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Abstract

A simple model is developed to describe how an externally imposed current closes as a function
of time below the photosphere. A vertical current density is assumed to turn on at the
photospheric boundary. The model implies that the subsequent closure of the current in the
sub-photosphere depends only on the ratio RA/R, where RA = /-LaVA is the Alfvenic impedance
of the photosphere and R = I/o-pI is the resistance corresponding to the conductivity O-p and
a characteristic length 1. For RA/R » 1, current closure occurs at a front, propagating with
the Alfven speed. For RA/R «1, current closure is a diffusive process ahead and behind
a slowly propagating Alfvenic front. The first case is the relevant one for the Sun, where
RA/R rv 108 /VA, for VA in kilometres per second.

1. Introduction

The question of what happens to currents which flow in the corona as they reach
the photosphere is a controversial one in solar physics. Vector magnetogram data
typically show regions of strong current (rv1012 A) flowing into the photosphere
at one footpoint of a coronal loop and out at the other footpoint (Moreton and
Severny 1968; Hagyard 1989; Romanov and Tsap 1990). This is interpreted as
a current flowing along the field lines of the coronal loop. The behaviour of
this current below the photosphere-in particular whether it closes across field
lines there-is open to question. Some authors (Hudson 1987; McClymont and
Fisher 1989; Melrose 1991) claimed that the observed currents flow through the
sub-photosphere along field lines, coupling the corona to the deep interior of the
Sun. Other authors (e.g. Kan et ale 1983) argued that the large scale currents
(which are associated with solar flares) are generated at the photosphere by fluid
motions: the so-called photospheric dynamo. A third possibility is implicit in
a wide class of models for coronal structures in which the boundary condition
at the photosphere is taken to be the 'line-tying' assumption (Van Tend and
Kuperus 1978; Priest 1982). As demonstrated below, line-tying implies that
coronal currents close in the photospheric boundary, independent of the field
lines.

In this paper we consider a simple model for the dynamic response of the
sub-photospheric plasma to a current imposed from above. The objective is to
determine the conditions under which the current closes across field lines locally
in the photosphere (as implied by the line-tying assumption) and when closure
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occurs far below the photosphere (as argued by Hudson 1987). Our approach is to
assume a two-dimensional, constant density, isotropically conducting photosphere
threaded by a vertical, uniform magnetic field. The photosphere occupies the
plane z ~ °(no variation is permitted in y) and a vertical current density Jz is
assumed to turn on in the photospheric boundary at a particular time (t = 0),
introducing a total current 10 into the sub-photosphere. This current must close
across field lines in the model sub-photosphere for all subsequent times. The
problem posed is the specification of Jx and Jz for all x, z and t > 0, which
completely describes how the current closes.
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Fig. 1. Effect of shearing one side of a coronal arcade. Diagram (a) is the
arcade prior to any shearing: the open arrow heads denote the direction of
the field. The photospheric boundary is the plane shown. In (b) the arcade
is subject to a shearing velocity field in the photosphere at the right-hand
row of footprints, as shown. This plasma motion drives a current in the
photospheric boundary which flows along the magnetic field over the arch
of the arcade. The current is denoted by the closed arrowheads of the
figure. The line-tying boundary condition implies that this current closes
across field lines at the passive row of footprints, as shown.

The assumption that coronal magnetic structures are line-tied at the solar
photosphere implies that magnetic field lines joining the photosphere to the corona
are frozen-in to the sub-photospheric plasma and so are fixed immovably there
by the inertia of the denser plasma below. Line-tying implicitly requires that
coronal currents close across field lines, as surface currents in the photospheric
boundary. For example, consider a coronal arcade, subject to a shear. If the
magnetic field at one line of footpoints of the arcade is assumed to be initially
vertical at the photosphere (of magnitude Bo, say), then line-tying implies that
after shearing, a kink appears in the field lines there. This kink implies a nonzero
\7 x B at the photosphere, and hence a nonzero surface current there. Specifically,
if the kink is a departure () from the vertical, then a surface current Bi, tan () / /-Lo
must flow, perpendicular to the plane of the kinked field. This surface current
must be set up by a sequence of events in which a coronal current is imposed
on the photospheric boundary. To understand this point, consider Fig. 1. A
shear imposed at one row of footpoints of a coronal arcade drives a current
along the coronal field lines of the arcade. If the photospheric motion is slow
compared with the Alfven propagation time in the corona, the shearing of the
arcade may be considered as a sequence of magnetostatic equilibrium states in
which the footpoints of the arcade are successively displaced (Priest 1982). Each
equilibrium state in the sequence has a greater field-aligned current flowing in
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the coronal part of the arcade, and closing (as a consequence of line-tying) in
the photospheric boundary at the passive footpoint. This cross-field boundary
current must be set up as the magnetostatic response of the passive footpoint
to an increased current density arriving from above, along the field lines.

