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Abstract

The gravitational Aharonov-Bohm (AB) effect is examined in the weak-field approximation to
general relativity. In analogy with the electromagnetic AB effect, we find that a gravitoelectro­
magnetic 4-vector potential gives rise to interference effects. A matter wave interferometry
experiment, based on a modification of the gravity-induced quantum interference experiment
of Colella, Overhauser and Werner (COW), is proposed to explicitly test the gravitoelectric
version of the AB effect in a uniform gravitational field.

1. Introduction

The electromagnetic Aharonov-Bohm (AB) effect (Aharonov and Bohm 1959)
has been widely studied theoretically (see e.g. Peshkin and Tonomura 1989), and
confirmed experimentally, most recently in the elegant experiments of Tonomura
et al. (1983, 1986). The AB effect represents a global anholonomy associated
with the electromagnetic gauge potentials; it is one example among a plethora of
general phenomena known as topological phases (see e.g. Shapere and Wilczek
1989). The gravitational analogue of the electromagnetic AB effect has also
received attention in the literature (Ford and Vilenkin 1981; Bezerra 1990, 1991).
When particles are constrained to move in a region where the Riemann curvature
tensor vanishes, a gravitational AB effect arises due to the global influence
of a region of nonzero curvature from which the particles are excluded. The
gravitational AB effect viewed in this way is a manifestation of the non-trivial
topology of spacetime. It is also known that the gravitational field of a rotating
mass distribution gives rise to effects, such as the Sagnac effect, that are analogous
to the AB effect (Ashtekar and Magnon 1975; Cohen and Mashhoon 1993). More
recently, gravitational analogues of the AB effect have been studied in static
cylindrically symmetric cosmic string models (Aliev and Gal'tsov 1989) and in
the Safko-Witten (1972) model of spacetime, wherein a tubular matter source is
established with an axial interior magnetic field and vanishing exterior field.

In this paper the equivalence principle is invoked to establish a simple realisation
of the gravitational AB effect. Section 2 discusses the gravitational AB effect
by considering the quantum-mechanical behaviour of a point particle in a weak
homogeneous gravitational field. In Section 3 we propose several interferometry
experiments utilising matter waves to explicitly test the electric version of the
gravitational AB effect. The most promising possibility is to exploit neutral atom
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interferometry in a modification of the classic experiment of Colella, Overhauser
and Werner (COW) (1975).

2. Gravitational Aharonov-Bohm Effect

The motion of a particle of mass m in a gravitational field is governed by the
geodesic equation

d2x~ dxa dx~
-- + r~a~ -- -- = 0,
dr2 dr dr

(1)

where x~ = x~(r) is the world line of the particle in spacetime, and T" a~ are
the components of the affine connection defined by

T" a~ = ~g~)..(8a g)..~ + 8~ ga).. - 8).. ga~). (2)

Here Greek indices take on the values 0, 1,2,3, and are used to denote the spacetime
components (ct,x,y,z), while latin indices (i,j = 1,2,3) will be used to refer to
spatial components only. The Minkowski metric TJa~ = diag(-1, +1, +1, +1) is
used throughout. Indices are raised and lowered with TJa~ and TJa~ respectively.
We will assume that the gravitational field is weak (I ~q, l/c2 « 1) and that
particles move with velocities that are small compared to that of light (v2/c2 « 1),
for which the magnitudes of the components of the energy-momentum tensor are
limited by Pmc2 = ITOO I» ITiD I~ ITij I. In the weak-field approximation the
metric tensor ga~ = TJa~ + ha~ deviates only slightly from a flat Minkowski metric
TJa~, so that Iha~ I«1. With these assumptions the linearised field equations of
general relativity assume a form similar to Maxwell's equations (Forward 1961;
Braginsky et al. 1977; Ross 1983; Li and Torr 1991), and the motion of a particle
moving under the influence of a time-dependent gravitoelectromagnetic field is
identical in form to that of a charged particle in an electromagnetic field. Writing
the components of ha~ as hOD = -q,/ c2

, hij = -8ij q,/ c2 and hOj = hjo = Aj / c,
we can define

2g = - \liP _ 8A
8t '

H=V X A,

(3)

