Matsubara summation detailed in Section 2.2.3 must be performed.
Following equation (37), residues must be evaluated. In the right half-plane the
poles of f(p°) occur at p° = Ep(m1) and p° = Epiq(m2) — ¢°. Evaluating the
residues of n(p° — u) f(p°) gives the results shown in Table 1. The poles of f(—p°)
occur at p° = Ep(my) and p° = Epyq(mz) + ¢°. Evaluating the residues of
n(p® + p) f(—p°) gives the results shown in Table 2.

Now we take the same diagram but with each particle in the loop changed to
its own anti-particle. The vertex factors used in the diagram are unchanged. The
propagators of the gauge bosons, Higgs sector bosons and ghost particles do not
change. The fermion propagator, which depends on p, does change but as there is
a trace over the gamma matrices this change does not affect the form of X, (p).
Hence the change to the residues is that p; — —u1, g2 — —p2 and so the residues
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for both diagrams taken together have the same form as that shown in Tables 1
and 2, with n(Ep(m) + p) — F(Ep(m), u) and with a factor of 1 in front of the
combination to avoid double-counting.

The integration variable is p and so we make the following transformations on
each of the 4 residues listed above in the sequence shown below

No change
p+q—p, pP°+q¢—p° =Sp—op-—gq
p — —D, p° — —p° =p— —p,

Pp+q—-p, p°+¢ —-p° =p—-p—ygq,

Then we have

loo, _ 1 d% F(Ep(ml)aul) X;u/(p)
Huup(q) - 2 /(27r)3 2Ep(m1) { (Ep(m1)+qo)2 _Ef)+q(m2)-

_ Xy (=) _ }
(Bp(m1) - ¢°)? — Bp_g(m2)|

n %/ d% F(Ep(mz),uz){ Xuw(-p—q) _
(21)2 2Ep(mg) [(Ep(mQ) +¢°)2 — B q(m)]

+

Xp,l/(p - q) _ }
[(Bp(m2) — ¢°)2 - B} _q(m1)]

(86)

The first term in this expression, which depends on X,,,,(p) and X,,, (—p) implicitly,
has p® = Ep(m;) while the second term, which depends on X, (—p — ¢) and
Xuv(p — q) implicitly, has p® = Ep(mg). This expression exhibits the various
symmetries expected. If the particles are the same, m; = mg,u; = uo then
X, (p) = Xuv(—p — q). The two parts of the expression would then be identical
and the % removes the double counting.

Under p° = Ep(m,;) we have

(Bp(m1) £¢°)° — Epiq(ma) = £2(p-¢) + (¢* + m} — m}), (87)

with a similar expression for p° = Ep(ms). Using these expressions the denomina-
tors are combined to give
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oo _ d.Sp F(Ep(ml)vﬂl) .fw(p)
R %/ @n?  2Ep(m) {4(p-q>2—($2+m%—mg)2}

N %/(dap F(Ep(mz)altz){ huw (P) )2}’

2m)3  2Ep(ma2) 4(p-q)? — (¢> + m —m?

(88)
where
fu®) = —2(¢* +mi —m3)3[Xuw(p) + Xpu(-p)]
+4P‘Q%[X;w(p) - qu(_p)]’ (89)
hu(®) = —2(¢*+m3 —m})i[Xu(—p—q) + Xu(p—q)
+4p a3 [ Xy (-p — q) — X (p — @)]. (90)

For the case where the particles propagating in the loop are of the same type
(e.g. both Higgs sector bosons), h,, (p) could be obtained from f,,,,(p) under m; <
ma. The function X, (p) is composed of 2 vertex and 2 propagator factors, each
of which is dependent on a linear combination of p and q. Due to the contraction
on the indices, X, (p) can only depend on p?, p-q, ¢*> and pairwise combinations
of these. Hence, only the odd part of X, (p) will involve p-q or p.q, + q.p, and
fuv(p) and hy, (p) are expressed in the form

fur®) = [Ki+Ka(p-0)*gu + [Ks + Ka(p-0)*Ipupy

+  [Ks+ Ke(p-9)*laugy + K7p-q[pudy + 940, (91)
hu(p) = My + Ma(p-9)*1gu + [Ms + Ma(p-0)Ipupy

+ M5+ Me(p-0)?augy + Mrp-q[pugy + qup.]. (92)

The general constants K; and M, are obtained from the calculation of f,,(p)
and h,, (p) for each diagram. These constants are independent of the integration
variable p and may depend on my, mg and ¢°. The relationship p? = m? under
p° = Ep(m) has been used.