A second example of the line-tying assumption is provided by the Kuperus
and Raadu (1974) model for the support of prominences. In the model, a
current-carrying filament is introduced into the corona and induces surface
currents in the photospheric boundary, as a consequence of line-tying. The
induced currents support the filament through current-current interaction. The
initial (pre-filament) magnetic field is predominantly vertical at the photosphere
and so current closure there must occur perpendicular to the magnetic field. The
surface current induced at the photospheric boundary is the closure current for
the coronal filament current, set up after the filament is introduced (e.g. Martens
1986). Variants of the model have been proposed (Van Tend and Kuperus 1978;
Lerche and Low 1980; Martens 1986; Martens and Kuin 1989; Priest and Forbes
1990), and all rely on the same assumption about the photosphere. The model
developed here tests the validity of the line-tying assumption at the photosphere
by considering the response of the sub-photosphere to currents imposed from
above.
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Fig. 2. Geometry of the simple model photosphere considered, with two possible field
configurations. In the upper picture the background field is uniform and in the lower it is
oppositely directed in x > 0 and x < o.

Cross-field Current Closure 363 

the coronal part of the arcade, and closing (as a consequence of line-tying) in 
the photospheric boundary at the passive footpoint. This cross-field boundary 
current must be set up as the magnetostatic response of the passive footpoint 
to an increased current density arriving from above, along the field lines. 

A second example of the line-tying assumption is provided by the Kuperus 
and Raadu (1974) model for the support of prominences. In the model, a 
current-carrying filament is introduced into the corona and induces surface 
currents in the photospheric boundary, as a consequence of line-tying. The 
induced currents support the filament through current-current interaction. The 
initial (pre-filament) magnetic field is predominantly vertical at the photosphere 
and so current closure there must occur perpendicular to the magnetic field. The 
surface current induced at the photospheric boundary is the closure current for 
the coronal filament current, set up after the filament is introduced (e.g. Martens 
1986). Variants of the model have been proposed (Van Tend and Kuperus 1978; 
Lerche and Low 1980; Martens 1986; Martens and Kuin 1989; Priest and Forbes 
1990), and all rely on the same assumption about the photosphere. The model 
developed here tests the validity of the line-tying assumption at the photosphere 
by considering the response of the sub-photosphere to currents imposed from 
above. 

Photospheric boundary 

z 

Photospheric boundary 

z 

/"\ II' I I' 

x 
...... 

x 

Fig. 2. Geometry of the simple model photosphere considered, with two possible field 
configurations. In the upper picture the background field is uniform and in the lower it is 
oppositely directed in x > 0 and x < O. 



364 M. S. Wheatland and D. B. Melrose

The sections of the paper are divided as follows. In Section 2 a simple
description of current closure in a model photosphere is presented, which becomes
the basis in Section 3 for a model of the response of the sub-photosphere to
a current applied from above. The various limiting cases in which analytical
solutions to the model exist are investigated in Section 4. The general case
requires numerical solution, which is discussed in Section 5, together with the
consequences of the model for solar parameters. The main results of the model
are discussed in Section 6.

2. Description of Cross-field Currents in the Sub-photosphere

Consider the following two-dimensional (a/ay = 0) forms for fluid velocity and
magnetic field, respectively, in a model photosphere (Scholer 1970):

v = [0, vy(x, z, t), 0], B = [0, By(x, z, t), Bz(x)] . (1)

The photosphere is assumed to occupy the half-space z 2:: 0, threaded by a
background field Bz(x). For the purposes of the model we consider only those
cases where B; is constant. Two specific cases of interest are Bz = Bo and also
the simple form

{
BO

Bz(x) = -Bi,
if x > 0,

if x < 0,
(2)

representing an idealised photospheric field. with a neutral (or inversion) line.
These two choices are shown in Fig. 2. The geometry adopted implies cross-field
and parallel current densities

