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The electronic structure of graphite-like materials is investigated within the framework of the 
tight binding model. The densities of states of simple hexagonal and Bernal graphite are 
calculated, induding two layer (2D) and bulk (3D) cases. The calculation employs Green's 
function techniques, resulting in essentially analytic solutions in terms of elliptic integrals. 
The Bernal density of states is found to agree qualitatively with experimental measurements 
and the extension of our studies to surface effects and carbon fibre structures is also discussed. 

1. Introduction 

The aim of this work is to develop a simple model for understanding the 
features of the electronic density of states of graphite and graphite-like materials. 
In this paper we present a model which successfully describes the density of states 
of simple hexagonal (SH) and Bernal graphite, in a way that is both physically 
transparent and mathematically tractable. A further motivation for this work 
is that it forms a sound basis for an extension to complex phenomena such as 
surface effects and graphene tubules. 

The model employs the parametrised tight binding (TB) Hamiltonian to 
describe the interaction between the electronic states, which for graphite are 
localised about the carbon lattice sites. The major difference between this model 
and other studies (McClure 1957; Slonczewski and Weiss 1958; Haering 1958; 
Charlier et ai. 1991a) is that the density of states (DOS) is calculated using 
Green's functions, a technique resulting in an analytic solution in two dimensions 
and an essentially analytic solution in three dimensions. 

Graphite has been the subject of much theoretical and experimental attention 
since the proposal of its structure by J. D. Bernal in 1924. The 'Bernal' graphite 
identified was found to consist of layers of hexagonal carbon lattices stacked 
in an alternate ABABAB fashion. In Fig. 1, each carbon atom is shown with 
four valence electrons, forming Sp2 hybridised (J bonds, spaced 1200 apart within 
the plane, with a 2pz orbital perpendicular to the plane. While the sp2 bonds 
contribute only to intra-plane bonding, the 2pz orbitals contribute to 1[" bonding 
both inter- and intraplane. The inter-plane spacing is 3·35 A, the intraplane 
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Fig. 1. Representation of the carbon valence orbitals: the 
three hybridised (J orbitals and \[1~~, the nonhybridised 7r 

orbital (Charlier et al. 1991a). 

spacing 1· 42 A. The comparative weakness of the interplane interaction is reflected 
in the magnitude of the interplane spacing and the strongly anisotropic conduction 
properties of graphite. 

Bernal graphite is but one of a wealth of graphite-like compounds. Fig. 2 
illustrates three crystalline forms of graphite, of which Bernal graphite represents 
80% of naturally occuring graphite, rhombohedral graphite 14%, the remaining 
6% being in a turbostratic form, without any layer periodicity (Haering 1958). 
Although the form of graphite with the layers stacked directly above one another, 
SH graphite, does not occur in nature, it is useful to calculate its theoretical 
properties for comparison with other forms. Graphite-like compounds include 
intercalated graphite, where atoms such as Li are placed between the layers, 
dramatically affecting the electronic properties, and the exotic graphene tubules 
(see Fig. 3) discovered by Iijima in 1991. Graphene tubules appear to consist of 
cylindrical layers of graphite, with the hexagonal sheets being helically wrapped 
about the cylinder's axis such that the two edges meet with no overlap. Graphene 
tubules are potential one-dimensional conductors. The electronic properties of 
all these materials are of interest and hence the motivation for a simple model 
which can be easily extended to embrace all of the above systems. 

Investigations of the theoretical properties of graphite fall into two broad 
categories, that of ab initio or first principles calculations and that of parametrised 
models. Ab initio calculations range from the Painter and Ellis (1970) pioneering 
LCAO band structure calculation to pseudopotential and density functional 
approaches (Charlier et al. 1991b). These calculations give detailed information 
about the electronic density of states over the full bandwidth. Following on 
from work by Wallace (1947), both Slonczewski and Weiss (1958) and McClure 
(1957) (hereafter, SWMc) developed a 3D parametrised TB model, exploiting 
the localised, directional nature of graphitic bonding. In this model, interaction 
between a site and any of its neighbours is represented by a parameter. McClure 
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Fig. 2. Three crystalline structures of graphite which differ from one another by the shift 
imposed on the graphite planes in the stacking: (a) simple hexagonal graphite; (b) Bernal 
graphite; and (c) rhombohedral graphite (Charlier et al. 1991a). 