Where two fermions are propagating in the loop, there is a trace over the gamma
matrices. The general form of the vertex involving a gauge boson and two fermions
depends on I and 5 hence when the trace is performed, a term glvaPp qp arises.
This term can be dropped as the final results for the diagram must be symmetric
in the p and v indices.
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The contribution to the polarisation tensor can be simplified using

(¢® + mi —m3)?

A(p-q)? — (¢ + mi —mj)>’

(p-q)®
4(p-q)? — (g% + m% — m3)?

(93)

+}

-

Hence, the generic form for the polarisation tensor for a loop diagram is

{%’629;41/ + i"c4pupu + :11"(:6(1#(]1/}

moor(g) = 4 /(d‘°‘P F(Bp(m1), i)

27'(')3 2Ep (ml)

) i

X{[’C1 + %’Cz(qz +mi - mg)z] Juv
+ [Ks + §Ka(@® +mi — m3)*] pup,
+ [Ks + 1K6(g® + m3 —m3)?] quan

+K7p-q[pqu + Qupu] }

dp F(Ep(ma),u2)
+ %/(2#)3 2Ep(m2) {iMagu + §Mapupy + 1Modua. }

[4(p-q)® — (¢® + m§ —m})?] ™

+
I

/dgp F(Ep(my), p2)
(2m)®  2Ep(ma)

X { [My + Mo+ m3 —m3)?] g
+ Mz + Ma(g® + m3 — mi)?] pup,
+ [Ms + IMe(q® + m3 — m?)?] quan

+Map-q[pugy + quu]}° (94)

In Paper II, the general K, 7 and Mg_ 7 constants are calculated and used
with this expression to give the generic form for the polarisation tensor for a loop
diagram expressed in terms of the polarisation response functions.
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At this point it is worth while pausing to examine the overall features of equa-
tion (94). The general constants K; and M, are obtained from f,, (p) and h,,(p),
as given in equations (91) and (92). These functions are defined in equations (89)
and (90) from X, (p), a function given by the contraction of the vertices and the nu-
merators of the propagators of the particles involved as specified by equation (76).
This process can be represented as

Vertices fuv(p) K; loop
Propagators X (p) = b)) — M L")

As an example, consider the case where a photon is propagating in the external
legs and two Gt bosons are propagating in the loop. Then

Ni(p A p) = -1,
Vild,p, ;o)) = —e(@+p )
N2(p,;a’ﬁ) = _17

_e(p/ + p)u

Vz(q,P,p/§ v, p, B)

The statistical factor is —1 for a boson contour, the loop factor is +1 for a boson
loop and the symmetry factor is +1 as the particles in the loop, although identical,
are charged. [Note that G~ is implicitly included in the polarisation tensor.] The
numerators and vertices are combined to give

X;w(p) = —¢? [4pupu + 2(pu‘IV + ‘Ippu) + QuQV] .
Using this expression for X, (p) gives

fuw(p) = 2¢2 [4(112 +m? —m2)pup, — 4p-q(Pudy +upy) + (¢ +m3 — m%)quqy],
hu(P) = fu(p) under my < mao.

This gives for the constants

Ky = 8eX(q” +mi—mj), Mz = 8e(¢? +mj —mi),
Ks = 2€%(¢* +mi—m3), Ms = 2*(¢® +mj —m3),
’C7 = —862, M7 = —862,

where the K; and M; constants not explicitly shown are zero. These constants
are inserted into the expression given in equation (94) to obtain the polarisation
tensor.

