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Abstract 

A simple derivation is given of the electrostatic potential in a periodic three-dimensional 
array of spherically symmetric charge distributions. By noting the equivalence in electrostatic 
calculations of point charges and suitably chosen spherical charge distributions, this leads to 
expressions for electrostatic potentials and (Madelung) interaction energies in ionic crystals. 
The expressions involve sums in reciprocal space only. The approach is illustrated by the 
calculation of Madelung constants for NaCl and CaF2, and the electrostatic interaction energy 
of Ti02 (rutile). A previous controversy is resolved by showing that the two expressions for 
the electrostatic potential, which are apparently different, under certain conditions give the 
same result. 

1. Introduction 

In the simplest theory of cohesion in ionic crystals, the ions are regarded as 
positively and negatively charged entities, held together by Coulomb attraction 
and prevented from -collapsing by strong short-range repulsive forces (Kittel 
1976). The total energy is then the sum of an attractive electrostatic term 
and a repulsive term. In the calculation of the latter term, the short range of 
the repulsive forces means only near neighbour interactions need be considered, 
and for that reason the calculation is relatively straightforward. The Coulomb 
interaction is by contrast a long-range interaction, so the calculation of the 
electrostatic (Madelung) energy involves a summation extending over the whole 
crystal. The series to be summed is, moreover, only conditionally convergent, so 
the summation must be performed with particular care (Ashcroft and Mermin 
1976). Although the simple model may be dated (Ashcroft and Mermin 1976), 
it accounts for the cohesive energies of most ionic crystals to within a few per 
cent. Indeed, the Madelung energy alone represents the major part (about 90 
per cent) of the cohesive energy in these crystals. The evaluation of electrostatic 
potentials and energy in ionic crystals remains therefore a subject of interest and 
importance. 

In the idealised picture, the ionic crystal is regarded as composed of spherical 
non-overlapping ions, bearing net charges of integral amount (Tosi 1964). For the 
evaluation of the electrostatic potential or energy, these may be considered as fixed 
point charges (see the later discussion and Appendix). The different methods 
for evaluating the relevant sums have been reviewed at length by Tosi (1964). 

0004-9506/92/020239$05.00 



240 D. N. Argyriou and C. J. Howard 

The sums may be carried out in direct space or, since the charge distributions in 
crystals are periodic and thus can be expanded in Fourier series, in reciprocal 
space. The original work by Madelung (1918), relating to the NaCl structure, 
invoked both direct and reciprocal space summations. Madelung calculated the 
potential at a selected ion site as the sum of contributions from planes and lines 
not containing the selected site (evaluated by reciprocal space methods) and a 
directly summed contribution from the line of ions containing the site in question. 
In direct summation methods, convergence problems quickly become apparent. 
Convergence can be aided by arranging charges, or fractions of charges, in groups 
which are electrically neutral. Evjen (1932) and Hojendahl (1938) achieved 
convergence in some cases by working with concentric electrically neutral blocks, 
and Prank (1950) introduced fictitious cancelling charges to produce electrically 
neutral cells. The accepted general method for evaluating the required sums is 
that due to Ewald (1921). In this method a neutralised array of point charges 
is represented as the sum of an array of point charges neutralised by Gaussian 
charge distributions, and an array of equal Gaussians of opposite sign neutralised 
by a uniform charge density. The contribution of the first array is summed 
directly, and that from the second array in reciprocal space. With a suitable 
choice for the width of the Gaussian, both direct and reciprocal space sums 
show good convergence. The Ewald method is a proven general method, which 
achieves rapid convergence, but conceptually it is far from simple! 

