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Abstract

The elastic and nonlinear acoustic vibrational properties of terbium metaphosphate glasses
(Tb203)x(P205)1-x with x = 0·226, 0·247, 0·263 and 0·271 (x is the mole fraction) have
been determined from measurements of the effects of temperature, hydrostatic pressure,
and uniaxial stress on' ultrasonic wave velocity. At temperatures below about 140 K, the
elastic stiffness C1J of' (Tb203)x(P205)1-x glasses becomes anomalously dependent upon
temperature, a behaviour usually associated with interactions between acoustic phonons and
two-level systems. Except for the (Tb203)O·271(P20S)O·729 glass, the hydrostatic pressure
derivatives (8C1J/8P)T,P=O of the elastic stiffness C1J and also (8Bs /8P)T,P=O of the bulk
modulus B S of terbium metaphosphate glasses are small and negative. The third-order elastic
stiffness tensor components CIJK of the (Tb203)o·247(P20s)o·7s3 glass between 77 K and
400 K have also been determined. At room temperature, Cl12, C123 and C144 are positive
while C111, C155 and C456 are negative. Both longitudinal and shear acoustic mode Griineisen
parameters are small and negative: the application of pressure softens the long-wavelength
acoustic phonon mode frequencies. The mode softening is enhanced as the temperature is
reduced.

1. Introduction

The concept of long-wavelength acoustic mode softening in glasses has been
well established and studied extensively. The ultrasonic wave velocities in pyrex
glass (Hughes and Kelly 1953) and fused silica (Bogardus 1965) are reduced by
the application of hydrostatic and uniaxial pressure, a feature now known to be
consistent with soft mode behaviour. The negative values of hydrostatic pressure
derivatives (8CYJ/8P)T,P=O of the second-order elastic stiffness (SOEC) CYJ
indicate that the long-wavelength acoustic modes soften under pressure. Some
glasses show this mode-softening while others stiffen under pressure. Glasses
based on vitreous silica (Hughes and Kelly 1953; Bogardus 1965; Kurkjian et ale
1972; Maynell et al. 1978) and BeF2 (Kurkjian et al. 1972) have negative pressure
derivatives (8BS /8P)T,P=O and (8C~4/8P)T,P=O of the bulk (BS) and shear
(C~4) moduli. The third-order elastic stiffness tensor components (TOEC) CI J K

of vitreous Si02 are anomalously positive (Bogardus 1965) and increase strongly
as the temperature is reduced to 77 K (Wang et ale 1992): the pressure-induced
acoustic mode softening becomes enhanced at lower temperatures. However, the
elastic behaviour of other glasses under pressure is more normal without showing
any acoustic mode softening (Lambson et ale 1984). The physical origin of
the diversity in the behaviour of acoustic mode anharmonicity in glasses is not
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yet understood, although it appears that acoustic mode softening in glasses is
associated with a motion of the bridging oxygen.

Previous experiments on metaphosphate glasses containing Sm3+ (Mierzejewski
et ale 1988a; Sidek et ale 1988; Wang et ale 1990; Senin et ale 1993a), Eu3+

(Farok et ale 1994) or Gd3+ (Senin et ale 1994a) ions have shown that the
temperature dependences of the ultrasonic wave velocities are anomalous. Similar
results have been obtained recently for ternary La3+-Sm3+ metaphosphate glasses
(Senin et ale 1994b). Application of hydrostatic pressure to (Sm203)x(P20S)1-x
or (EU203)x(P205)1-x glasses produces a decrease in ultrasonic wave velocity.
The hydrostatic pressure derivatives (8Crl/8P)T,P=O and (8C24/8P)T,P=O are
negative: the pressure induces softening of the long-wavelength acoustic modes.
The hydrostatic pressure derivative (8B S/8)T,P=O is also negative for these glasses:
the compressibility increases with pressure, hence the bulk modulus is decreased
under pressure. These glasses become easier to squeeze when subjected to high
pressures. A similar anomalous elastic behaviour with pressure, but to a smaller
extent, is also shown by (Gd203)x(P20S)1-x (Senin et ale 1994a). In marked
contrast, metaphosphate glasses containing La3+ (Sidek et ale 1988; Mierzejewski
et ale 1988a) and Nd3+ (Senin et ale 1993b) ions as network modifiers show a
normal elastic response to pressure.