J
x

= _.2.- 8By

/-lo az
and J _ 1 aBz - - yo_

/-lo ax .
(3)

The photosphere is modelled here as a single resistive fluid with isotropic
conductivity ape The simple Ohm law

J = ap(E+v x B) (4)

is assumed to apply, where E is the electric field present.
Assuming also a constant density photosphere, Maxwell's equations and the

fluid equation of motion imply the pressure balance

P = Po - B;/2/-lo

and the partial differential equation for the magnetic field

8
2By _ v~ 8

2By _ ~~ (8
2By + 8

2By) _ 0
{)t2 az2 'Y {)t ax2 az2 -,

(5)

(6)

where VA = BO/(/-loPO)! is the Alfven speed and 'Y = /-loap. The components
of the current density obey the same partial differential equation and may be

364 M. S. Wheatland and D. B. Melrose 

The sections of the paper are divided as follows. In Section 2 a simple 
description of current closure in a model photosphere is presented, which becomes 
the basis in Section 3 for a model of the response of the sub-photosphere to 
a current applied from above. The various limiting cases in which analytical 
solutions to the model exist are investigated in Section 4. The general case 
requires numerical solution, which is discussed in Section 5, together with the 
consequences of the model for solar parameters. The main results of the model 
are discussed in Section 6. 

2. Description of Cross-field Currents in the Sub-photosphere 

Consider the following two-dimensional (8/8y = 0) forms for fluid velocity and 
magnetic field, respectively, in a model photosphere (Scholer 1970): 

v = [0, Vy(x, z, t), 0], B = [0, By(x, z, t), Bz(x)]. (1) 

The photosphere is assumed to occupy the half-space z 2:: 0, threaded by a 
background field Bz(x). For the purposes of the model we consider only those 
cases where B; is constant. Two specific cases of interest are Bz = Bo and also 
the simple form 

Bz(x) = {Bo 
-Bo if x < 0, 

ifx>O, 
(2) 

representing an idealised photospheric field with a neutral (or inversion) line. 
These two choices are shown in Fig. 2. The geometry adopted implies cross-field 
and parallel current densities 

J - _.-!... 8By and Jz =.-!... 8By . 
x - Jlo 8z Jlo 8x 

(3) 

The photosphere is modelled here as a single resistive fluid with isotropic 
conductivity <Tp. The simple Ohm law 

J = <Tp(E + v x B) (4) 

is assumed to apply, where E is the electric field present. 
Assuming also a constant density photosphere, Maxwell's equations and the 

fluid equation of motion imply the pressure balance 

P = Po - B~/2Jlo (5) 

and the partial differential equation for the magnetic field 

82 By _ v2 82 By _ .!. ~ (82 By + 82 By) _ ° 
f)t2 A 8z2 'Y f)t 8x2 8z2 -, 

(6) 

where VA = BO/(JlOPo)! is the Alfven speed and 'Y = Jlo<Tp. The components 
of the current density obey the same partial differential equation and may be 



Cross-field Current Closure 365

obtained from equation (3). Equation (6) has been discussed by Alfven and
Falthammar (1963).

Several restrictive assumptions are adopted in the derivation of equation (6)
which require comment. The restrictive geometry adopted (equation 1) allows only
transverse perturbations of the sub-photosphere. Together with the assumption of
constant density, this means that only transverse Alfvenwaves are considered. These
provide the mechanism of dynamic current closure. The role of magneto-acoustic
waves is ignored. The stratification of the solar atmosphere is also neglected
for simplicity: this is also not expected to influence the basic results presented.
Inhomogeneities in the sub-photospheric magnetic field are also neglected. A
more sophisticated treatment would consider the role of variations in the magnetic
field. The sub-photosphere is assumed to be isotropically conducting. In fact,
the sub-photosphere is a partially ionised gas, with a significantly anisotropic
conductivity (Khan 1987). The simplest magnetohydrodynamic (MHD) description
of the conductivity of the sub-photosphere must involve a Hall current-with
corresponding conductivity uH-in addition to the Pederson current described
here by Up (Krall and Trivelpiece 1973). The neglect of the Hall term is consistent
with the neglect of Jy • Both would need to be considered in a more general
model.

