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Abstract

We have analysed the formation of solitary magnetosonic waves propagating in a direction
perpendicular to the magnetic filed in a relativistic two component plasma. Our approach is
that of the effective potential. Variations of the effective potential and the solitary wave in
relation to the Mach number and other parameters are discussed.

1. Introduction

The study of nonlinear waves in both magnetised and unmagnetised plasmas
is an important topic which has made tremendous progress over the last two
decades. An initial attempt to analyse the characteristics of solitary waves in
a magnetised plasma was undertaken by Gardner and Morikawa (1968). Later,
Kakuntani et al. (1968) and Berezin and Karpman (1964) derived the KdV
equation for the magnetosonic wave for nonrelativistic plasmas with zero 3 value.
Nonlinear evaluation of the magnetosonic wave plays an important role in plasma
turbulence (Lacombe and Mangency 1969), the trapping of ions (Lewbege et al.
1983) and the development of shock structure (Jager 1985). Magnetosonic shock
waves are believed to be responsible for the heating of the solar corona (Kuperns
et al. 1981). In some theoretical studies these magnetosonic waves have been
described by a KdV-like equation. For example Vito and Pantano (1984) have
shown that such a wave in a cold (nonrelativistic) plasma can be described by the
KdV equation. Recently it has been recognised that nonlinear fast magnetosonic
waves can strongly accelerate trapped ions by a V X B type acceleration in a
direction perpendicular to the magnetic field in a relativistic plasma (Ohsawa
1985). More recently, solitary waves in a relativistic plasma have been discussed
by Das and Paul (1985, 1987) and Roy Chowdhury et al. (1988).

On the other hand, it is known that a KdV-type equation describes only small
amplitude waves due to the approximations involved in the derivative via the
reductive perturbative scheme. So here in this paper we study the formation
and propagation of nonlinear magnetosonic waves which propagate in a direction
perpendicular to the magnetic field, in a relativistic plasma without assuming
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that the wave amplitude is small. Our approach is that of the effective potential
which is capable of treating both large and small amplitude waves. It has been
demonstrated already by Sagdeev (1966), Schamel (1973) and Sochmel (1976) that
such an approach is very effective in the theoretical analysis of large amplitude
plasma waves.

2. Formulation

To start we make the usual assumption that the relativistic two fluid plasma
under consideration can be described by the two hydrodynamic equations

on; :
—é—t—]— +div(n;v;) = 0, (1a)
9 )
m](a +v].grad)r]'v3 =qJE-|-gc]-'U]XB, (1b)

where the subscript j =i for the ion and j = e for the electron, with Maxwell’s
equations

(U 2 9E 47re
curl B = (7) —8—7&— c (nl v; Ne ’Ue), (23')
1 0B
1B = —=—— 2b
cur c ot’ 20
divB = 0, (2¢)
divE = 4me(ni — ne) . (2d)

Here n; and n. denote the ion and electron densities respectively, v,; and
vze denote the z-component of the velocities, r; is the Lorentz factor, B the
magnetic field and E the electric field. All quantities have been normalised with
respect to the characteristic number density n§, the characteristic speed Ug, the
characteristic length L and the characteristic magnetic field By (Kakutani 1974).
Furthermore we assume that the magnetic field is in the z-direction and that the
wave is propagating in the z-direction. To simplify the ensuing computation we
have furthermore assumed the quasi-neutrality condition n; =~ ne = n, by virtue
of equation (2d). Then from (1) we get

one 0

A \NeVUge) = 07
ot + 6x(n Uze)
Oone

1o}
5 + Ez(nevm-) = 0.
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Subtracting we get

_“(ne'vze_nevzi) = 0,

oz

whence vge = vgi+k/n.