This calculation has all been performed with the photon-G+*-G* vertex. The
usefulness of this arrangement is that the vertex factor for a gauge boson and two
Higgs sector bosons has the same general form as the photon-GT-G™* vertex, so
for the case where a gauge boson and two Higgs sector bosons form the vertex,
—e could be replaced by a general factor, say, A4. Hence the polarisation tensor
obtained from the calculations given above could be used for the general case
with —e replaced by A4. Furthermore, the same process can be followed for a
more complicated situation using the general vertex factors given in Section A.7.
This method exploits the symmetries of the Lagrangian, reduces the number of
calculations required and is applicable to calculations where the vertex factors are
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complicated, in particular where two gauge bosons are propagating in the loop. The
procedure given above has been used with the computer application Mathematica
of Wolfram (1991) and the Mathematica package HIP of Hsieh and Yehudai (1992)
to obtain the K; and M; constants for the most general types of Feynman diagrams.
The polarisation response functions given in Paper II explicitly use the results for
these constants.

5.4 Balloon

The balloon diagram contains two 3-vertices and two propagators

p
P A
Propagator _N(p,—,p) A —m il e e (P I — | =1 = p
[p02 _ Ef)(ml)]
A N, 7 P
~
Ay A
P \IY/ P
3-vertex Vi(p',p,p; A\, p) I
y »
I
|
p/
N
Propagator'2 X —_—— — — P - — — =
[po —Ef,,(mx)]
|
I
Yy »
[
3-vertex  Va(p',q',q;p,v)
q q
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The particle propagating in the loop has 4-momentum p, with mass m; and
chemical potential y;. The particle that is exchanged with 4-momentum p’ has
mass my and chemical potential py.

The vertices and propagators for the balloon diagram are combined and the
Feynman rules for finite temperature are applied to give

(in + p1, p)7 my

~ 1—"\ I

/1/ N 1
1 \
/ "
[ \
\ !
Hz?/u(q) = 1\ /
1\ 1/1
1 e
~ 1|__ 1
(sz’vp/)7 mx*
(wn + ¢/, d") (iwn + 11,9)
d’p 1 d‘"’p' N (p; A, p)
°°” 8 Z/ 2m)3 ﬁ /

— E2 (ml)]

N
xVi(p',p,p; M p) [ =

2 V2(p/7q/7 q; K, V)
p? — B3, (mx))|

X Byt —wn (2m)36@(d' + D' — q)
X B8 —wpys—wn (21)%63) (p — P — p). (95)

The summation over N’ and p’ is done immediately, yielding wy: =0,p’ =0 and
the same combination of delta functions as shown in equation (74). This restriction
means that a gauge boson cannot be the particle exchanged, as a zero momentum
particle cannot carry a Lorentz index. The only uncharged particle that couples
to two gauge bosons is the Higgs boson. For p’ = 0, the Higgs boson propagator
reduces to 1/m2.

The function summed over is

; (96)
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where

1
Xuw(p) = oio; o) m_f,%(p/ =0,p,5X p)N(p; A, p)Va(p' = 0,4, ¢; 1, V),

(97)
and the contour ‘statistics’ factor has already been included.
In the right half-plane, the only pole of f(p°) occurs at p® = Ep(m;). The
residue of the denominator is the same as in the tadpole case, hence

) = [ gy (Ko B ()= + Xy (Bl ) )}
(99

Now we take the same diagram but the particle in the loop changed to its own anti-
particle, propagating in the same direction. The vertex factors used in the diagram
are unchanged. The propagators of the particles do not change and for the fermion
propagator, which depends on p, there is a trace over the gamma matrices. Hence
the form of X, (p) does not change. Hence the change to the residues is that
n1 — —p1, 2 — —pe and so the residues for both diagrams taken together have
the same form. The polarisation tensor for both diagrams taken together has the
form

dp F(Ep(my),
M0 =} [ TR (X0 4 Xl ()
where the factor of -é— in front is placed there so that there is no double-counting.
The function X, (p) is composed of 2 vertex factors and 2 propagator factors.
As the particle exchanged is a Higgs boson the second vertex must be proportional
to guy. The X and p indices are contracted, hence X,,, (p) can only depend on
gy multiplied by a linear combination of p? and q?. The residue is evaluated at
p° = Ep(m1) which implies that p> = m3. Hence X, (p) can be represented as

X;w(p) = g,uuK:S, (100)

where Kg is a general constant. Therefore, the generic form for the polarisation
tensor for a balloon diagram is

& F(Ep(m1),
2" (q) = Ks / (2;‘))3 (251()?7;)1)“ . (101)

In Paper II, the general Kg constants are calculated and used with this expression
to give the generic form for the polarisation tensor for a balloon diagram expressed
in terms of the polarisation response functions.