There is another approach to the evaluation of electrostatic energies due to 
Bertaut (1952) who noted that, for the evaluation of electrostatic interaction 
energies, point charges and non-overlapping spherically symmetric charge dis­
tributions (with the same centres and same net charges) are equivalent. He 
proceeded to evaluate the electrostatic interaction energy for a crystal composed 
of non-overlapping spherical equivalent charges. The method is mentioned only 
briefly by Tosi (1964). It has the advantages, nevertheless, that the expressions 
obtained involve sums in reciprocal space only (cf. the Ewald method which 
involves direct sums as well), and good convergence can be achieved. The method 
has been employed on many occasions (see e.g. Calage and Pannetier 1977; Pilati 
et al. 1990; Groult et al. 1982), and extended by Bertaut (1978a) himself for the 
calculation of the electrostatic energy of charges and multipoles. The method might 
have found even wider application, but for a certain complexity in the derivation 
of the required formulae (Bertaut 1952), and a more recent unresolved controversy 
(Weenk and Harwig 1975; Bertaut 1978b). Weenk and Harwig (1975) followed a 
Bertaut-style approach to evaluate the electrostatic potentials in a crystal composed 
of non-overlapping spherical equivalent charges. The expressions obtained for the 
potential and energy were evidently different from those given earlier by Bertaut 
(1952), and the response from Bertaut (1978b) did little to resolve these differences. 

In this paper, we provide a formally very simple derivation of the potential in 
a crystal composed of spherical equivalent charges. The result can be recognised 
immediately as the expression for potential given by Weenk and Harwig. The 
expression for the interaction energy follows. We discuss the convergence of the 
series obtained, and its dependence on, among other things, the detail of the 
radial dependence in the charge distributions used. The convergence will be 
illustrated through a number of example applications. Finally, we examine closely 
the relationship of the Weenk and Harwig to the Bertaut series, and show that 
under certain conditions these two apparently different results are identical. 



Electrostatic Potentials and Madelung Constants 241 

2. Theory 

We adopt the model of an ionic crystal in which the charges are taken as 
point charges, but for the purposes of the calculation of the potential we replace 
the point charges by suitably chosen spherically symmetric equivalent charges. 
The potential is evaluated with the aid of Poisson's equation, and the interaction 
energy is derived in a straightforward manner. 

(a) Charge Density 

The charge density in a crystal comprising point charges is 

p(r) = LqjD(r-rj), 
j 

(1) 

where charge qj is located at site rj, and the sum extends over all the ionic sites 
in the crystal. Replacing the point charges by spherically symmetric equivalent 
charges, we have 

p'(r) = Lqju(r-rj), 
j 

(2) 

where u( r) is a spherically symmetric distribution, centred on the origin, of finite 
radius, and normalised to make 

J u(r) d3r = 1. (3) 

In the calculation of potential, we shall in due course invoke the result (see the 
Appendix) that the potential on the surface or outside of a spherically symmetric 
charge distribution is the same as would be produced if the total charge were 
located at a point at its centre. 

The charge density (2) has the periodicity of the crystal, and as such can be 
expanded in the Fourier series 

p'(r) = LAhexp(-21fih.r) , 
h 

(4) 

where the sum is over all the vectors h of the reciprocal lattice, and the coefficients 
Ah are given by 

Ah = ~1 p'(r)exp(21fih.r) d3r. 
v c 

(5) 

The integration here is over the unit cell C, which is taken to have volume v. 
The condition of electrical neutrality implies Ao = 0. For h =1= 0, we have 

Ah = ~ Lqi exp(21fih.ri) J u(r)exp(21fih.r) d3 r 

• 
~F(h) ¢(h) , 
v 

(6) 

where 

F(h) = Lqiexp(21fih.ri) ' (7) 
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with the sum now running over the ions in one unit cell, is the 'structure factor 
of the point charges', and 

¢(h) = J a(r)exp(27rih.r) d3r. (8) 

The Fourier series (4) can thus be written as 

p'er) =.!. LF(h)¢(h)exp(-27rih.r). 
Vhj.O 

(9) 

(b) Electrostatic Potential and Poisson's Equation 

The electrostatic potential V (r) within the array of spherical equivalent charges 
also has the periodicity of the crystal, so it too can be expanded in the Fourier 
series 

VCr) = LBhexp(-27rih.r). 
h 

(10) 

This potential is related to the charge distribution (2) by Poisson's equation 

yr2V(r) = -47rp'(r). (11) 

Substituting the series (10) and (9) into (11), then equating the coefficients of 
corresponding terms, we find that Bo = 0 and, for h f= 0, 

Bh = ~ F(h) ¢(h) 
7rV Ihl2 

(12) 

This means the Fourier series expansion for the potential can be rewritten as 

1 F(h) ¢(h) . 
Viot(r) = -2: I 12 exp(-27rlh.r), 

7rV hj.O h 
(13) 

which is the first term in the Weenk and Harwig (1975, equation 14) expression 
for the potential. 