On the other hand, from Maxwell’s equations (2a)—(2d) with the assumptions
that the wave is propagating in the z-direction and that the magnetic field is in the
z-direction (constant in magnitude) we get 0E,/0z = 0; so, E, = constant = E,
(say). Thus, from the rest of the equation we get

dB  4mne U 28Ey
B = e+ ()

(2¢)
Since we are concerned with hydromagnetic waves, for which Uj/c < 1, we can
neglect the displacement current in (2e) (Kakutani 1974), and then we get

dB 4mne
™o ‘—c——(”yi — Uye) - (3)

Setting vei = vy and vgze = vz +k/n, we can simplify equations (1) and (2) as
follows:

2+ Z(nv,) =0, 4

5 T Bx(nv ) (4)

mi-(%(ri V) —I—mi;%-(ri vg) =eE, + EvyiB, (5)
0 0 e

m; &(ri Uyi) + M Uy :’);(ri vyi) = eEy; — szB, (6)

0 0 15}
Me 52(“ Ug) +me k b—i(re/n) + Me Vg %(re Vg) +Mevz k

0 k0
X b—a—;(re/n) + me - B_x(re Vg)

k* 9 e
+me - b—;(re/n) = —eE, — EvyeB, )
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o} 0 mek O
Me a(re Nye) + Me Uy a(re Vye) + ——;— a(re Vge)
e ek
z—'eEyi‘l'—Ua;B'i‘——B, (8)
c cn
where
1

rj= ———
! (1 —v]2-/c2)%

We now make a simple change of variable (z,t) — (¢, 7) defined by

&=z~ Mt, T=t,

and go to the moving frame of reference of the wave by setting the ‘v’ derivative
of all quantities equal to zero.
Whence we get from (4)

_ni(vy — M)
TL-—‘T_—M_, (9)

where ni, v; are integration constants.

Now in the present calculations the Alfvén speed is assumed to be smaller
than the speed of light. In the nonrelativistic situation (Adlam and Allen 1958)
it has been shown that the speed of the fluid electrons and trapped ions exceeds
c if the Alfvén speed is fairly large and if the Alfvén Mach number M, is
not too close to unity. Since the particle speed cannot exceed ¢ this indicates
that we have to use a relativistic theory for a magnetosonic wave having an
Alfvén speed vp comparable or greater than c(m./m;)%. In our case we are
interested in the situation where vy is of the order of c(me/mi)% and the
electron velocity is close to ¢, although the ions have a velocity much smaller
than c.

Now v = (v2 + vZ)? and ve = (v2, + v2,)%. For computational simplicity we
take vgi < vze and vy < vye. So we can take the value of k smaller than c.
From equations (6) and (8) and with the help of (9) we can write

k ek(vy — M)

(M = vy) [mi(ri Vyi) + Me (1 + nl(T—M—))Te ’Uye] = f(&) o (vr = M)
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or

Me

’in =

(1 T —’“——) vy + — £(¢). (10)

m;iTi n1 (’U] - M) Cnymi i

Furthermore, we have to always ensure that the ion speed is much smaller than
¢; so, i = 1. Since

2 -7 2
v} V]
ne () el

c
—1+i(2+2) (11)
= 5.2 Uz V)
and since v, < ¢, we get
rir 1 +vk/2¢%. (12)
Then, substituting from equation (10) for v,; we get
2 2 .2
k Vye Te
2r1—17‘-2=<1+ ) Y . (13)
( Iri m(vy — M)/ c*(mi/me)?
Again vy, is of the order of ¢, and so we get the condition
k mi
1+ ———— Jre K — form=1. 14
( n1(v1—M)) ¢ me ' 14

Now from equations (5) and (7) we get

9 0
- iM'—' ilz iV Z7\Ti Vg - Vg
m aﬁ(rv)+mv 6€(rv)+(M Vz)

k 20
M)) 'a—g(re Ua:) + (M - vz)me

y me<1 r—k
nl(vl -

Mk k or, e
1 — =2eE,; + —(vy e)B, 15
nl(vl —M)( + nl(vl —M)) 8§ € + C(vy +'Uy ) ( )
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+<M“”$>ﬁm%[(l+mf-—m)%§’"e]

%E,
=2 -—(vy,+vye)B. (16)
mji

Now since [1+k/ni(vi—M)]re < mi/me we get

Ovg 2eE, e

(’UI - M)g—g— ~ ™ + mvyeB (17)
Ovy B dB
(e = M) 50 o6 dwnm; dE’ (18)

whence (17) and (18) lead to

Ep=—e2 2 22 19
2c dnm; d€ (19)