As part of a plan for a comprehensive study on the elastic behaviour
under pressure of rare earth metaphosphate glasses, an ultrasonic study of
(Tb203)x(P205)1-x glasses has been carried out. The objective of the study
is to provide a complete picture of the acoustic vibrational properties and to
find out whether these glasses show acoustic mode softening. In the present
work, temperature dependences of the ultrasonic wave velocity and attenuation
have been measured from 10 K to 300 K for (Tb203)x(P20S)1-x glasses with
x == 0 .226 and 0·247. Changes induced in the ultrasonic wave velocities by the
application of hydrostatic pressure have been measured for these glasses at room
temperature and for the (Tb203)o.247(P20s)o·753 glass from 293 K to 400 K.
Measurements of the effects of hydrostatic pressure and uniaxial stress on the
ultrasonic wave velocities have been made in the range 293-400 K to evaluate the
TOEC of the (Tb203)o· 247(P20S)O· 753 glass. To extend the determination of
TOEC of this glass from room temperature down to 77 K, the effects of uniaxial
stress on the ultrasonic wave velocities have also been measured.

2. Experimental Techniques

The (Tb203)x(P20S)1-x metaphosphate glasses were prepared by heating (in an
electric muffle furnace) a dry mixture weighing about 50 g of 99·9% purity grades
of Tb203 and P20S in an alumina crucible. The resulting (Tb203)x(P20S)1-x
glasses are transparent and free from cracks and bubble. The density of each
sample was measured at room temperature with Archimedes' method, using
toluene as the immersion liquid.

The compositions of the glass samples were determined by quantitative analysis
using a JEOL JXA-8600M electron probe microanalyser (EPMA) with pure
Tb3Fes012 sample as a standard. The glasses were then polished to produce
flat and parallel faces to within 10-3 radian, and had a thickness of about
5 mm, which was suitable for ultrasonic and other measurements. X-cut or
V-cut 10 MHz quartz transducers were used for the generation and detection of
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longitudinal and shear ultrasonic waves respectively. Nonaq stopcock grease was
used as a suitable bonding agent for measurement of the velocity of longitundinal
waves throughout the entire range of temperature from 10 K to 400K. For
the experiments with shear waves, Q.D. colloidal silver paste was found to be
a suitable bonding agent between room temperature and 400 K, whereas Dow
resin 276~V9 was used from room temperature down to about 200 K; below this
temperature Nonaq stopcock grease was used. The changes in the ultrasonic
wave velocity with temperature and hydrostatic pressure were determined using
a pulse-echo overlap apparatus (Papadaki 1967) with a sensitivity of 1 part in
io". The sample was placed in a closed-cycle helium cryosat and the temperature
was monitored using a temperature sensor. The temperature was recorded (to
better than ±0·1 K) with the aid of a digital multimeter. Hydrostatic pressure
up to 0 ·15 GPa was applied in a piston-and-cylinder apparatus using silicone
fluid as the pressure-transmitting medium. The measurements of the effects of
hydrostatic pressure on ultrasonic wave velocity were made at room temperature
for (Tb20 3)x(P20 s)1-x glasses and up to 400 K for (Tb20 3)o·247(P20 s)o·7s3.

To obtain all three independent tensor components of the TOEC, measurements
of the changes in the ultrasonic wave velocity induced by the application of
uniaxial stress were made using an automatic frequency-controlled gated-carrier
pulse superposition apparatus (Yogurtcu et ale 1980) capable of measuring changes
in ultrasonic wave transit time to better than 1 part in 107. A rectangular
parallelepiped sample was made with dimensions of 0·7xO·9x1·1 crrr' and the
three pairs of faces were polished flat and parallel to optical precision within
one wavelength of sodium light. Uniaxial stress was applied in a screw press
through a precalibrated proving ring. The sample was examined visually between

Table 1. Elastic and nonlinear acoustic vibrational properties of (Tb203)x(P205)1-x glasses
at room temperature (293 K)