3. Model for Response of the Sub-photosphere to a Current imposed from above

A solution to equation (6) in the half space z 2: 0 is presented below, subject
to the boundary condition

Jz(x, z=O, t) = f(x)O(t) , (7)

where O(t) is the step function. The initial conditions assumed are those
appropriate to Laplace transform problems,

{)Jz I = o.Jz(x, z, t=O) = at t=o (8)

Equation (7) prescribes a vertical current density f(x) in the photospheric
boundary for t > o. This function is assumed to be odd in x, so that current
enters the half-space z 2: 0 in the half-plane z = 0, x > 0 and leaves in z = 0,
x < o. A total current 10 flows in the photosphere for t > 0, defined by

f o == roo dx' f(x') = -10

dx' f(x') .Jo -00

This current must close across field lines in the photosphere.
The equivalent boundary and initial conditions on By are, respectively,

By(x, z=o, t) = J-to¢(x)O(t) ,

( ) {)By I .Byx,z,t=O=- =0,
at t=O

(9)

(10)

(11)
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¢(x) =[~ dx'/(x'). (12)

The lower limit in equation (12) is determined by the requirement that By
approaches zero for large x. A simple choice of f(x) is the delta function profile

which implies

f(x) == Io{8(x - xo) - 8(x + xo)} ,

{
-10 if x < Xo ,

¢(x) = 0 otherwise.

(13)

(14)

This choice corresponds to a localised current density directed into the model
photosphere at x == Xo and out at x == -Xo. The delta function choice is considered
here, along with the general case.

It follows that the Laplace transform of the solution to equation (6) subject
to these boundary and initial conditions is

By(x, z, s) == /1oaz (1)! JOO d~ ¢(~) K 1 ([l's{ a?z2 + (x - ~)2}]t)
IT s -00 {a2z2+(x-~)2}t' (15)

with
S

2 - 2
a - s + "VA

(16)

and where K 1 is the modified Bessel function of the second kind (Abramowitz
and Stegun 1965). Equation (15) in general does not correspond to a tabulated
Laplace transform (e.g. Erdelyi et ale 1954). Various limiting cases permit
inversion of this transform and these are investigated below. Consider first,
however, the total current crossing the plane x == o. It is straightforward to
verify from equation (15) that this quantity is -10 , as is required by continuity
of current. To describe where cross-field current closure occurs in this model
photosphere for t > 0, it is only necessary to obtain the current density Jx in
the plane x == 0, rather than considering Jx everywhere in z 2:: o.

An alternative way to characterise how the current closes in general is to
consider the total current closing in the plane x == 0 above a height z == h:

1
I.i(h, t) == -10 - -By(x==O, z==h, t).

/10
(17)

This quantity decreases from zero at h == 0 to asymptotically approach -10 as h
tends to infini ty.

4. Limiting Cases

Various limiting cases provide insight into the general behaviour of the model:
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(4a) Infinite Conductivity ("y -+ (0)

In the limit "Y -+ 00, equation (6) becomes the one-dimensional wave equation.
It can be shown from equation (15) that

- J-Lolim By(x, z, s) = -¢(x) exp(-SZ/VA) ,
"'(-HXJ S

which yields the solution to the wave equation

lim By(x, z, t) = J-Lo¢(x)O(t - Z/VA) .
"'(--+00

(18)

(19)

Denoting this limit 'P' (for propagating), the corresponding current densities are

JP
x

¢(x) 8(t '- Z/VA) ,
VA

(20)

J; = f(x)O(t-Z/VA). (21)

The interpretation of equations (20) and (21) is that current closure occurs at
an Alfvenic front propagating into the photosphere. In the plane x = 0, the
cross- field current is

P 10Jx (x=O, z, t) = --8(t - Z/VA) ,
VA

(22)

so in the absence of diffusion, a propagating delta function of cross-field current
is seen in the plane of symmetry of the model.

(4b) Zero Alfven Speed (VA -+ 0)

In the limit of zero Alfven speed, equation (6) becomes the two-dimensional
diffusion equation. Denoting this limit 'D' (for diffusive), equation (15) becomes

- D .-By (x,z,s) = lim By(x"z,s)
VA --+0

J-LOZ(I)!Joo d~¢(~)Kl(['YS{z2+(x-~):}]!), (23)
1T S -00 {z2 + (x - e)2}2

which can be inverted (Erdelyi et ale 1954) to give the classical Green function
solution to the diffusion equation

B;;(x, z, t) = /-loZ Joo d~ 2 ~(~) 2 exp (- .1.{z2 + (x - e)2}). (24)
1T -00 Z + x - e) 4t
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Fig. 4. Vector field of the current density in the asymptotic
limit of the diffusive case. For simplicity, Xo = 1 has been
chosen.