(c) Potential at the Site of One Ion due to All Other Ions in the Crystal 

In most applications, the quantity required is the potential at the site of one 
ion due to all the other ions in the crystal. In particular, this is what is needed 
for the evaluation of the electrostatic interaction (Madelung) energy. To proceed, 
we focus attention on a particular site, at position rio The expression (13) 
gives a potential Vtot(ri) which includes a contribution from the ion located 
at this site. We shall evaluate and subtract this contribution, which leaves 
Vint(ri), the potential at Ti due to the other ions in the crystal. By virtue of 
the result (AI), and provided that the site Ti does not fall within the charge 
distribution centred on one of the other ionic sites in the crystal [it is sufficient 
to assume that the radius of the charge distribution a( r) does not exceed the 
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nearest neighbour separation], the result for Vint(ri) is unaffected by the use of 
spherically symmetric equivalent charges in place of point charges. The approach 
outlined in the introduction to this theory is thereby justified. 

It remains to evaluate the contribution at a particular site from the ion 
located at that site. This involves the potential V sn (r) at the origin due to the 
normalised, spherically symmetric charge distribution u(r): 

Van(O) = ju(r) d3 
Irl T. 

(14) 

The integration extends only over the finite volume in which u(r) :F 0, and can 
be evaluated easily (see pp. 57-8 in Kellogg 1920). For an atom with a charge 
qi the 'self potential' is Vs(ri) = qi Vsn(ri). Both Bertaut (1952, 1978b) and 
Weenk and Harwig (1975) chose to express their results in terms of ¢(h), though 
it does not appear to be advantageous to do so. We also derive an alternative 
expression for Vsn(O) by a procedure very similar to that used in equations (9) 
to (13). Inverting (8) to express u(r) as a Fourier transform of ¢(h), expressing 
Van (r) also as a Fourier transform, and noting that V sn (r) is related to u( r) 
by Poisson's equation, we can show that 

1 j¢(h) . 3 
Van(r) = -; Ihl2 exp(-27rlh.r) d h, (15) 

whence 

Van(O) = .!. j¢(h) 3 
11" Ihl2 d h. (16) 

Subtracting from (13) the self-potential based on (16), we find the potential at 
ri due to the other ions in the crystal is 

Vi t(r·) = ~ }' F(h) ¢(h) exp(-211"ih r.) _ qi j ¢(h) d3h 
In t 1I"V t+o Ihl2 ., 11" Ihl2 ' 

(17) 

which is now exactly the Weenk and Harwig (1975) equation (14). 
In the debate between Weenk and Harwig (1975) and Bertaut (1978b) there 

has been some discussio:t;l on Poisson's equation. We do not wish to comment on 
the detail of this discussion. We remark, however, that the potential Vtot{r) in 
(13) has been constructed here to satisfy Poisson's equation (11) in the crystal 
composed of spherical equivalent charges. The potential Vint(ri) in (17), on the 
other hand, is the potential at site ri when there is no longer charge at that 
site (ion removed from site, no overlap from other sites), so Vint(r) satisfies 
Laplace's equation at all the ion sites. 

(d) Electrostatic Interaction (Madelung) Energy 

The total electrostatic interaction energy of an array of point charges is (see 
p. 80 in Kellogg 1920) 

W=l~qiqj 
2 ' i j Tij 

(18) 
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where point charges qi and qj are at a separation rij' The interaction energy 
per unit cell (the Madelung energy) is therefore 

1 q. 1 
Wint = 2" ~qi!-. ':&'r .. = 2" ~qi Vint(ri), , i7J '3 , 

(19) 

wherein the sum in i runs over the ions in one unit cell. In this we have 
recognised L: qj/rij as the potential at the site i due to all the other ions in the 
crystal. Equation (19) here is identical with the Bertaut (1978b) equation (1.4). 