6 Summary and Discussion

For the standard electroweak theory (Glashow 1961, Salam 1968, Weinberg 1967),
the finite temperature part of the polarisation tensor for the W%, Z° and v gauge
bosons has been calculated in a systematic manner using gauge field theory and the
R; gauge. The polarisation tensor gives the shift in the propagator of the gauge
bosons due to interactions.
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Finite temperature field theory is used in the imaginary-time formalism which
means that the perturbation expansion used for the zero temperature theory can
be carried over to the finite temperature calculations under the application of the
finite temperature Feynman rules. These rules prescribe a Matsubara summation
due to the periodic boundary conditions.

The contributions to the polarisation tensor due to the interactions described by
the electroweak model are expressed in terms of Feynman diagrams. Each Feynman
diagram is one of three distinct types—Iloop, tadpole or balloon—and for each of
these types, an algorithm is developed to calculate the contribution of the general
diagram.

The work presented here will be developed further in Paper II of this series where
the final form for the polarisation tensor will be presented. There an appropriate
set of basis tensors will be given and the polarisation tensor derived in this paper
will be described by polarisation response functions calculated using these ‘basis
tensors. Real and imaginary parts of the polarisation response functions will then
be obtained so enabling a preliminary study of the characteristics of the electroweak
plasma to be undertaken.
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A Notation

The notation used in this work is standard (except for the labelling used for the
vertices) and is taken from a number of reference works including Mandl and Shaw
(1984), Bailin and Love (1986) and in particular Cheng and Li (1988).

A.1 Units

Natural units are used in this work, where i = ¢ = k; = 1. As an example, this
gives the fine structure constant as

.
T d4r 137

so that electric charge is a dimensionless quantity. The energy-momentum rela-
tionship for a relativistic particle is given by

Ep(m) = 5* +m?,

where both momentum and mass are measured in units of energy. The distribution
functions become

[eE/T n 1]‘1 + Boson/Ghost,
— Fermion,

where temperature is measured in units of energy.

A.2 Metric

gI’W =Gw =

SO O
o= O O
= O OO
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Scalar Product A-B=A*B, = A,g""B, = A°B;, — A - B,
Contravariant Tensor ¢* = (w,q),
Covariant Tensor qu = (W, —q).

A.3 Pauli Matrices

& <
Il I
N TN
O = . O
~—

A.J Dirac Matrices

{7} = 290,

7" =5 = i7"y,
(r")* =T
A.5 Trace Algebra
tr (1) = 4,
tr(v°) = 0,
tr (odd number of matrices) = 0,
tr(v*7) = 49",
tr (y¥*9°) = 0,
tr (v*7"7°) = 0,
tr (¥*4"7"7°) = 0,
tr (Y*y'yPy7) = 4(g"g” —g"Pg" + ¢"7g""),
tr (Yy/yP7y%) =~

A.6 Propagators

The propagators for finite temperature field theory are shown here. These are ob-
tained by removing a factor of —i from the standard zero temperature propagators
in the R gauge. This prescription is given in Section 2.2.2.

o -1 o 1 -t
Gauge: (gaﬁ - PmI;ﬁ) [p°2 - Ef,(m)] + pmp2 [P°2 - Ef,(&ﬁm)] )

Higgs: - [p°2 - Ef)(m)] -,
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-1
Ghost:  — [p°2 - B (m)] ,
-1
Fermion:  — (p+m) [p°2 - Ef)(m)]
A.7 Vertices

The vertices for the electroweak model are shown here in generic form. Consider
the 4-vertex for 2 Higgs sector bosons and 2 gauge bosons. This will always be
proportional to g,,. For a specific instance, where 2 G° bosons and 2 Z bosons
are involved, the constant of proportionality is z% g?sec?fy,. This can be obtained
from the electroweak Lagrangian given in Chapter 3 or from most textbooks on
gauge field theory, e.g. Bailin and Love (1986), Cheng and Li (1988), Itzykson and
Zuber (1980) and Cole (1985) to name a few.