It is straightforward to write down JfJ and Jf from equation (24), but here
note only that the cross-field current in the plane x == 0 is

D 2100

("'(z2/2t _z2 +e2
) ("'( 2 2 )Jx(x=O,z,t)=- dl;,¢(I;,) 2 2-(2 22 exp --(z +1;,) .(25)

1T 0 Z +e z +e) 4t

(26)
1T(x6 + z2) .

Jf (x==O, z, t--+oo) ==

Fig. 3 illustrates this current density for the delta function choice of f(x),
equation (13). As t --+ 00 it approaches the asymptotic form

2Ioxo
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It is straightforward to write down J!! and JP from equation (24), but here 
note only that the cross-field current in the plane x = ° is 

D 2100 ('Yz2/2t _z2 +e) ('Y 2 2) Jx (x=O,z,t) = - d~¢(~) 2 2 - (2 2)2 exp - -(z +~) . (25) 
71'0 z+~ z+~ 4t 

Fig. 3 illustrates this current density for the delta function choice of f(x), 
equation (13). As t -+ 00 it approaches the asymptotic form 

D 2Ioxo 
Jx (x=O, z, t-+oo) = - (2 2) . 

71' Xo +z 
(26) 
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In this limit, cross-field current closure occurs for all relevant timescales in ,a
region just below the photospheric boundary. Fig. 4 shows the vector field of
current density (J~, JP) in the limit t ~ 00. This behaviour is consistent with
the Kuperus and Raadu (1974) model for support of current carrying filaments.
However, as discussed below, the solar behaviour is much closer to the limit of
infinite conductivity than that of zero Alfven speed.

(4c) Steady State (t ~ (0)

The asymptotic time behaviour of equation (6) can be obtained directly by
setting a/at to zero or more formally by evaluating lims~osBy(x,z,s) using
equation (15). The behaviour depends only on whether the Alfven speed is zero
or not.

If VA = 0, the behaviour is described by equation (24) in the limit t ~ 00, i.e,

B~(x,z,t~oo) = J-toZ foo d~ 2 </>(~) -
1f -00 Z + (x - e

and equation (26) gives the cross-field current in the plane x = o.
If VA =1= 0 then taking lims-+o sBy(x, z, s) using equation (15) gives

lim By(x, z, t) = f(x) ,
t~oo

implying

(27)

(28)

lim Jx(x, z, t)
t~oo

0, (29)

lim Jz = f(x).
t~oo

(30)

Equations (29) and (30) imply that, for nonzero Alfven speed, there are no
cross-field currents in the model photosphere in the static limit. The physical
interpretation of this result is that whenever the Alfven speed is nonzero, a
cross-field current density J J.. implies a force density J J.. X B which launches an
Alfven wave to propagate the stress away. So in the static limit in any layer of
the atmosphere, the cross-field current density must be zero. Zero Alfven speed
corresponds to an unmagnetised plasma, or an infinitely dense plasma. In either
case, Alfven waves cannot propagate to remove the stress implied by a cross-field
current density.

Two other limits are of physical interest and are mentioned briefly here. The
first is that of zero conductivity, , ~ O. In this limit the VA = 0 steady state
(equation 27) is achieved immediately at t = 0, because the diffusive timescale
,l2 is zero. Similarly, in the limit of infinite Alfven speed (VA ~ (0), the VA =1= 0
steady state, i.e. equation (28), is achieved instantly because the Alfven timescale
is zero in this limit.
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5. The General Case

In the general case, equation (15) must be inverted numerically, since expansions
in '1 and VA about the limits previously considered (Section 4) are not possible.
It is appropriate at this point to discuss a formal scaling procedure.

By introducing the scaled variables

t == t.]», Z = z/l, x == x/l, By == By/Bo,

where T and l are as yet undefined scale parameters, equation (6) becomes

2- 2- 2- 2-
a By _ C a By _ C !.- (a By a By) == 0 .
aP p az2 D at ax2 + az2

Here the coefficients are

(31)

(32)

V2 2
cp==L­

l2
and

T

CD == '1l2 . (33)

The relative sizes of Cp and CD determine whether equation (6) behaves like the
wave equation or the diffusion equation. In particular, the ratio CP/CD determines
the qualitative behaviour. Taking (without loss of generality) T equal to the
Alfven transit time for the characteristic length l gives Cp == 1 and CD == l/'1VAl.
Then the ratio of coefficients is

RA
Cp = "(vAL = R '
CD

(34)

where RA == /-lOVA is the Alfvenic impedance and R == l/apl is the resistance
corresponding to the conductivity ape This demonstrates that the behaviour of
the model depends only on the ratio RA/R.