Substituting for Vint(ri) from our equation (17), we have finally for the 
Madelung energy 

Wi _..!:... ~ IF(h)12¢(h) _ .!. !¢(h) d3h '" ~ 
mt - Ihl2 Ihl2 L.....- q, . 

7rVhO 7r i 
(20) 

(e) General Remarks on Convergence 

Since the matter of convergence is critical in the calculations described here, 
a few general remarks are in order. To discuss the convergence of the sums 
appearing in (17) and (20) we consider that the sums in reciprocal space are 
approximated by integrals. Since the magnitude of F(h) (from equation 7) shows 
no systematic trend with the magnitude of h, the behaviour is determined by 
¢(h)/lhI2. In fact if the integral 

! ¢(h) d3 h 
Ihl2 

(21) 

which appears in (17) and (20) is absolutely convergent, so too are the sums 
appearing in these expressions. Provided ¢(h)""'lhln with n < -1, the convergence 
of the sums and the integrals is assured. 

In the point charge model of the ionic crystal we have a(r) = 8(r) and, from 
(8), ¢(h) = 1. The sums and integrals are divergent. Replacement of the point 
charges by spherically symmetric equivalent charges leads to ¢(h)""'lhln with 
n < -1, which makes (21) convergent. The replacement of point charges by 
spherically symmetric equivalent charges can thus be regarded as a device for 
ensuring the absolute convergence of the sums and integrals involved. 

Subject to conditions already outlined, the extent and form of a( r) should 
be chosen to make p'er) as 'smooth' as possible, so as to reduce the importance 
in its Fourier expansion (9) of the higher terms. This point is illustrated in the 
examples which follow. 

Table 1. Spherically symmetric charge distributions and related functions 

Charge O'(r) for r < R ¢(h) Vsn(O) Vsn(Ol 
distribution [O'(r) = 0 for r> R] (w = 27rlhIR) (Bertaut series) 

Uniform 

Polynomial 

3/47rR3 

(15/47rR3 )[1-
3(r/R)2 + 2(r/R)3] 

A See examples for CaF2 and Ti02. 

3(sinw-wcosw)/w3 

90(B-Bcosw-
5wsinw + w2 cosw)/w6 

3/2R 

9/4R 

6/5R 

513/30BR 
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3. Applications of the Method 

The method is illustrated by using it to calculate the Madelung constants 
or Madelung energies in a few common ionic crystals. The calculations involve 
the evaluation of the expressions (17) and (20). The form of ¢(h) in these 
expressions is determined by our choice for a(r). For purposes of illustration, we 
take this function to correspond to (1) a uniform charge density or (2) a smoothly 
varying third-degree polynomial in r. The polynomial has been tailored to have 
a zero derivative at the centre (r = 0) and boundary (r = R). The detailed form 
of these charge distributions, including expressions for the corresponding ¢( h) 
(equation 8) and Vsn(O) (equation 14) are collected in Table 1. Note that the 
uniform and polynomial choices for a(r) give ¢(h)"-'Ihln with n = -2 and n = -4 
respectively. * The sums in (17) and (20) have been estimated using a limited 
number of terms, as detailed below. All calculations were carried out on a PC 
spreadsheet (Microsoft Excel). 

h k m 

1 1 1 8 
3 1 1 24 
3 3 1 24 
5 1 1 32 
1 3 5 48 

Table 2. Crystallographic data for NaCl 

Cubic, a = 5·45 A 
Na+, (qNa = +e) at (0,0,0); (~, ~,O); (0, ~,~); (~,O,~) 

Cl-, (qCl=-e) at (~,~,~); (O,O,~); (~,O,O); (O,~,O) 

F(h) = 8e for h, k, I all odd 
= 0 otherwise 

Nearest neighbour distance a/2. 