Mole fraction, x
0·226 0·247 0·263 0·271

Density (kgm-3 ) 3435 3501 3578 3666
VItrasonic wave velocity (m s-1 )

longitudinal V L 4637 4622 4616 4621
shear V 8 2653 2695 2680 2628

Elastic stiffness (GPa)
longitudinal ci\ 73·9 74·8 76·2 78·3
shear C~4 24·2 25·4 25·7 25·3

Bulk modulus B 8 (GPa) 41·6 40·9 42·0 44·5
Young's modulus E 8 (GPa) 60·8 63·2 64·0 63·9
Fractal dimension (4C44/B 8 ) 2·33 2·48 2·45 2·27
Poisson's ratio a8 0·257 0·243 0·246 0·261
Pressure derivatives

(8Cr1/8 P)T p=o -1·57 -1·58 -0·54 0·60
8 ' -0·74 -0·68 -0·82 -0·49(8C44/8P)T p=o
8 ' -0·58 -0·67 0·56 1·25(BB /BP)T,P=O

Griineisen parameters
,L -0·61 -0·60 -0·32 0·01
,8 -0·81 -0·71 -0·84 -0·59
,eI -0·74 -0·68 -0·66 -0·39
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crossed polarisers to ensure that the stress was uniform. Ultrasonic experiments
under uniaxial stress were carried out at selected temperatures up to 400 K
using a Hartwell temperature controller; for the low-temperature experiments
down to 77 K a liquid nitrogen cryosat was used. In each case, it was possible
to stabilise the temperature to within ±O· 1 K over a period of several minutes
during which the measurements were made. To circumvent the requirement of
the determination of pressure-induced changes in sample dimensions, the 'natural
velocity W' approach was used (Thurston and Brugger 1964).

3. Results and Discussion

(3a) SOEe and Their Temperature Dependences

The chemical compositions and the densities of the samples are given in
Table 1. The sample density increases approximately linearly with composition.
The results of the EPMA quantitative analysis lead to an interesting observation:
the compositions of glasses turned out to be similar, close to, or slightly
higher than that expected for (Tb203)o·2s(P20s)o·7s, which corresponds to the
metaphosphate Tb(P03 ) 3 . The elastic stiffness moduli of (Tb203)x(P20S)1-x

glasses obtained at room temperature and atmospheric pressure are also presented
in Table 1.

The velocities of longitudinal (VL) and shear (Vs) ultrasonic waves propagated
in the (Tb203)o·226(P20s)o·774 glass have been measured between 10 K and
300 K and for the (Tb203)o·247(P20s)o·7s3 glass in the range 10-400 K (Fig. 1).
The temperature dependences of the ultrasonic wave velocities of these glasses do
not conform with the behaviour expected from vibrational anharmonicity, namely
a linear increase of the ultrasonic wave velocity with decreasing temperature,
terminating in zero slope at low temperatures. The shear wave velocity
increases approximately linearly with decreasing temperature down to about
140 K, a behaviour associated with phonon anharmonicity. The longitudinal
wave velocity also increases but to a much lesser extent than that of the shear
waves. As the temperature is decreased further, the ultrasonic wave velocities
for both (Tb203)o·226(P20s)o·774 and (Tb203)o'247(P20s)o'7s3 glasses show a
continuously steepening increase (Fig. 1). Such behaviour is due to the interaction
of the ultrasonic waves with two-level systems through a thermally activated,
structural relaxation process (Anderson and Bommel 1955), and can be visualised
as a particle moving in a double-well potential corresponding to two equilibrium
configurations arising out of the defect structure in the amorphous network. The
existence of such a relaxation process is confirmed by the broad attenuation peak
observed in (Tb203)o.226(P20s)o.774 glass (Fig. 2). This behaviour is common
to rare earth metaphosphate glasses (Senin et ale 1993a, 1993b; Farok et ale
1994; Senin et ale 1994a, 1994b) and many other glasses, including vitreous Si02
(Piche et ale 1974; Hunklinger 1982; Raychaudhuri and Hunklinger 1984) and
Te02 (Benbattouche et ale 1989).

