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Parametric and dispersive representations of self-energy integrals for particles of arbitrary 
mass in any dimension look very different. We establish their equivalence explicitly and 
suggest ways in which the parametric form might prove suitable for tackling Schwinger-Dyson 
equations in gauge theories. 

1. The Problem 

We have known for a long time how to write down and evaluate self-energy 
integrals in relativistic field theories. The most popular method is due to 
Feynman (1949) and involves introducing 'Feynman parameters' in order to 
combine propagators and then integrating over (2£-dimensional) momentum space 
('tHooft and Veltman 1972), thereby leaving a one-dimensional scalar integral 
over the parameters; the final parametric representation neatly embodies the 
singularity properties of the self-energy. Another familiar approach exploits the 
well-understood singularity structure of the momentum-space integrals (Eden et 
al. 1966; Nakanishi 1970), by constructing a dispersion relation over the absorptive 
part of the self-energy, which is itself rather easily computed. Both methods 
are clearly correct, but having said that, an inspection of the dispersive and 
parametric integrals does not reveal many similarities. In fact they look very 
different, especially when applied to arbitrary-mass intermediate states and when 
written in any dimension 2£. This short paper shows how to establish directly 
the relation between the two representations, and discusses the consequences for 
gauge models at the end. 

In order to exhibit the problem, consider the basic self-energy function 

-i J d2f k 
E(p2) == (27r)2f [k2 _ mi][(p _ k)2 - m~l . (1) 

It is a one-loop integral, requiring but a single Feynman parameter ll. Combining 
denominators and integrating over momentum, according to the standard 
dimensional continuation rules, one arrives at the usual parametric representation 
of E, 
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(2) 

which can be re-expressed as 

(3) 

where 

(4) 

On the other hand, the Landau (1959) and Cutkosky (1960) rules tell us that, 
regarded as a function of p2, L; has a branch cut extending from (ml + m2)2 to 
00, with a discontinuity given by 

~L;(p2) = 7f(27f)-£ J d2£k8+[k2 - mi]8+[(p - k)2 - m~] 

7f3/ 2-£ 23- 4£ t.. 2£-3 
- B[P2 - (m + m2)2] - re£ - !)(p2 l-1 1 , 

that can be determined fairly easily by explicit calculation. 

(5) 

This ties in perfectly with the discontinuity due to the integrand of the 
parametric integral (3), which is nonzero in the range (:I:- :::; CY :::; CY+: 

Changing variables from CY to u, via CY = CY_(1 - u) + CY+u, one recovers the 
answer (5) precisely. Assuming that £ > 1, say, one proceeds to write a dispersive 
representation of the self-energy by making (£-1) subtractions* and obtains the 
dispersive integral for the self-energy, 

(7) 

where P stands for a polynomial in p2 of degree £-1, connected with possible 
renormalisation terms. 

All of this material is extremely well known to anyone who has carried out 
a one-loop computation, and we have not dwelt on the detailed derivations of 
(2) and (7) for that reason. Having also reassured ourselves that the absorptive 
parts of (2) and (7) coincide, we should need no convincing that the dispersive 

• Strictly, the integer part of £-1. These subtractions are associated with a certain number 
of renormalisation constants. 



Parametric and Dispersive Integrals 731 

and parametric representations must be strictly equivalent. But declaim as we 
might, a glance at (2) and (7) shows this statement to be far from obvious. 
This is the problem we wish to address: the aim of this note is to prove that 
one can proceed from L:p to L:D directly, without first calculating the absorptive 
part and relying on the analytic properties of L:. 

2. The Solution 

Before tackling the general case, we first treat two elementary examples, as 
they bring in ideas that will be applied later. To begin with, suppose that one 
particle is massless so that * 

(8) 

(9) 

To prove that (8) equals (9), let ~ = p2/m2 and suppose e» 2 initially. (Later 
we shall continue to arbitrary e.) Integrate (8) by parts n times. The boundary 
terms in 0: produce a (specific) polynomial in p2 of degree n and thus the 
parametric integral reduces to 

L: 2 _m2i-4[p f(2-e-n)f(e-1) 
p (p ) - (4nl n + en r( e - n - 1) 

X 11 do: (1 - ~ + ~o:) £-2-n o:i-2+n ] . (10) 

Continue this answer to non-integral n = e - 1, so that 

Finally, change variable to s = m 2 /(1 - 0:) and use the duplication formula for 
gamma functions to prove that the answer for the parametric integral exactly 
matches (9), up to subtractions terms-which is all we can prove anyway. 