The delta function choice of f (x) is adopted in this section. The current
density is scaled so that Ji == Ji/(Io/l) and also the distance Xo is taken to be l
for simplicity. Davies (1978) provided the method for numerical inversion of the
Laplace transform used here. The quantity to be inverted is

L:{Jx(x=O,s,t)} = 20 (~)! t' d~ !!-- (zKd{rs(02 z2 +en tJ )
7r S Jo oz (02z2 +e)! ,(35)

where
s

a==-+'s r
RA

r=R' (36)

Fig. 5a is a plot of the cross-field current density at one and two Alfven transit
times when RA / R == 10. The perpendicular current propagates as a spreading
pulse symmetrically around z == VAt. This example is close to the propagating,
or infinite conductivity limit of Section 4a.
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The second example considered is the intermediate case RA / R = 1, where
both the propagating and diffusive terms of equation (6) are influential. Fig. 5b
indicates that a peak in current density propagates but lags behind z = VAt, and
the behaviour has more in common with the diffusive limit of Section 4b than
the previous example.

Fig. 5c is for R A / R = 1/10, close to the diffusive limit of Section 4b. Current
closure occurs in the first few characteristic lengths below the photosphere for
many Alfven transit times. For times less than an Alfven transit time, but greater
than the diffusive timescale, the asymptotic diffusive behaviour of equation (26)
is established ahead of z = VAt.
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Fig. 6. Fraction of the total current 10 closing in the first
characteristic length 1 below the photospheric boundary as a
function of r == RAJ R at two (solid curve) and four (dashed
curve) Alfven transit times of 1.

In Fig. 6, the fraction of current closing in the first characteristic length below
the photosphere is shown, at two and four Alfven transit times as a function of
the ratio RA / R. This quantity is defined by equation (17). For small RA / R,
the behaviour is diffusive and substantial cross-field closure occurs just below
the photospheric boundary. [It follows from equation (24) that the value ~ is
expected when RA / R = 0.] For large RA / R the behaviour is propagating and
after a number of Alfven times there is no appreciable current closing in the
region of interest.

The typical solar value taken here is RA / R rv 108 / VA , where VA is in kilometres
per second, corresponding to a characteristic length of ~1 Mm (Khan 1987). For
reasonable values of the photospheric Alfven speed, this implies a behaviour close
to the infinite conductivity limit of Section 4a. Imposed currents which turn on
in the photosphere close essentially at an Alfvenic front propagating into the
sub-photosphere, with only weak diffusion of cross-field current density about
z = VAt.

For solar parameters (R A / R rv 108 ) , equation (17) (see also Fig. 6) implies
that after two Alfven transit times, the fraction of current closing in the first
characteristic length below the photospheric boundary is of the order of several
per cent. So the cross-field current has propagated out of the region of interest
in a brief time.
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6. Conclusions

A simple model is formulated to describe the time-dependent response of the
sub-photospheric plasma to a current imposed from above. The main results are
as follows:

(1) Cross-field current closure in the photosphere is a dynamic process. The
stress implied by a cross-field current density J 1. is propagated away by
Alfven waves.

(2) In the static limit, currents imposed along field lines at the photospheric
boundary flow along field lines below the photosphere.

(3) The time evolution of cross-field current closure in the model depends
only on the ratio RAJR, where RA == j.-tOVA is the Alfvenic impedance
and R == 1jap l is the resistance corresponding to the conductivity ap
and the characteristic length l. For RAJR » 1, current closure occurs
at an Alfvenic front propagating into the photosphere, with only weak
diffusion about the front. For RAjR « 1, current closure is a diffusive
process, with cross-field currents flowing just below the photosphere for
many Alfven times.

(4) Solar parameters imply RAjR» 1. So after a number of Alfven times,
current closure occurs deep in the photosphere.

These results imply that the line-tying assumption is valid only on a timescale
of the order of the Alfven transit time of a given layer of the sub-photosphere.
Models of coronal magnetic structures based on line-tying at the photosphere
need to be reconsidered in this light.
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