(3b) Hydrostatic Pressure Derivatives of the SOEe at Room Temperature

The hydrostatic pressure dependences of the velocities of longitudinal and
shear ultrasonic waves for (Tb203 )x(P205 )1- x glasses at room temperatures are
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Fig. 1. Temperature dependences of the velocities of 10 MHz longitudinal (upper panel)
and shear (lower panel) ultrasonic waves propagated in (Tb203)x(P205)1-x glasses with
x = 0·226 and 0·247.

shown in Fig. 3. For the shear mode, the ultrasonic velocities decrease linearly with
pressure, while for the longitudinal mode, most samples show a softening effect
except for the (Tb203)O.217(P20S)O.783 glass, which displays a very insignificant
increase in velocity with increasing pressure.

The hydrostatic pressure derivatives (8CyJ /8P)T,P=O determined from these
data are small (Table 1). It has been found that (8C~4/8P)T,P=O for the
shear mode is always negative for terbium metaphosphate glasses while that
[(8Crl/8P)T,P=O] for the longitudinal mode and (8BS /8P)T,P=O are positive
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in some samples but negative in others. Under hyrostatic pressure, the bulk
modulus of the (Tb20a)x(P20)1-x glasses for which x 2:0·263 increases in the
usual manner.
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Fig. 2. Temperature dependences of the attenuation of 10 MHz longitudinal and shear
ultrasonic waves in the (Tb203)o'226(P20s)o'774 glass.

(3c) Determination of TOEC and Their Temperature Dependences

The third-order elastic stiffness tensor components C I J K of an isotropic material
are as follows:

C123 , C456 ,

C111 == C222 == C333 ,

C144 == C255 == C366 ,

Cl 12 == C223 == C133 == Cl 13 == C122 == C233 ,

C155 == C244 == C344 == C166 == C266 == C335 · (1)
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However, only three of these tensor components are independent. If these are
taken as

G 123 == VI,

G144 == V2,

G456 == V3, (2)

then the other TOEC are given by the linear combinations

GIll == VI + 6V2 + 8V3,

G l 12 == VI + 2V2,

G 155 == V2 + 2V3· (3)

The three independent TOEC of (Tb203)o·247(P205)o.753 glass have been
obtained at room temperatures from the ultrasonic measurements under the
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However, only three of these tensor components are independent. If these are 
taken as 

then the other TOEC are given by the linear combinations 

CUI = VI + 6V2 + 8V3, 

(2) 

(3) 

The three independent TOEC of (Tb203)o'247(P205)o'753 glass have been 
obtained at room temperatures from the ultrasonic measurements under the 
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effect of uniaxial stress. The stress dependences of the relative changes in
natural velocities of both longitudinal and shear ultrasonic waves were found to
be linear up to the maximum uniaxial stress applied of 150 bar (Fig. 4). The
three independent TOEC can be determined from the pressure derivatives of
(Po W 2 )p=0 for the three modes of wave propagations, using the following relation
(Thurston and Brugger 1964):

[d(po W 2)/dP]p=0 == 2po Wo(8W/8P).

The values of [d(po W 2)/dP]p=0 obtained from Fig. 4 are as follows.
Mode 3:

[d(poW 2)/dP]p=0 ==' (l/ET
) [aT (2C;;' + 8V3) + VI (2a

T
- 1) + v2(8aT

- 2)]

== -0 ·643,

Mode 4:
[d(poW2)/dP]p=0 == (1/ET) [- 2CL + v2(2crT -1) + 2V3(crT -1)]

== -0·127,

Mode 5:
[d(poW 2)/dP]p=0 == (1/ ET)[aT(2CL + 4V3) + v2(2crT

- 1)]

== -0·630,

(4)

(5)

(6)

(7)

where Mode 3 corresponds to a longitudinal mode with displacement direction U
parallel to propagation direction N, Mode 4 to a shear mode with displacement
direction U parallel to stress direction M, and Mode 5 to a shear mode with
displacement direction U perpendicular to stress direction M. Assuming that
the differences between the adiabatic (superscript S) and isothermal (superscript
T) elastic moduli are small, the values of VI, and V2 and V3 can be determined
directly from equations (5), (6) and (7).