(4)

where 9 is referred to as the gravitoelectric field and H is the gravitomagnetic
field. A dimensional analysis (using SI units) reveals that 9 has the dimensions
of acceleration, [L][T]-2. The gravitomagnetic field has the dimensions of
angular velocity, [T]-l; consequently, it can be rewritten in the alternative form
H = (c/n)'P, where I'P I= (n/c)w has the dimensions of linear momentum. This
latter expression defines the relationship for the momentum of a particle of zero rest
mass, as expected for the exchange quanta of the long-range gravitoelectromagnetic
field. The gravitoelectromagnetic Maxwell equations can be simplified further
by utilising the Fock-de Donder gauge condition, 8a ha ~ - ~8~ h~~ = o. In
this gauge H is constant, which results in the homogeneous Maxwell equation:
V X g = o. For later convenience we define a gravitoelectromagnetic 4-vector
potential q,a = (q,/c, A). Neglecting terms of order v2/c2 in equation (1), the
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nonrelativistic equation of motion reduces to the Lorentz-type expression (Harris
1991)

d2a-;
m dt2 = m(g + v X H) · (5)

In order to describe the quantum-mechanical behaviour of a particle moving
in a gravitational field it is necessary to use the 4-vector potential, rather than
the gravitoelectromagnetic fields. The gravitoelectromagnetic potentials have a
physical significance, and can affect the quantum-mechanical behaviour of a
particle even when it is constrained to regions of spacetime where the Riemann
curvature vanishes. The relativistic Lagrangian of a test particle of mass m in a
gravitoelectromagnetic field is

(
V

2 )! me
L = -mc2 1 - c2 + r; V • .c - miP , (6)

where .c is a quantity having dimensions of angular momentum, defined by
.c = (nje)A so that P = \7 X .c. In the nonrelativistic limit the Lagrangian of
the system reduces to

1 2 ( e )L = '2 m v - m <P - h v . .c . (7)

The corresponding Hamiltonian has the form identical to that of a charged
particle moving in an external electromagnetic field:

1 ( me)2H = - 1r - -.c + m<P
2m n '

where the canonical momentum 1r is defined via the Lagrangian (7) as

aL me
1rj = avo = mVj + r;Lj.

J

(8)

(9)

To implement the quantisation ansatz we introduce the gauge-covariant derivative
Da defined by

im
D a = aa - r; <Pa . (10)

This is equivalent to the minimal-coupling procedure in quantum mechanics.
Using minimal coupling (10) we write the nonrelativistic Schrodinger equation
for a particle of rest mass m as

n2 .
- - Dj DJ tP(x, t) = inDo tP(x, t) .

2m
(11)
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The solution to this equation is of the form

w(x, t) = Wo(x, t) exp (k S(F)) , (12)

where wo(x, t) is the solution to the Schrodinger equation in the absence of a
gravitoelectromagnetic 4-vector potential and S(r) is the line integral evaluated
over a path T with endpoints (Xl, tl) and (X2' t2):

S(F) = m l e; dz? · (13)

Fig. 1. A hypothetical interference
experiment carried ou t in a
freely falling (indicated by arrow),
non-rotating reference frame P. Here
S denotes a beam of nonrelativistic
coherent particles that is split
into two parts which travel over
the paths rl and r2 around the
cylindrical region R2. The particles
are prevented from entering region
R2. When the particles are brought
together an interference pattern
is produced at D. In the freely
falling reference frame P the region
R; is not simply connected. An
interference experiment performed
in this frame will produce a phase
shift, ~O, relative to a frame at rest
in the uniform gravitational field;
this phase shift originates from a
gravitoelectromagnetic AB effect as
discussed in the text.
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To understand how a gravitational AB effect can arise, consider a hypothetical
interference experiment carried out in a homogeneous gravitational field. A
reference frame F is at rest in this gravitational field. The region inside this
reference frame is divided into two sub-regions, denoted by R I and R2 , wherein the
gravitoelectromagnetic field is nonzero. An interference experiment is performed
in F using a beam of nonrelativistic coherent particles that is split into two
parts which travel over paths r l and r2 around the region R2 , from which the
particles are excluded. When the particles are brought together an interference
pattern is observed. The reference frame F is now allowed to fall freely, without
rotation, in the uniform gravitational field; this freely falling frame is denoted by
:P (see Fig. 1). The arrow in Fig. 1 indicates a geodesic along which the reference
frame :P is freely falling. In the region R I the particles are co-moving with the
frame:P. In this situation the equivalence principle (Ohanian 1977) may be
invoked, and it is possible to transform to local geodesic coordinates (Anderson
and Gautreau 1969) in which the results of the experiment are independent of
the gravitational field surrounding the system. The freely falling frame is locally
inertial and the connection coefficients vanish in this frame. The gravitational
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field inside the region R2 is nonzero, and in the freely falling reference frame the
region R1 is multiply connected. An interference experiment that is performed
in the freely falling frame P will produce an observable shift in the interference
pattern relative to a frame at rest in the uniform gravitational field; this phase
shift arises through a gravitoelectromagnetic AB effect.