Fig. 3. Graphene tubule: concentric cylinder of graphite sheets 
wrapped helically about the cylinder's axis (see New Scientist 
vol. 132, p. 13, 1991). 

showed that seven parameters suffice to parametrise Bernal graphite, and that 
the magnitudes of these parameters could be obtained from de Haas~van Alphen 
measurements of the Fermi surface. In graphite, the Fermi surface is very close to 
the edge of the Brillouin zone. SWMc used this property to determine the DOS 
about the Fermi level by making an expansion about the edge of the Brillouin 
zone, an approximation yielding accurate results at the Fermi level, but which 
becomes rapidly less accurate away from the Fermi level. Charlier et al. (1991a) 
used the SWMc method to calculate the DOS at the Fermi level for SH graphite. 

In our model, we too employ a TB Hamiltonian. However, through the use 
of Green's functions to determine the DOS, the aforementioned approximation 
is avoided, and the DOS of the whole bandwidth is obtained. Thus, the Green's 
function technique bridges the gap between the SWMc method and the ab initio 
calculation. In addition the technique provides an essentially analytic solution. 
Consequently, we have been able to extend the work by Charlier et al. (1991a) on 
SH graphite to the whole bandwidth and to calculate the DOS for Bernal graphite. 
In spite of the simplicity of the model it is found that the essential features of 
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the experimental DOS are obtained, and that the features are easy to interpret 
physically, fulfilling the aims of the model. 

The remainder of this paper contains, firstly, a brief explanation of the theory 
of the model, followed by results of calculations of the DOS for simple hexagonal 
and Bernal graphite. The results are compared with previous calculations and 
experiment. A discussion of possible extension to the study of surface effects and 
more complex structures such as graphene tubules is given in the final section. 

Fig. 4. Tight binding Hamiltonian 
parameters: VI = 3·2 eV, 

2. Theory 

V2 = 0·4 eV, V3 = 0·04 eV and 
V4 = 0·04eV. 

The model is formulated within the context of the TB Hamiltonian: 

fI = L Ii) €i (i I + L Ii) Vij (j I , 
i,j 

(1) 

which is in a Wannier representation; that is, (r Ii) is a wavefunction localised 
about site i. Given the nature of carbon bonding in a graphite lattice, this 
is an appropriate Hamiltonian, with the intersite interactions Vij (see Fig. 4) 
being nonzero only for nearest and next nearest neighbours. We use the same 
magnitudes for the parameters Vij as Charlier et al. (1991a). The calculation is 
also performed with reference to the constant site energy €i, hereafter taken as 
€i = O. 

SWMc showed that the bands due to the 7r and a bands only have a small 
degree of overlap so that it is reasonable to consider the 7r DOS separately from 
that of the a DOS. This is reflected in the band calculation by Painter and Ellis 
(1970), where the 7r bands were found to be situated either side of the Fermi 
level and thus responsible for the conduction properties. Hence we shall limit 
our calculation to that of the DOS of the 7r band. 

The eigenfunctions and eigenvalues of the Hamiltonian are 

I k) = L eik • rj I j), 
j 

E(k) = LVClleik.Rz, 

Rz 

(2) 
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respectively. The sum on j is over all lattice sites, and the sum on Rl over the 
lattice basis vectors. 

It is well known that the DOS, 

N(E) = LO(E - E(k)) , (3) 
k 

is proportional to the imaginary part of the single-particle, time-independent 
Green's function connecting a state to itself, i.e. 

N(E) = - ~ Im{Tr [ lim G(r, r; E + iE)]} . 
7f <--+0+ 

The definition of the Green's function operator is 

G(t) = ~ =" I k)(k I , 
tJ-H ~t-E(k) 

(4) 

(5) 

where t = E + iE. The Green's function connecting a lattice site I to itself is then 

G(I I. t) = " (I I k)( k II) 
, , ~ t- E(k) , 

(6) 

which can be converted to a continuous sum over the first Brillouin zone. The 
DOS is then just the imaginary part of the trace of this function in the limit 
as E ---+ 0+. For the graphite monolayer or honeycomb lattice, Horiguchi (1972) 
showed that the Green's function and hence the DOS are expressible analytically 
in terms of complete elliptic integrals of the first kind. 