Table 2. Comparison of the nonlinear acoustic vibrational properties of
(Tb203)o·247(P20s)o·753 glass with those of other phosphate glasses at room temperature

(Tb203)0.247 (E U203)0' 20 (Sm2 03)0' 212 (Gd203)0' 229 (Nd203)0' 235
(P205)0.753A (P205)0' 80B (P205)0. 753c (P2 05)0' 771D (P2 05)0' 765E

TOEC (GPa)
GIll -128 48 -105 -267 -339
G 112 61 55 37 79 -24
G 123 2 7 10 -128 -32
G 144 29 24 13 104 4
G 155 -47 -2 36 -87 -79
G456 -38 -13 -25 -95 -41

Pressure
derivatives

(8C~1/8P)T,P;:;:0 -1·58 -2·97 -1·31 -0·61 1·80
(8C -S4/8P)T,P=0 -0·68 -1·36 -0·67 -0·57 0·35
(8B /8P)T,P=:.0 -0·67 -1·15 -0·41 0·15 1·63

Griineisen
parameters

'YL -0·60 -0·99 -0·51 -0·33 0·30
1'8 -0·71 -1·29 -0·68 -0·61 -0·07
'Y

e l -0·68 -1·19 -0·67 -0·52 0·05

A This work. B Farok et al. (1994). C Senin et al. (1993a). D Senin et ale (1994b).
E Senin et ale (1993b).

Elastic Behaviour of Terbium Metaphosphate Glasses 803 

effect of uniaxial stress. The stress dependences of the relative changes in 
natural velocities of both longitudinal and shear ultrasonic waves were found to 
be linear up to the maximum uniaxial stress applied of 150 bar (Fig. 4). The 
three independent TOEC can be determined from the pressure derivatives of 
(Po W 2 )p=0 for the three modes of wave propagations, using the following relation 
(Thurston and Brugger 1964): 

The values of [d(po W 2 )/dP]p=0 obtained from Fig. 4 are as follows. 
Mode 3: 

[d(poW 2 )/dP]p=0 = (1/ET )[aT (2C{i + Sl/3) + l/1(2aT -1) + l/2(SaT - 2)] 

= -0·643, 

Mode 4: 
[d(poW 2 )/dP]p=0 = (1/ET )[-2CL + l/2(2aT -1) + 2l/3(aT -1)] 

= -0·127, 

Mode 5: 

= -0·630, 

(4) 

(5) 

(6) 

(7) 

where Mode 3 corresponds to a longitudinal mode with displacement direction U 
parallel to propagation direction N, Mode 4 to a shear mode with displacement 
direction U parallel to stress direction M, and Mode 5 to a shear mode with 
displacement direction U perpendicular to stress direction M. Assuming that 
the differences between the adiabatic (superscript S) and isothermal (superscript 
T) elastic moduli are small, the values of l/1, and l/2 and l/3 can be determined 
directly from equations (5), (6) and (7). 

Table 2. Comparison of the nonlinear acoustic vibrational properties of 
(Tb203)o'247(P205)o'753 glass with those of other phosphate glasses at room temperatnre 

(Tb2 0 3)O'247 
(P205)O' 753A 

(Eu20 3)o'2o 
(P2 0 5)O'80B 

(Sm 20 3)O' 212 
(P205)O'753 C 

(Gd20 3)o, 229 
(P205)O' 771 D 

(Nd203)o, 235 
(P205)O' 765 E 

TOEC (GPa) 
C 111 -128 48 -105 -267 -339 
C 112 61 55 37 79 -24 
C 123 2 7 10 -128 -32 
C 144 29 24 13 104 4 
C 155 -47 -2 36 -87 -79 
C 456 -38 -13 -25 -95 -41 

Pressure 
derivatives 
(aC~daPh,p=o -1·58 -2·97 -1·31 -0·61 1·80 
(aC~l/ap)r,p=o -0·68 -1·36 -0·67 -0·57 0·35 
(aB /aph,p=o -0·67 -1·15 -0·41 0·15 1·63 

Griineisen 
parameters 

"IL -0·60 -0·99 -0·51 -0·33 0·30 
"Is -0·71 -1·29 -0·68 -0·61 -0·07 
"lei -0·68 -1·19 -0·67 -0·52 0·05 

A This work. B Farok et al. (1994). C Senin et al. (1993a). D Senin et al. (1994b). 
E Senin et al. (1993b). 