Table 3. Evaluation of electrostatic potential of NaCl at Na site 

Ihl F(h) ¢(h)A V(Na)A ¢(h)B V(Na)B ¢(h)c 

1·732 8 0·431 -3·07477 -0·081 -3·55263 0·1480 
3·317 8 -0·071 -3·47136 0·013 -3·48134 -0·0002 
4·359 8 -0·049 -3·62928 -0·006 -3·50003 0·0003 
5·196 8 0·019 -3·57219 0·009 -3·47350 -0·0007 
5·916 8 0·035 -3·45021 -0·009 -3·50321 0·0008 

V(Na)C 

-3·49498 
-3·49619 
-3·49517 
-3·49741 
-3·49468 

A Uniform charge distribution, R = a/4. B Uniform charge distribution, R = a/2. 
C Polynomial charge distribution, R = a/2. 

(a) NaCl 

Every method for the calculation of electrostatic potential and energy is 
illustrated by application to the calculation of the Madelung constant in NaCl. 
The basic crystallographic data, along with the structure factors of the point 
charges from equation (7), are recorded in Table 2. 

For NaCl, the Madelung constant is in fact simply 

a + ex = -- Vint(Na ), 
2e 

(22) 

* Integration of (8), including successive integration by parts, leads to the following general 
result: If a radial distribution 0"( r) and its first n derivatives vanish at r = R, and if also the 
odd derivatives up to the (n-l)th vanish at r = 0, then ¢(h)~lhl-(n+3). 
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where Vint(Na+) is the potential at a Na+ site due to all the other ions in the crystal. We shall use (17) to evaluate Vint at the origin; the results are in units 
of e/a. 

The effect of charge distribution will be illustrated with three different choices for a(r), hence 4J(h). These are (1) uniform density of radius R = a/4, (2) uniform density of radius R = a/2, this being the nearest neighbour separation and the maximum radius available in the theory, and (3) the 'polynomial' charge density with R = a/2. In (17), the calculation of the sum proceeds after arranging the contributing reciprocal lattice vectors in sets with equal Ihl (number in set 
equals multiplicity), then adding these sets in order of increasing Ihl. Note that the only nonzero terms are those with h, k, 1 all odd. The progress of the calculation is recorded in Table 3, which shows the indices (and modulus) of the last added set of reciprocal lattice vectors, the multiplicity in this set, the structure factor of the point charges, and the progressive result for V int for each of the choices for a( r) just described. 

The accepted value for the Madelung constant for NaCl (Kittel 1976) is 
a = 1· 747565, which from equation (22) gives Vint(Na+) as 3· 49512e/ a. In 
every case the result converges towards this value. Comparing the two uniform 
distributions, it is apparent that the distribution with the larger radius gives the faster convergence. The convergence is very much faster again when the polynomial charge distribution is used. This faster convergence is due to the faster fall-off of 4J(h) with Ihl for the polynomial distribution selected. 

(b) CaF2 

Table 4. Crystallographic data for CaF2 

Cubic, a = 5·65 A 
Ca2+, (qCa = +2e) at (0,0,0) } plus fcc positions 
F-, (qF=-e)at±(i,i,i) 
F(h) = ° unless h, k, I all odd or all even 

= 16e for 4n+2, n = h+k+l 
= 8e for 4n±1 
= ° for 4n 

Nearest neighbour distance V3a/2 

Table 6. Crystallographic data for Ti02 

Tetragonal, a = 4·592 A, c = 2·959 A 
TiH, (qTi=+4e) at (0,0,0); (~,~,~) 
0 2-, (qo = -2e) at (x,x,O); (-x,-x,O); 

(~+x, ~-x, ~); (~-x, ~+x, ~); x = 0·305 
F(h) = qTi(1+(-1)n)+2qo(cos.>.+(-1)nsinlt) 

n = h+k+lj >. = 21l'(h+k)x; It = 21l'(h-k)x 
Nearest neighbour distance (NND) 1· 946 A 

The Madelung constant for CaF2 is calculated using (20). The crystallographic 
data for CaF2 are given in Table 4 and the progress of the calculation is 
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indicated in Table 5. In this example we have used a uniform charge distribution 
with R = v'3a/4, and the polynomial charge distribution with R = v'3a/4 and 
R = v'3a/8. The last calculation was performed using a Bertaut series (see 
Section 4). 