On the other hand, integrating (18) with the condition that B = b; when
v = vy, we get vy = ovy, with o given as

B% - p?

oc=1- .
8rmy ny(v? — M)

(20)

Now going back to equation (3) we observe that under the approximation r; &~ 1
we can write

Me k c dB
—{1 e e = T—— —, 21
ml( + nl(vl—M))revy )+ vy drne d€ (21)
from which we deduce
cloc — M/v d? ek
vgo v — T M) A 1. (22)

drm;e(1 — M/vy) d§2
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Now we compute explicitly the relativistic Lorentz factor for the electron,

2 2\ -1
vme+vye 2
Te = |1— ——5—
c

(1_ (v & k/m)? _ i)

- c c? (23)
T of 1 k1 =M/v0)\? ( &f )2}]‘%
= [1 U{cz(vl-i_———nl(l—M/vl)) + Pd§ + Qf )
where
1 -M/vno ek
T dmnye(l — M/vy)’  Ponym;

Since vy is of the order of the Alfvén speed va, which in turn is assumed to
be much smaller than ¢, then (v;/c)? is much smaller than unity; finally, the
approximate expression for r. turns out to be

o e e S ) (3

x % * e i ]2}]_%- @4

So, finally from equation (8) after using these approximations, we get

m 2 v
—€(4 o — | ——2
e ( TNy G)vy af ((1 _ USE/CZ)% )

D=

2 B kM _ cky,
[(1 — M/v) +k/nivn (1 n1v1(1 — M/v1) B v )

2(B% - B?) 0 dB] . (25)

 16mming vi(l — M/v;)? e

Using the identity

(@) d f(x) _d 1

dz [1- f2(@)]}  dz [1- f(x)]}’
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we get after a series of algebraic manipulations

2 2 2
A<ﬂ) +ij—f— +Cf?

d¢? £
w ~ ~ 2cE,,
= -1 PP I(B-1)S|T(B+1)—- /¥
+{2w(2:e|:( ) ( (B+1) 0131)
52 1\2 5N\ 21-3 -2
S NCTE
4MA(1 —M/’Ul) Wpe d(Bl
where
4 (o= M)
 [ameny (1 — M/vy))?’
272
B - 2232k ) C— ek 7
c*nim; cnim;
kM M k
S =1(1- 1— — + ),
( ny v (1 —M/U1)>/< v Mg
T =1- kM . (27)

ny ’U](l - M/’Ul)

Since the second and third terms on the left-hand side of (26) contain a 1/c2
factor, it is not difficult to establish that these terms are small compared with
the first. We neglect these terms and arrive at

;(‘j‘i—f) L 8(B) =0, (28)

which is similar to the energy equation for particle motion in a potential. In
equation (28), #(B) actually stands for the negative right-hand side of (26). Here
B and % are the normalised magnetic field and ¢, respectively, defined as

B=B/By,  &=¢(c/upe), (20)

where wpe = (4711 €2/me)? and wee = By ¢/4mn, e.

3. Analysis of the Effective Potential

Equation (28) is known as the effective potential equation, where (dB /dz)?
is similar to the kinetic energy of a particle of unit mass and ¢(B) is the potential
energy in which it is moving. From the form of equation (28) it-is clear that it
cannot be treated analytically so we take recourse to numerical methods. But
before that we proceed to discuss some important and salient features of the
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effective potential. The first and most important is that in the nonrelativistic
limit the function ¢(B) tends to

ot - —fo-1(o-1- 25 35)”

V1 D1 n1v1
v2 o~ dB\?
_ ﬁ(32-1)2+ <E> ] (30)
1

when M/v; =0, which was actually deduced by Adlam and Allen (1958), Davis
et al. (1958) and Sagdeev (1966) in their original nonrelativistic analysis. Next
observe that where B attains its maximum value By, then dB/d% should vanish,
whence ¢(Bp) = 0. Also, using the expression for ¢, we get

1

2
My (1- 24 2 /[2(1_%)
v n V1 V1
EM

x11-—
( ’I’Ll’Ul(l —M/’Ul)
Using this expression ¢ take the form

w2 1)1

)](Bm +1). (31)

¢(B) =

where
B?-B?
8mmy nl(vi? — Muwv;)