804

....-...=
~
{J
'-'

v:
~
v:
rIj

~

~
~...
E-­v:
U...
E-­
rIj

j
~

~
~

~
o

~...
::c
E--

H. B. Senin et ale

300 ••

• • • • • • • • • • CIU200 l- • ••
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...100 t

0

200 ~...
... ... ... ... ... ... ... ... ... ... ...100

• C l ll

• • A

01-

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...·100 t
·200

200 t-.

• • • • • • • • • • • CI23

"'... ... ... ... ...
100 l- ..................01-

·100

100E C
l 44 :lo .J

o[ CIS! ~.......................................~
·100

o C
456 J·100 f'" ~

I , I , I , I , I , ' ,

100 150 200 250 300 350 400

TEMPERATURE (K)

Fig. 5. Temperature dependence of the third-order elastic stiffness tensor components C I J K

of (Tb203)o'247(P205)o'753 glass.

Complete sets of the TOEC at room temperature for (Tb203 )o·247(P20 5)O' 753

glass are compared with those for other amorphous materials in Table 2. For
this glass C 112 , C l 23 and C l 44 are positive while the rest of the TOEC are
negative.. As a consequence, the hydrostatic pressure derivatives (BeyJ / BP)T,P=O
are negative; (fJPSj8P)r,p=o is small and negative. The temperature dependences
of the TOEC of (1'b203 )o·753(P20 5)O' 247 glass are shown in Fig. 5. As the
temperature is decreased below room temperature, C I I I and C l 23 increase slightly
to less negative values and become positive at low temperatures; C l 12 remains
positive and increases with decreasing temperature. The C l 44 is small and positive
while C l 55 and C456 are small and negative; these TOEC change only slightly
with temperature. In general the TOEC of (Tb203 )o·247(P20 5)O· 753 are strongly
dependent on temperature, which implies that the vibrational anharmonicity
does change much in the temperature range of 77-400 K. The variation of the
vibrational anharmonicity of this glass under the effects of temperature and
pressure is now examined further.
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Complete sets of the TOEC at room temperature for (Tb20 3 )o· 247(P20 5 )O' 753 

glass are compared with those for other amorphous materials in Table 2. For 
this glass C U2 , C123 and C l44 are positive while the rest of the TOEC are 
negative. As a consequence, the hydrostatic pressure derivatives (8CYJj8P)T,P=O 
are negative; (8pSj8P)T,p=ois small and negative. The temperature dependences 
of the TOEC of (Tb20 3 )o· 753(P20 5 )O' 247 glass are shown in Fig. 5. As the 
temperature is decreased below room temperature, C llI and C l23 increase slightly 
to less negative values and become positive at low temperatures; C ll2 remains 
positive and increases with decreasing temperature. The C l44 is small and positive 
while C 155 and C456 are small and negative; these TOEC change only slightly 
with temperature. In general the TOEC of (Tb20 3 )o· 247(P20 5 )O' 753 are strongly 
dependent on temperature, which implies that the vibrational anharmonicity 
does change much in the temperature range of 77-400 K. The variation of the 
vibrational anharmonicity of this glass under the effects of temperature and 
pressure is now examined further. 
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The temperature dependences of (8CYJ/8P)T,P=O and (8BS/8P)T,P=O for
(Tb203)o.247(P205)o·753 glass between 293 K and 77 K are shown in Fig. 6. As
the temperature is decreased to 77 K, the negative values of (8Crl/8P)T,P=O and
(8BS /8P)T,P=O becomes much larger; however (8C24/8P)T,P=O does not change
much with temperature. The increases in the negative values of (8B S /8P)T,P=O and
(8Crl/8P)T,P=O for (Tb203)o.247(P20s)o.753 glass show that the longitudinal
acoustic modes soften under pressure and this softening is enhanced as the
temperature is decreased.
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The effects of pressure and temperature on the elastic behaviour of glasses
fall into two categories. Many glasses, including vitreous Te02 (Benbattouche et
al. 1989), amorphous-As (Brassington et ale 1980) and As2S3 (Brassington et ale
1981a) and fluorozirconate glass (Brassington et ale 1981b), behave normally in
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The effects of pressure and temperature on the elastic behaviour of glasses 
fall into two categories. Many glasses, including vitreous Te02 (Benbattouche et 
ai. 1989), amorphous-As (Brassington et ai. 1980) and As2S3 (Brassington et ai. 
1981a) and fluorozirconate glass (Brassington et ai. 1981b), behave normally in 
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that the longitudinal, shear and bulk moduli increase under hydrostatic pressure
and their TOEC are negative. Phosphate glasses, containing La3+ (Sidek et al.
1988; Mierjeweski et al. 1988b) and Nd3+ (Senin et al. 1993b) ions as network
modifiers and those containing Fe3+ (Brassington et al. 1981c) and Mo6+ (Comins
et al. 1987), also show the normal positive values for the pressure derivatives
(8Crl/8P)T,P=O and (8BS /8P)T,P=O. The second category includes tetrahedrally
bonded glasses, such as those based on silica (Hughes and Kelly 1953; Bogardus
1965; Kurkjian et al. 1972), BeF2 (Kurkjian et al. 1972) and Ge02 (Krause
and Kurkjian 1968), and also rare earth metaphosphate glasses containing Sm3+
(Mierzejewski et al. 1988a, 1988b; Senin et al. 1993a), Eu3+ (Farok et al. 1994)
and Gd3+ (Senin et al. 1994b), whose nonlinear elastic properties are quite
different in kind from those of the majority of materials in that the hydrostatic
pressure derivatives (8Crl/8P)T,P=O, (8C~4/8P)T,P=O and (8BS /8P)T,P=O are
negative and the TOEC are positive. The long-wavelength acoustic modes of
glasses in this second category soften under pressure, while for glasses in the first
category they stiffen. The elastic and nonlinear acoustic vibrational properties
of metaphosphate glasses containing Tb3+ as network modifier come into the
anomalous category, having strong temperature and pressure dependences.