To obtain the Madelung constant from (20), Wi must be scaled by twice 
the nearest neighbour distance (v'3a/4), and normalised by dividing by 2: q;, 
the summation being over the unit cell. The values of the Madelung constant 
obtained here should be compared with the one obtained using the Ewald method, 
that is 0: = 1·67960. As in the case of NaCl the series utilising the polynomial 
charge distribution converges faster and gives a more accurate result. 

-l: 
C\J 
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Ihl 
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Fig. 1. Convergence of the progressive sums for Ti02 for a uniform charge distribution, a 
polynomial charge distribution and a polynomial charge distribution using a Bertaut series, 
as a function of increasing Ihl (in A-I). The insert shows the behaviour of the summation 
near the final result. 

(c) Ti02 

The calculation of the Madelung constant is particularly significant in cubic 
structures. However, for more complicated structures the utility of the Madelung 
constant is diminished. Under this circumstance it is better to calculate the 
electrostatic interaction energy Wi (equation 20). This is demonstrated for 
rutile (Ti02). Its crystallographic data are given in Table 6 and the progress 
of the calculation is shown in Table 7. The same three choices for charge 
distribution and R have been made as for CaF2 . We carried the calculation to 65 
reciprocal lattice vectors (see Fig. 1), producing values of wt = -19 ·55007 e2 A-1, 
W~ = -19·62680 e2 A-I and wf = -19·62104 e2 A-I. These values should be 
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compared with Wi = -19·61519 e2 A-I calculated using the Ewald method. We 
note here that the progressive sums of series A and B oscillate about the final 
result. This is in contrast to the Bertaut series C which always approaches from 
the one side. 

4. The Bertaut Expressions 

Bertaut (1952, 1978b) obtained expressions for the electrostatic potential and 
energy which are of the same form as (17) and (20), but differ in that ¢(h) in 
these expressions is replaced by 1¢(h)12. Weenk and Harwig (1975) noted the 
difference and attributed it to difficulties in evaluating certain infinite integrals. 

In fact, the apparently different expressions can be reconciled by comparing the 
energy of a unit point charge placed at site ri with the energy of the spherically 
symmetric distribution u(r-ri) centred on rio By the theorems of electrostatics 
(see the Appendix), these energies are equal provided the spherically symmetric 
equivalent charges do not overlap. Specifically, from equation (A3), we have 

j Vint(r) u(r - ri) d3r = j Vint(r) o(r - ri) d3r = Vint(ri). (23) 

To evaluate the left-hand side we need an expression for Vint(r) valid in the 
vicinity of rio We subtract (15) from (13) to obtain (analogous to 17) for the 
region around ri, not within the charge distributions associated with other ions, 

Vint(r) = ~ )' F(h) ¢(h) 7rv{;:pf Ihl2 exp(-27ri h.r) 

- qi j ¢(h) 
7r Ihl2 exp[-27rih. (r - ri)] d3h. (24) 

Noting that 

j u(r - ri) exp( -27ri h.r)d3r = ¢( -h) exp( -27rih.ri)' (25) 

we can evaluate the left-hand side of (23), obtaining finally 

~)' F(h) 1¢(hW exp(-27ri h.ri) _ qi jl¢(hW d3h 
7rV {;:pf Ihl 2 7r Ihl2 

- ~ )' F(h) ¢(h) (-2. h .) _ qi j¢(h) d3h 
- 7rV {;:pf Ihl2 exp 7rl • r. 7r Ihl2 ' (26) 

which is the equality showing that the Bertaut and the expressions given here 
(and by Weenk and Harwig) have the same value. The required conditions are 
satisfied provided the radius of the charge distribution u( r) does not exceed 
one-half of the nearest neighbour distance. 
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The equality of the Bertaut expressions and those given here can also be 
seen by noting that the Bertaut expressions with charge distribution UB (r) are 
identical with our (17) and (20) with charge distribution 

u(r) = jl¢(h)12 exp(-27rih.r) d3h, (27) 

where 

¢(h) = J uB(r)exp(27rih.r) d3r. (28) 

Provided the radius of u( r) does not exceed the nearest neighbour distance, u( r) 
is an acceptable charge distribution, so (17) and (20) converge to the required 
results. Bertaut (1978b) himself compared the reach of functions related by (27) 
and (28) and concluded that the 'reach' of u(r) is twice that of uB(r). It follows 
(again) that provided the radius of uB(r) does not exceed one-half of the nearest 
neighbour distance the Bertaut expressions may be used. 