For the next exercise, take the two internal propagator masses to be equal, 
m1 = m2 = m, whereupon 

(12) 

* Hereafter we assume that p2 contains a positive imaginary part in order to define which 
side of the cut we are on. 
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(13) 

This time change variable from a to u, via u = 1-2a, and again use the 
abbreviation ~ = p2 1m2 . Here the parametric integral simplifies to 

(14) 

To make further progress, consider the generic integral 

By carrying out a series of integrations by parts with respect to u, as before, 
this can be reduced to a boundary polynomial in B plus a residual integral: 

1= Pn(B) + (2B)n r(2 + n - £) (duu2n [A + Bu2jC-n-2. 
(2n - I)!! Jo 

Next, continue to n = £ - 1, with the interpretation 

N!! = r(l + N12) 7[-1/2 2(N+l)/2, 

in order to reduce the generic integral to 

( )C-l l 1 
2B 7[2 1 2£-2 2 I=PC-l+ 1 C-l duu I(A+Bu). 

r(£-"2)2 0 

As the last step, convert to the variable s via u2 = 1 - 4m2 I s. In this manner 
we arrive at the dispersive integral (13) exactly. 

We are now in a position to tackle the arbitrary-mass case, but to see what 
manoeuvres are needed let us initially specialise to £ = 1, when the denominators 
in p2 of 2:0 and 2:p are obviously alike: 

By inspection, it is pretty clear that we must make the change of variable 
from a to s via 

s = mi!(l - a) + mUa. 
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As the parameter a ranges from 0 to I, s starts off at 00, reaches a minimum 
of So = (rnl + rn2)2 at 000 = rn2/(rnl + rn2) and then climbs back up to 00. In 
fact, solving for a in terms of s, one gets the two branches 

a±(s) = [s + rn~ - rni ± .6.(s)J/2s, 

(17) 

Also worth noting is the differential relation 

ds = [rni - rn~ - s + 2as] da/a(l- a) = =f.6.(s) da/a(1 - a) (18) 

on the a'f branch. Because the limits get swapped, this variable change allows 
us to discard any terms which are odd in .6.(s), which will be important in what 
follows. 

If we now increment to £ C::' 2 and carry out an integration by parts on a, we 
pick up the usual boundary terms plus a residual integral of the form 

which can be simplified to 

J da [.6.(s)/ S]2 /2[rnia + rn~(1 - a) - p2a(1 - a)] , 

remembering that only even terms in .6. will contribute. For larger values of £ we 
have to make n successive integrations by parts, each time picking up a factor 
.6.( s) / s in the integrand. By this means the general parametric integral can be 
cast in the form 

~ ( 2) = p ( 2) + (p2)e-l f(2+ n - £) q£ -1) J ~ [.6.(s)/sj2n (19) 
p P n P (4'1l/ f(£ + n - 1) .6.(s) (s/p2 _ 1)2-Hn . 

Continuing this result to n = £ - 1 we end up with 

(20) 

and upon applying the duplication formula for gamma functions, we can verify 
that this answer coincides with the dispersive integral (7). 

3. Uses 

The gauge technique (Salam 1963; Delbourgo 1979)-one of several methods of 
solving truncations of the Schwinger-Dyson equationsjn gauge models-employs 
the Lehmann (1954) dispersive representation of the full source propagator, such 
as the scalar 
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(21) 

By 'solving' the gauge identities one can obtain longitudinal approximations 
to various Green functions in terms of the spectral function p, which can then 
be determined self-consistently by substituting them in the field equations. But 
there are other ways to make the truncations, and there exist other solutions 
to the identities which better respect multiplicative renormalisability (Curtis and 
Pennington 1990, 1991). Whatever the advantages of one method over another 
may be, we can always improve the approximations/truncations by including 
transverse parts of Green functions (King 1983; Delbourgo and Zhang 1984); 
however the problem, as ever, is to find simple solutions (Delbourgo 1978) of the 
higher-point identities without the benefit of the dispersive representation. This 
is where the present work comes in handy. 

We are all aware that, in perturbation theory at least, a parametric representation 
always exists. For example, in spinor electrodynamics the fermion self-energy to 
order e2 is given by 

2r(2 - fi) 11 L;(p) = c da b.p(l - a)(fi - 1) - fim][m2a - p2a(1 - aW-2. (22) 
(47f) 0 

This suggests that a parametric form of the propagator 

s(p) = r1 
dap(a)/b.p - m/a]2-C 

.fo 
(23) 

may provide a better route for solving the Green-function gauge identities. This 
becomes pertinent when one tries to obtain a solution for the four-point function 
GILV in terms of the three-point function GM, 

(24) 

since the latter function contains a vertex which admits the parametric form 

AIL(p',p) = J da dp dl' 8(a + p + I' - l)xIL(a, p, I',P,p') 

x [p,2 ap + p2al' + (p - p')2 PI' - m2(1 - a)]C-3 , 

where the polynomial X can certainly be evaluated in perturbation theory. The 
crucial point is that it might be possible to solve the gauge identity for the 
longitudinal four-point function GMV self-consistently for the three-point spectral 
function X, via the equation set 
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in other words for the complete vertex. This is likely to be a fruitful avenue for 
future research. 

It is even conceivable that if we had a better idea about the singularity 
structure of confined particle propagators, like quarks and gluons, we might 
be able to give those sources a parametric representation too, and extend the 
technique to cover that case. For now this is just a gleam in the eye. 
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