3. Results 

(a) The Graphite Monolayer 

Before considering the 3D graphite structure it is instructive to look at the 
DOS of a single layer. The hexagonal or honeycomb lattice is composed of two 
site types, which form two interpenetrating triangular lattices. The Hamiltonian 
eigenfunctions can thus be split into two groups, one summing over sites of type 
A and the other over sites of type B. The two sites result in two energy bands. 
Allowing only nearest neighbour interactions VI, the matrix representation of the 
operator ti - iI, in terms of these eigenfunctions, is 

(7) 
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where f.L = exp (ikxa) +exp [i( -kxa/2+kyV3a/2)] +exp[i( -kxa/2 - kyV3a/2)] and 
simply reflects the geometry of the problem, a being the length of a hexagon 
side, and f.L* is its complex conjugate. The DOS is then calculated by taking the 
trace of the inverse of the matrix (tf - H). Hence the total DOS becomes 

p( E) = - ~ 1m [lim r dk 2 t 2 2]' 
11" e->O+ 1IstBZ t - I f.L I VI 

(8) 

which has the form of an elliptic integral (Horiguchi 1972). 

0.3 

-10 -5 5 10 

Energy (eV) 

Fig. 5. Density of states for the graphite monolayer: VI = 3·2 eV. 

Fig. 5 shows the 2D DOS for the honeycomb lattice. The bandwidth of the 
DOS is 6VI, hence VI controls the bandwidth and is a measure of the degree to 
which hopping between nearest neighbours is facilitated. In graphite, the Fermi 
level is very close (within 0·024 eV-see Charlier et al. 1991b) to fOi, so that 
E = 0 approximates the Fermi level. Because the effective width of the bandgap 
at fOF is zero, the graphite monolayer is classified as a zero-overlap semi-metal, 
in that it is neither conductor nor insulator. The honeycomb DOS exhibits the 
expected logarithmic 2D Van Hove singularities and is symmetrical about E = 0, 
a consequence of the bipartite nature of the lattice. 

(b) Two-layer Results 

Having now understood the essential features of the DOS for a single layer, 
it is interesting to see how the addition of another layer affects the DOS. This 
is still effectively a two-dimensional calculation, however, now the interaction V2 

between atoms directly above one another is included. The total DOS becomes 

(9) 
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Fig. 6. Density of states for two graphite layers: VI = 3·2 eV and V2 = 0·4 eV. 

which, as can been seen from Fig. 6, consists of the sum of two single-layer DOS, 
one shifted by + V2, the other by - V2. The most dramatic consequence is that 
the DOS at the Fermi level becomes nonzero, and thus metallic. In addition, 
corresponding to the increase in allowed interaction, the bandwidth increases 
by 2V2. The larger 112, the larger the degree of interaction, so the larger the 
bandwidth and the magnitude of the DOS at the Fermi level. From these results 
we would expect that when an infinite number of layers are stacked directly 
above the first, forming SH graphite, it would correspond to the sum over an 
infinite number of monolayer DOS shifted from - V2 to + V2 . In fact, in the bulk 
material, because each layer interacts with both the layers above and below it, 
the DOS consists of the sum of an infinite number of monolayer DOS shifted 
between -2V2 and +2V2 . 