The fringe shift is calculated from the solution to the Schrodinger equation
(12), which gives the phase difference between the two paths as

6,0 = m [ 4>adxa _ m [ 4>adxa
1i 1r, 1i 1r2

= m 1 4>a dz'",
n Jr=8E

(14)

The gravitoelectromagnetic flux is non-vanishing inside the region R2 , and the
gravitoelectromagnetic l-form ep == iPa dz? does not vanish on any closed path
T which encompasses the region E. Utilising the generalised Stokes theorem we
obtain

6,0 = m 1 «; dz" = m [[ 4>a,f3 dx f3 1\ dz" .
1i Jr=8E 1i llE

(15)

The phase difference between the two paths depends only on the flux of the
gravitoelectromagnetic field through the region E bounded by the closed path r.

To realise the gravitational analogue of the magnetic version of the electromagnetic
AB effect, it is necessary to allow a test particle to fall freely in the direction
of the gravitomagnetic force mv X H. Under these circumstances we reproduce
the situation depicted in Fig. 1, in which case the phase shift is given by

mi .~() == - Aj dz-' .
1i r=8E

(16)

In practice a test particle will fall in the direction of the resultant force (5),
and it will not be possible to realise experimentally the gravitomagnetic AB
effect. However, the magnitude of the gravitomagnetostatic field of the Earth is
approximately six orders of magnitude smaller than that of the gravitoelectric field
(Harris 1991). If the test particles move at speeds that are small compared to that
of light (v/ C « 1), the magnitude of the gravitomagnetic force on the particles is
smaller than that of the gravitoelectric force by a factor of (v/C) (UtfJ/C) , where
UtfJ is the equatorial speed of the Earth about its axis. For thermal neutrons
(v rv 103 ms- 1) this factor is (v/c)(UtfJ/c) rv 10-11 . Consequently, it is possible
to realise the gravitational analogue of the electric version of the electromagnetic
AB effect. Fig. 2 shows an idealised experimental configuration. The phase shift
is calculated from

~() == m 1 iP dt .
1i Jr=8E

(17)
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Fig. 2. Experiment to measure the gravitoelectric AB effect.
An interference experiment is performed in a freely falling
(indicated by arrow), non-rotating frame, P, near the surface
of the Earth. The beam of coherent particles is split at point
S, travels over the paths rl and r2, and particles are detected
at point D. An interference experiment performed in this frame
exhibits a phase shift, D..(} rv {min )D..<Pr, relative to a frame at
rest in the uniform gravitational field.

3. Matter Wave Interferometry

It should be possible to observe a gravitoelectric AB effect by performing a
matter wave interferometry experiment with thermal neutrons (Greenberger 1983;
Werner et ale 1988), electrons (Tonomura et ale 1989; Hasselbach and Nicklaus
1993) or neutral atoms (Carnal and Mlynek 1991; Audretsch et ale 1992) near
the surface of the Earth, where the gravitational field is approximately uniform.
We now discuss these experimental tests.