1-2(B? —1)(1— %) (1 - nlvl(lk]fIM/Ul))z/

x [(1_%+ k )(Bm+1)2]. (33)

U1 ni1 v

oc=1-

I

On the other hand @ can be written as

w2 kM 2 M k
=14 —< |1 1- =
@ 2w§e K "11’1(1 '"M/”l)) /< U1 + nl'Ul)

x (B - 1)2(1 - (%%TT);)] ) (34)

From the condition that o cannot be zero it follows that 1 < By, < 3. It may be
noted that we can obtain the nonrelativistic analogue of equation (28) by setting
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M =0, the corresponding expression being the same as that given by Adlam
and Allen (1958) and Davis et al. (1958).
Now from equation (28) it follows that the solitary wave solution will exist if

#(B) < 0 and from equation (32) we see that #(B) is negative if 1 < B < Bm
Furthermore, we have for B ~ 1

#B)~ - %Kl_ n v1(1k]14M/vl))2/(1— % i nlkvl)]

P 2
x (B - 1)2(1 - (%BI;%), (35)
and for B ~ B,
- v1)2
“B) = i
kM M k
* [(1— nyvi(l —M/U1)>/(1_ ;1_1— * nlvl)]
o B = 12(B - Bp)

B% +1

(== /0 5 )
U1 ni U1 U1 n1v;

(B +1)(Bm — 1)%(B — By)
[Bu(2A—1 4+ M/vi) — (2A+1 — M/v)]?’

2 2
=[-8 B0,
n nin U1 v ni v

It is well known that in the nonrelativistic case the width of the magnetosonic
soliton is of the order of the electron inertial length divided by the square
root of the amplitude, i.e. A ~ (c/wp)/(6B)%, ~ (Bm —B1)/By. Similar
considerations can also be made in our case. On the other hand, for B—1 ~ O(1)
and B~By, ~ O(1), that is for the region where the amplitude is not too small
and not too close to the peak value, we get

(36)

where

wce

A~

6B. (37)

Wpe Wpe

In the highly relativistic case we get w2/ 2w2, > 1. The behaviour of the
relativistic soliton is quite different from the nonrelat1v1st1c situation.

In Fig. 1 we have plotted the effective potential ¢ as a function of the magnetic
field. An important event to observe is that the form of ¢ is of the single well type,
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Fig. 1. Variation of the effective potential with magnetic field for different
values of (a) wee/wpe and (b) M/v;.

which shows the possibility of trapping the particles giving rise to the formation
of a solution. In Fig. 1a we show the variation of the potential with respect to
Wee/wpe and it may be noted that for small values of wee /wpe the probability of
trapping is greater. On the other hand, in Fig. 1b the variation with respect to
M /vy is given, where M is the Mach number. In Fig. 2¢ an interesting situation
occurs for the variation with respect to y = cE,, /v1 B1, where values of y > 1-2
have been considered. The well structure of the potential completely disappears.
The same is also true for values of M/v; > 1 (as displayed in Fig. 2b).

We then integrated equation (28) numerically and the solitary wave so obtained
is exhibited in Fig. 3 for various values of the parameters. It may be observed
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Fig. 2. Variation of the effective potential with (a) cEy, /v1 B1 and (b)
M /v1, showing the disappearance of the well structure.

that the peak of the solitary wave increases with an increase in the value of
cEy, /vy B, (Fig. 3b), but on the other hand it becomes flatter for large values
of M/v; and wee/wpe.-

Lastly, in view of equation (20), we have

C(oc— M/v;) dB

Yve = 4drnie(l — M/v1) de (38)
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Fig. 4. Maximum electron velocity for different values of M/v1, with M, =1-2.

So when the magnetic field shows a solitonic structure we can evaluate the

corresponding electron velocity. In Fig. 4 we show the behaviour of vy, for
various values of M /v;.

4. Discussion

In our analysis we have studied the formation of magnetosonic solitary waves
in a relativistic magnetised plasma, where both the ions and electrons have been
considered to be relativistic. Such a situation is usually seen to take place in
solar bursts or ionospheric plasmas. The phenomenon can be of great importance
in high energy laser-plasma interactions.
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