Although the expressions (17) and (20) have been shown to provide the same 
end results as the corresponding Bertaut series, the convergence behaviour [for 
the same u(r)] may be different. This has already been illustrated in Tables 5 
and 7 (see the comments on rutile in particular). We reiterate that exactly the 
same behaviour could be achieved with (17) and (20) by using the charge density 
generated by (27) and (28). 

5. Summary and Discussion 

The method of spherically symmetric equivalent charges provides the electrostatic 
potential and Madelung energy in terms of summations in reciprocal space. The 
derivation is straightforward, depending on the calculation of the potential in a 
periodic array of spherical charges, and the subtraction of the potential due to a 
single spherical charge. The sums obtained are absolutely convergent, the rate of 
convergence being determined by the detail of the charge distribution assumed. 

The discussion includes the explanation and removal of a previous controversy, 
by showing two apparently different expressions to be equal. Since the derivation 
is simple and the controversy surrounding the method resolved, there is a sound 
basis for its continued use. 

The illustrations given here concern the evaluation of electrostatic potential and 
energy. The method has been used for the calculation of electric fields and field 
gradients (Bertaut 1978b; Weenk and Harwig 1975). It has also been extended 
to the case in which the charge distribution in the crystal is modelled using 
dipoles and, more generally, multipoles as well as the point charges considered 
here (Bertaut 1978a). 
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Appendix 

Two results on the electrostatics of spherically symmetric charge distributions 
are given here. These results are crucial to the arguments presented in the text, 
and are therefore recorded here. Our reference on potential theory is Kellogg 
(1920). 

(1) The potential on the surface or outside of a spherically symmetric charge 
distribution is the same as would be produced if the total charge were located at 
a point at its centre. 

This is a well known result which can be established by direct integration of 
the expression for potential (see Kellogg p. 57, Exercise 11; also pp. 6-8). For 
a spherically symmetric charge distribution u( r) centred on the origin carrying 
total charge of one, the potential at position R on the surface or outside the 
distribution can be written as 

1 u(r) d3r = ~ = 1 8(r) d3r. 
sphere IR - rl IRI sphere IR - rl 

(AI) 

This form of the result proves useful below. 

(2) The energy of a spherically symmetric charge distribution placed in the 
potential due to an array of point charges is the same as if the total charge is 
located at its centre. This result holds provided none of the point charges producing 
the potential falls within the spherical charge distribution under consideration. 

This result depends on the evaluation of similar integrals. We suppose we have 
an array of point charges, charge qj being located at R j , and we calculate 
the energy of the spherical charge distribution u(r), carrying unit total charge, 
centred on the origin. The potential at r due to the array of charges is 

v ' ( r) = '" ---.!!i.. L...i I...... I' (A2) 
j 
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so the interaction energy of a(r) with this potential is (from A2) 

1 V'(r) a(r) d3r = 
sphere 

~ 1 a(r) d3 L...J qj r 
. sphere [Rj - r[ 

J 

~ q. J 8(r) d3r 
~ J JRj-r[ 

J 

[from Al since all the R j are outside a(r)] 

= J V'(r) 8(r) d3r, (A3) 

which is the required result. 
It follows that the interaction energy of an array of point charges is the 

same as for an array of non-overlapping spherically symmetric equivalent charge 
distributions. For from (1), the potential at anyone site due to other charges is 
the same for point charges as for spherically symmetric equivalent charges and 
from (2) the energy of a charge at this site is the same for a point charge as for 
its spherically symmetric equivalent. 
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