For finite temperature field theory, each vertex loses a factor of i, so for the
specific case at finite temperature C; = % g?sec?8y,,. The generic form is used so
that the calculation of the tadpole diagram which depends on the 4-vertex with 2
Higgs sector bosons and 2 gauge bosons, can be performed using the generic factor
C; and the actual particles involved do not need to be specified. For the particular
particles considered above, propagating in the legs of the vertex, %gQ sec? 0y, will
be inserted in the expression for the diagram in place of C;.

A.7.1  3-Vertices
The 3-vertices are arranged to match the labelling used in Section 5.3. The particle

labelled with a ‘1’ is on the left-hand side travelling towards the vertex and the
particle labelled with a ‘2’ is on the right-hand side travelling towards the vertex.

General form: 7, (Ao + A17s)

I Incoming | 1 | 2 Ao Ay

w= v |et —-g/(2V2) +9/(2v2)

¥ et | et e 0
Z et | et g(;l1 —sin%0,) sec By, | — % gsecty,
VA v | v ——%gsecew +%gsec€w

Table Al. Gauge—fermion—fermion vertex factors
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General form: Az [(—p' — P)ugra + (P — ¢')agux

+(ql + p/))\gau]

This vertex is symmetric in all particles

Incoming | 1 2 A,y
v w* | w* e
Z W* | W* | gcosfy

Table A2. Gauge—-gauge—gauge vertex factors

General form: Asp),

Incoming | 1 | 2 As
g ntnt| e
" Y no|n +e
VA nt | nt | —gcosby
% Z n~ | n~ | +gcosby
<7 LA N —¢
Y A W— 77-I— nv +e
W+ n~ | n? | —gcosfy
w- nt | n? | +gcosby
w+ n? | nt | —gsinfy
w- n | n7 | +gsinfy
Table A3. Gauge-ghost—ghost vertex factors
General form: A4(p+p),
Incoming | 1 2 Ay
g 5y Gt |G* —e
§ A Gt | GT | —gcos20,,/(2cosby)
2.y wt  |G6F| e ~Lig
P . wt |G| GE +3ig
w: | H|G* ~1g
Z H |G - % g/ cos By

Table A4. Gauge—Higgs—Higgs vertex factors
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General form: Asg,,»

Incoming | 1 2 As
v W+ | GF emy,
A W= | GF | —gmy sin? 8,
W= W=+ | H gy,
Z Z | H| gmZ/my

Table A5. Gauge—gauge-Higgs vertex factors

General form: By + Byvs

Incoming | 1 | 2 By B

H elel—igm/my | O

Table B1. Higgs—fermion—fermion vertex factors

General form: B,

Incoming | 1 2 B,
H|c*|c* [ “lgmi/me
H G% | G° | —3gmZ/my
H H | H | —1gm?/my,

Table B2. Higgs—Higgs—Higgs vertex factors

773
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General form: B3€

[

1

[ Incoming | 1 2 B3

|

RN H |t |nf+| —39mw
- It H nZ | n% | —3my sec? by,

Table B3. Gauge—ghost—ghost vertex factors

A.7.2  4-Vertices

The 4-vertices are

o 3 General form: Co (2941908 — Juaus — 9upua)
Co
wtiw- W+ | W~ g°
WH| W | « v —e?
M v W |\w-| Z 7 | —g®cos? by,
Table C0. Gauge—gauge—gauge—gauge vertex factors
General form: Cigu.
C1
W+t | W- |Gt |G| 19°
\\ /,’ wH|w-|G° | Gg° 1g?
‘v w+|wW-| H | H 1g?
Z Z |Gt | G| $g%cos® 20, sec® Oy,
iz v VA Z |G| G° % g2 sec 0y,
Z | Z |H|H 39%sec? Oy,
v v |Gt |G~ 2¢?

Table C1l. Gauge—gauge—Higgs—Higgs vertex factors
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