(3d) Acoustic Mode Griineisen Parameters

Further physical insight into the vibrational anharmonicity of the long-wavelength
acoustic modes in solids can be gained by considering the Griineisen parameters,
which represent the volume dependence -8lnw/ 81nV of the normal mode frequency
w. For an isotropic material the longitudinal (I'L) and shear (I's) acoustic mode
Griineisen parameters can be obtained using (Brugger and Fritz 1967):

where

1
I'L,S == -_.-(3B + 2WL,S + kL,s) ,

6WL,S

WL == CII, Ws == C44 , kL == CIII + 2C112, ks == ~(CIII - CI23).

(8)

For each of the terbium metaphosphate glasses samples, both longitudinal and
shear acoustic mode Griineisen parameters calculated at room temperature are
small and negative (Table 1). This means that the application of pressure leads
to a small anomalous reduction in the longitudinal and shear mode frequencies
and hence in their vibrational energies. As a result, the mean long-wavelength
acoustic mode Griineisen parameter I'el is also small and negative (Table 1).

The measurements of the TOEC of (Tb203)o.247(P20s)o.753 glass made in
the range 77-400 K enable determination of the temperature dependence of I'L,
I'S and I'el (Fig. 7). As the temperature is decreased, the magnitude of I'L
gets larger, i.e, the longitudinal acoustic mode softening becomes enhanced at
lower temperatures. The shear mode also becomes more negative but to a
smaller degree. This increase in the magnitudes of the acoustic mode l' shows
that the anomalous mode softening is enhanced at lower temperatures. The
softening of the long-wavelength acoustic modes for (Tb203)o· 247(P205)O·753
glass is similar to that found previously for (Sm203)x(P205)1-x (Senin et al.
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negative and the TOEC are positive. The long-wavelength acoustic modes of 
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category they stiffen. The elastic and nonlinear acoustic vibrational properties 
of metaphosphate glasses containing Tb3+ as network modifier come into the 
anomalous category, having strong temperature and pressure dependences. 