In principle the gravitoelectric AB effect could be tested by flying an interferometer
in an aircraft, and recording an interference pattern under conditions in which
the aircraft maintains a straight and level flight path at constant speed. The
interference pattern recorded in the inertial frame is then compared with the results
of an interferometry experiment carried out when the aircraft follows a parabolic
flight path. A particle moving in an inertial frame in a gravitational field will
experience the Lorentz force (5). In a two-slit interference experiment this results
in a shift in the diffraction envelope. However, in the freely falling reference frame
the particles exhibit force-free motion; nevertheless, the gravitoelectromagnetic
potential is nonzero, which results in a shift of the interference pattern within
the diffraction envelope (Kobe 1979). To calculate the expected phase shift we
need to know the linear dimensions of the interferometer. For example, with the
Laue-type neutron interferometer used by Greenberger and Overhauser (1979)
the height difference of the interferometer is 0·02 m, corresponding to a potential
difference of f:i.iP rv 0·2 J kg-1, and the path length is 0·1 m. For thermal neutrons
(v rv 103 m s-1) the traversal time is 'T rv 10-4 s. The phase shift calculated from
equation (17) is ~() rv (m/1i)~~'T rv 100 rad. Although this shift is large and
should be amenable to measurement, laboratory neutron sources produce small
count rates, so that typically only one neutron per second passes through the
interferometer, resulting in poor fringe visibility. Clearly it is not a practicable
suggestion to increase the neutron flux by using an airborne high-flux reactor!
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The problem of low neutron flux can be circumvented by performing an
interferometry experiment with electrons, where the count rate can be increased
by a factor of 104 • In this case, however, the phase shift is expected to be much
smaller. For example, using the parameters (dcP rv 10-4 J kg- 1 and T rv 10 ns)
reported in the double-slit electron interference experiment of Tonomura et ale
(1989), the phase shift calculated from equation (17) is dO rv 10-8 rad. It is
possible to increase this small phase shift by an order of magnitude by using
less energetic electrons (E rv 1 keY) (see e.g. Hasselbach and Nicklaus 1993);
however, it will be very difficult to increase the experimentaljsensitivity to
approach the threshold of detection. Since the gravitoelectric AD, phase shift
increases with mass it should be possible to exploit atomic beam interferometry
(see e.g. Audretsch et ale 1992), which represents a compromise between high
intensity and large phase shifts. For purposes of illustration we use the parameters
(LlcP rv 10-4 Jkg- 1 and T rv 1 ms) reported by Carnal and Mlynek (1991) in their
double-slit experiment with helium atoms (v rv 500 m s-l), in which case the
calculated gravitoelectric AB phase shift is LlO rv 6 rad. It should be possible to
increase the magnitude of this phase shift by a factor of 104 by using laser-cooled
atomic beams (see e.g. Kasevich and Chu 1991).

In practice extraneous phase shifts will complicate the interpretation of any
matter wave interferometry experiment. Perturbing forces due to tidal effects,
the effects of the Earth's rotation and higher order jcorrections in the Earth's
gravitational field (Anandan 1984) will produce additional phase shifts. For
atomic beam interferometry the magnitude of these/ phase shifts is estimated to
be 10-7 , 0·05 and 10-9 rad respectively. In addition,centrifugal and Coriolis
forces can play a significant role in the proposed experiment. The effects of
centrifugal acceleration can be reduced to less than 0·1 rad by flying a trajectory
with a large (.:G10 km) radius of curvature. Coriolis forces can be eliminated
entirely by choosing an appropriate orientation for the particle beam. Regardless
of their origin, the effect of these additional forces is to shift the interference
fringes and the diffraction envelope equally, whereas the gravitoelectric AB effect
shifts the interference fringes within the diffraction envelope, thereby producing
an observable asymmetric fringe pattern. I I

The most promising possibility for detecting a gravitoelectric AB effect would
be to locate an atomic beam interferometer in a near-Earth circular orbit. This
would allow any effects that depend on the gravitoelectric field 9 to be eliminated.
To be more precise the effective 9 is zero only at the centre of mass of the
satellite, however, the linear dimensions of a typical atomic beam interferometer
are sufficiently small that tidal effects on the phase shift can be neglected in
comparison with the geometric phase contribution. In this environment we propose
an indirect test of the gravitoelectric AB effect by carrying out a variant of the
classic experiment of Colella, Overhauser and Werner (COW) (1975) with neutral
atoms. In the original COW experiment a Laue-type 'interferometer was used to
split a beam of thermal neutrons into two beams, which travel over two paths
around a parallelogram in the presence of a gravitational field. .Cravity-induced
quantum interference, in the form of a series of maxima and minima in the
neutron intensity, is observed when the interferometer is rotated about the beam
of incident neutrons. In a similar manner we suggest that by rotating an atomic
beam interferometer about the incident beam of atoms, a phase shift due to a
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The problem of low neutron flux can be circumvented by performing an 
interferometry experiment with electrons, where the count rate can be increased 
by a factor of 104. In this case, however, the phase shift is expected to be much 
smaller. For example, using the parameters (LlP '" 10-4 J kg- 1 and T '" 10 ns) 
reported in the double-slit electron interference experiment of Tonomura et ai. 
(1989), the phase shift calculated from equation (17) is Llf) '" 10-8 rad. It is 
possible to increase this small phase shift by an order of magnitude by using 
less energetic electrons (E '" 1 keY) (see e.g. Hasselbach and Nicklaus 1993); 
however, it will be very difficult to increase the experimental"sensitivity to 
approach the threshold of detection. Since the gravitoelectric AS phase shift 
increases with mass it should be possible to exploit atomic beam interferometry 
(see e.g. Audretsch et ai. 1992), which represents a compromise between high 
intensity and large phase shifts. For purposes of illustration we use the parameters 
(LlP", 10-4 J kg- 1 and T '" 1 ms) reported by Carnal and Mlynek (1991) in their 
double-slit experiment with helium atoms (v '" 500 m s-l ), in which case the 
calculated gravitoelectric AB phase shift is Llf) '" 6 rad. It should be possible to 
increase the magnitude of this phase shift by a factor of 104 by using laser-cooled 
atomic beams (see e.g. Kasevich and Chu 1991). 