(c) Simple Hexagonal Graphite 

The DOS for SH graphite with the inclusion of various levels of interaction is 
shown in Fig. 7. It corresponds to the following integral: 

p( E) = - ~ 1m [ lim 1 dk 
7r €--+O+ lstBZ 

(10) 

where c is the interlayer spacing. The DOS exhibits the expected 3D Van Hove 
features and a finite bandwidth. The effect of V3 is to make the DOS asymmetric 
about EF, which is a consequence of the lattice no longer being bipartite. 
Parameter V4 effectively increases the strength of the interplane interaction, hence 
exaggerating the effect of V2 . In Fig. 8 the DOS obtained by Charlier et al. 
(1991a) is overlaid with our Green's function technique results, where it can be 
observed that there is excellent agreement about the EF point, but divergence 
away from EF. Thus our results retain the accuracy about the Fermi level of the 
SWMc method, as well as giving information about the whole bandwidth. 
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Fig. 7. Density of states for simple hexagonal graphite: (a) including VI and V2; (b) including 
VI, V2 and V3; and (c) including VI, V2, 113 and l-'4. 
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Fig. 8. Comparison of results with those obtained by the SWMc method. 
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Fig. 9. Calculated density of states for Bernal graphite: VI = 3·2 eV and V2 = 0·4 eV. 

(d) Bernal Graphite 

In Fig. 9 we show the DOS for Bernal graphite, obtained using Green's function 
techniques. As can be seen from the corresponding integral, 

peE) = - ~ 1m [ lim /, dk{ t - V2 cos(kzc) 2 2 

71' E->O+ 18tBZ t[t - 2V2 cos(kzc)]- I J.L I VI 

(11) 

we have only included VI and V2 interactions because the inclusion of more 
interactions resulted in the loss of an analytic solution. The main features of the 
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Fig. 10. X-ray emission spectrum for monocrystalline graphite. The 7l" and (J" band spectra 
are normalised to the same height (Kieser 1977). 

results are a peak between 2·8 and 3·6 eV, a bandwidth of 20 eV and a finite 
DOS at EF. Despite the inclusion of only two parameters, the calculated DOS 
compares favourably with the experimental X-ray emission spectrum obtained 
by Kieser in 1977 (see Fig. 10). This is a reflection of the highly localised and 
anisotropic nature of the interatomic bonding. Kieser exploited the polarisation 
of the emitted X-ray to separate the 7[" and 0" band DOS. An X-ray emission 
spectrum is obtained by using a primary X-ray beam to excite a valence electron 
to the conduction band, and detecting the subsequent X-ray due to de-excitation. 
The cross section for this process can be related via Fermi's Golden rule to 
the square of the matrix element for the transition, multiplied by the electronic 
density of states. Because the bonds are so strongly directional, the radiation 
emitted is found to be polarised depending on whether it is due to de-excitation 
from a 7[" or 0" state. Thus Kieser was able to decompose the X-ray spectrum 
into 7[" and 0" band DOS. The 7[" band exhibits a peak between 2·5 and 3·5 eV, 
a shoulder at 7 eV, and a half-bandwidth of 9·5 eV. While the features of the 
calculated and experimental DOS compare qualitatively, the calculated spectrum 
would agree with experiment more closely if the peaks were marginally closer to 
EF and the bandwidth were slightly smaller. Both of these features are largely 
determined by the intraplane interaction, Le. Vi. , hence a smaller VI would 
improve the agreement. 

4. Conclusion 

We have shown that the Green's function model is able to give a reasonably 
correct description of the DOS, with the input of only two parameters, the 
interaction of nearest neighbours inter- and intra-plane. This work has extended 
earlier TB model studies of graphite to encompass the whole 7[" bandwidth. The 
true power of the method, however, lies in the uses of Green's function techniques. 
These techniques can be used to extend the model to surface states, as was 
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established by Foo et al. (1976). Surface states arise when the system is no 
longer entirely a bulk system, but, for example, one with a defined edge. The 
problem can be treated in a manner analagous to that of Section 3b, where each 
layer is considered separately. Foo et al. have shown that the resultant finite 
layer DOS converges to the bulk result. This is an important extension of the 
Green's function technique, as many experimental methods, such as secondary 
electron emission spectroscopy (Willis et al. 1974), probe only a small number 
of layers and are influenced by surface properties. We are also investigating the 
extension of the model to the DOS of graphene tubules. While there has been 
much work done on graphene tubule band structure (Hamada et al. 1992; Saito 
et al. 1992), the effect of curvature, helical winding and multiple layers on the 
DOS remains to be studied. 
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