(3d) Acoustic Mode Griineisen Pammeters 
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which represent the volume dependence -{)Inw / {)In V ofthe normal mode frequency 
w. For an isotropic material the longitudinal ('Yd and shear C'Ys) acoustic mode 
Griineisen parameters can be obtained using (Brugger and Fritz 1967): 

where 

1 
/'L,S = --6 -(3B + 2WL,S + kL,S) , 

WL,S 
(8) 

For each of the terbium metaphosphate glasses samples, both longitudinal and 
shear acoustic mode Griineisen parameters calculated at room temperature are 
small and negative (Table 1). This means that the application of pressure leads 
to a small anomalous reduction in the longitudinal and shear mode frequencies 
and hence in their vibrational energies. As a result, the mean long-wavelength 
acoustic mode Griineisen parameter 'Yel is also small and negative (Table 1). 
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the range 77-400 K enable determination of the temperature dependence of 'YL, 
'Ys and 'Yel (Fig. 7). As the temperature is decreased, the magnitude of 'YL 
gets larger, i.e. the longitudinal acoustic mode softening becomes enhanced at 
lower temperatures. The shear mode also becomes more negative but to a 
smaller degree. This increase in the magnitudes of the acoustic mode 'Y shows 
that the anomalous mode softening is enhanced at lower temperatures. The 
softening of the long-wavelength acoustic modes for (Tb20 3)o'247(P20 5)o'753 
glass is similar to that found previously for (Sm203)x(P205h-x (Senin et al. 
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1993a) and (EU203)x(P20S)1-x (Farok et al. 1994) glasses. A less pronounced
softening effect was found recently for (Gd203)x(P20S)1-x glasses (Senin et al.
1994b).
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Fig. 7. Temperature dependence of the acoustic mode Griineisen parameters for
the (Tb203)o·247(P20)o·753 glass.

The anomalous negative values obtained for the hydrostatic pressure derivatives
(8Crlj8P)T,P=O and (8B S j8P)T,P=O, the positive values of the TOEC and
the negative acoustic mode Griineisen parameters establish the acoustic mode
softening in binary (R203)x(P 20S)1- x glasses, where R denotes one of the
rare earth elements (Sm, Eu, Gd or Tb). In the case of vitreous Si02, the
pressure-induced acoustic mode softening has been attributed to nonlinear acoustic
contributions arising from bending vibrations of the bridging oxygen atoms, which
correspond to transverse motions against small force constants and are allowed
in the open structure based on Si04 tetrahedra (Sato and Anderson 1980;
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correspond to transverse motions against small force constants and are allowed 
in the open structure based on Si04 tetrahedra (Sato and Anderson 1980; 
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Lambson et al. 1984). Another possible source comes from rotations of coupled
Si04 tetrahedra involved in low-frequency harmonic vibrations (Buchenau et al.
1988; Guttman and Rahman 1986). For the phosphate glasses, similar nonlinear
effects in vibrational modes associated with the corner-linked P04 tetrahedra that
constitute the structure could also be responsible for the elastic anomalies. Thus,
either bending vibrations of the bridging oxygen ions or rotations or coupled P04
tetrahedra could be the origin of the acoustic mode softening under pressure for
(R 20 3)x(P20 5)I-x glasses.

4. Conclusions

(i) The velocities of 10 MHz ultrasonic waves propagated in (Tb203 )x­
(P205) I +x glasses increase extremely fast with decreasing temperature
below about 140 K and the ultrasonic wave attentuation shows a broad
attenuation peak. This behaviour is associated with a strong interaction
of long-wavelength acoustic phonons with two-level systems through a
thermally activated structural relaxation process. This particular acoustic
property is universal to rare earth metaphosphate glasses and almost
independent of the specific chemical composition of the glass. It is
suggested that the universal anomalous properties of these glasses are
due to disorder of their atomic structure.

(ii) Application of hydrostatic pressure induces a decrease in the elastic stiffness
of (Tb203 )x(P205 )I- x glasses. At room temperature, the long-wavelength
acoustic modes soften slightly under pressure. The absolute value of
(8Crl/8P)T,P=O is much larger than that of (8Ct4/8P)T,P=O over the
temperature range 77-400 K: the longitudinal mode softens more with
pressure than the shear mode. The TOEC for the (Tb203)o·247(P205)O' 753
glass become positive and larger at low temperatures. The pressure-induced
acoustic mode softening is enhanced with decreasing temperature.

(iii) It is possible that the soft acoustic modes in terbium metaphosphate
glasses are associated with either vibrations of the bridging oxygen ions
between the P04 tetrahedra or coupled rotations of the P04 tetrahedra
which weaken the binding energy in the phosphate network.
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