In practice extraneous phase shifts will complicate the interpretation of any 
matter wave interferometry experiment. Perturbing forces due to tidal effects, 
the effects of the Earth's rotation and higher order corrections in the Earth's 
gravitational field (Anandan 1984) will produce additional phase shifts. For 
atomic beam interferometry the magnitude of these' phase shifts is estimated to 
be 10-7, 0·05 and 10-9 rad respectively. In addition, centrifugal and Coriolis 
forces can play a significant role in the proposed experiment. The effects of 
centrifugal acceleration can be reduced to less than 0·1 rad by flying a trajectory 
with a large (;<;10 km) radius of curvature. Coriolis forces can be eliminated 
entirely by choosing an appropriate orientation for the particle beam. Regardless 
of their origin, the effect of these additional forces is to shift the interference 
fringes and the diffraction envelope equally, whereas the gravitoelectric AB effect 
shifts the interference fringes within the diffraction envelope, thereby producing 
an observable asymmetric fringe pattern. I 

The most promising possibility for detecting a gravitoelectric AB effect would 
be to locate an atomic beam interferometer in a near-Earth circular orbit. This 
would allow any effects that depend on the gravitoelectric field 9 to be eliminated. 
To be more precise the effective 9 is zero only at the centre of mass of the 
satellite, however, the linear dimensions of a typical atomic beam interferometer 
are sufficiently small that tidal effects on the phase shift can be neglected in 
comparison with the geometric phase contribution. In this environment we propose 
an indirect test of the gravitoelectric AB effect by carrying out a variant of the 
classic experiment of Colella, Overhauser and Werner (COW) (1975) with neutral 
atoms. In the original COW experiment a Laue-type interferometer was used to 
split a beam of thermal neutrons into two beams, which travel over two paths 
around a parallelogram in the presence of a gravitational field .. Gravity-induced 
quantum interference, in the form of a series of maxima and minima in the 
neutron intensity, is observed when the interferometer is rotated ahout the beam 
of incident neutrons. In a similar manner we suggest that by rotating an atomic 
beam interferometer about the incident beam of atoms, a phase shift due to a 
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gravitoelectric AB effect will be produced. It should be emphasised that in this
modified COW experiment both the interferometer and the particle beam will
be freely falling; consequently, unlike the gravity-induced phase measured in the
conventional COW experiment, there will be an observable shift of the interference
pattern within the diffraction envelope, whose magnitude for an atomic beam
interferometry experiment with helium atoms will be t::,.() rv 6 rad. Despite the
numerous difficulties envisaged in doing these experiments, it may be possible to
realise an empirical test of the gravitational AB effect in the near future.
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gravitoelectric AB effect will be produced. It should be emphasised that in this 
modified COW experiment both the interferometer and the particle beam will 
be freely falling; consequently, unlike the gravity-induced phase measured in the 
conventional COW experiment, there will be an observable shift of the interference 
pattern within the diffraction envelope, whose magnitude for an atomic beam 
interferometry experiment with helium atoms will be /j.() f"V 6 rad. Despite the 
numerous difficulties envisaged in doing these experiments, it may be possible to 
realise an empirical test of the gravitational AB effect in the near future. 
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