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Abstract 

I will show how the resonance poles of the scattering amplitude correspond to eigenstates 
of the Hamiltonian that is analytically continued into the complex r-space via the dilatation 
group transformation, and how the corresponding eigenstates satisfy a modified form of 
the orthogonality condition. As an illustration of the results, I will consider examples of 
resonances in IT - d, and IX - d scattering as a three-body system. 

1. Introduction 

One of the many things I have learned from Ian over the years is that ideas 
and methods developed in one branch of physics often lead to new insight 
when applied to other fields of physics. Ian has applied this methodology with 
considerable skill and great success. His use of nuclear reaction theory to atomic 
and molecular physics is just one example of this approach. In an attempt to 
make a modest contribution to the unifying spirit of theoretical physics on 
this special occasion of Ian's sixtieth birthday, I will try to demonstrate how 
the methods used in nuclear few-body problems for the study of resonances 
are basically the same as those developed in atomic and molecular physics. 

Resonances in quantum system have a long history dating back to the early 
years of quantum mechanics with the work of Gamow (1928), who used the 
concept to give a description of DC-decay of heavy nuclei. To date, resonances 
have been observed in most scattering experiments from low energy scattering 
off atomic and molecular systems, to the recent determination of the width 
of the ZO at the highest energies achieved in the laboratory. In all cases 
the experimental observation is an enhancement in the cross section when 
plotted as a function of energy. A more detailed analysis of such data often 
reveals that this enhancement in the cross section is due to one specific partial 
wave. To that extent, resonances have a definite set of quantum numbers just 
like bound states, the only difference being the fact that these states have a 
finite lifetime and thus correspond to complex energy eigenstates. This raises 
the question of how a Hermitian Hamiltonian could give rise to a complex 
eigenvalue and do we include these resonance states in our Hilbert space? 
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The study of resonances in few-body systems goes back to a set of lectures 
given by Lovelace (1964) on the Faddeev equation for three-particle scattering. 
Lovelace made use of the method of contour rotation in momentum space 
to show that: (i) A rotation of the contour by an angle 1> can extend the 
domain, over which the kernel of the two- and three-body integral equations is 
a Schmidt operator. (ij) The rotation of the contour can be used to analytically 
continue the two- and three-body amplitude through the unitarity cuts, onto 
the second Riemann sheet of the complex energy plane. This second result 
could reveal poles in the scattering amplitude which, if close to the real 
energy plane, can be considered as resonances. This method has since been 
employed to study resonances in two- and three-body systems. 

On the other hand, the method of 'contour rotation' in coordinate space, often 
referred to as the dilatation group transformation (Aguilar and Combes 1971; 
Balslev and Combes 1971; Simon 1973) was developed to examine the spectrum 
of Green's function on the second energy sheet. This method has been adapted 
extensively in atomic and molecular physics to the determination of properties 
of resonances using the variational method (Ho 1983; Moiseyev 1984). 

I will show the equivalence of the contour rotation method, in both coordinate 
and momentum representation, and how each gives a complementary insight 
into the concept of a resonances being an eigenstate of the Hamiltonian for that 
system. In particular I will demonstrate that in momentum space, where the 
boundary conditions are included in the integral equation, the deformation of 
the contour can be constrained by singularities that result from the boundary 
condition on the system. I will also demonstrate, in coordinate representation, 
that the wavefunction for a resonance is both an eigenstate of the Hamiltonian, 
and normalisable, and could be used as a basis for variational calculations 
or perturbation theory. Although most of the results presented have been 
reported in the literature, I have found the situation is such that in atomic 
and molecular physics the method predominantly used is the deformation 
of the contour in coordinate space, while in the nuclear few-body problem, 
the emphasis is on contour rotation in momentum representation. A union 
of these two methods would give a better understanding of the concept of 
resonances in quantum systems. 

In Section 2, I will demonstrate how the poles of the scattering amplitude on 
the second energy sheet are exposed by the method of rotation of the contour 
in momentum space (k -+ k e-icf» , and how the corresponding integral equation, 
when converted to coordinate representation, leads to the Schr6dinger equation 
with the coordinate transformation r -+ r eicf>, where 1> is the angle of rotation 
of the contour. This allows me to establish the fact that the solutions of 
the Schr6dinger equation for a resonance are normalisable and can be use as 
basis for either a perturbation expansion or a variational calculation. I will 
then proceed in Section 3 to the analysis of the method of contour rotation 
in momentum space for the Faddeev equation assuming a separable two-body 
interaction. In particular, I will concentrate on the case when two of the 
particles form a bound state, while any of these two can form a resonance 
state with the third particle. Examples of such a system are the rrNN and aNN 
systems. Here, I will show how to analytically continue my equations to a 
considerable portion of the second Riemann sheet and part of the third sheet 
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of the energy plane. To illustrate the power of this method and how it can 
help in the analysis of resonances above the threshold for the production of 
three-body final state, I consider in Section 4 both IT - d and ex - d scattering, 
and in particular how the energy dependence in the cross section is not 
necessarily all due to resonances, but could partly be due to the square root 
threshold resulting from the fact that two of the three particles in the system 
can form a resonance. This raises a question regarding the analysis of the 
data based solely on two-body scattering theory. Finally, In Section 5 I present 
some concluding remarks. 

2. Contour Rotation Method 
Experimentally, structures are often observed in the cross section as a 

function of energy, which are referred to as resonances. These resonances 
have quantum numbers similar to bound states and correspond to poles of 
the partial wave scattering amplitude on the second Riemann sheet of the 
complex energy plane. 

In this section I demonstrate in what sense these resonances are solutions 
of the Schr6dinger equation, and how the properties of these resonances can 
be calculated, i.e. their energy and wavefunction, when given the Hamiltonian 
for the system. 

For the present analysis I consider a two-body system with the Hamiltonian 

H=Ho+V, (1) 

where Ho = kZ/2J1. The corresponding Lippmann-Schwinger equation, after 
partial wave expansion, is then given by 

T.e{k, 1<; P) = V.e{k,k') + f: dk" k"z V.e{k,k") Go{P, kIf) T.e{k",k'; P). (2) 

Here the free particle Green's function is Go{P, k) = (E+ -kz /2J1)-1, with r = E+iE. 
The condition E > 0 and infinitesimal provides the necessary boundary condition 
for an outgoing scattering wave. In operator form, equation (2) is written as 

T.e{P) = V.e + K.e{P) T.e{P) , (3) 

where K.e{E) = V.e Go{E). It is clear from the integral on the right-hand side of 
(2), that the T-matrix T.e{r) has a square root branch point at E = 0, with the 
corresponding branch cut along the positive real axis in the complex E-plane. 
This branch cut, the unitarity cut, determines the sheet structure over which 
the T-matrix is defined. To get onto the second sheet of the energy plane, 
and determine the position of the poles of the T-matrix that correspond to 
resonances, the contour of integration must be rotated by performing the 
transformation kif -+ kif e-ic/), with cf> > 0 in (2). This procedure rotates the branch 
cut from argE = 0 to argE = -2cf>, and in the process exposes a part of the 
second energy sheet that might have the poles of the T-matrix that correspond 
to resonances. In other words, the rotation of the contour of integration in 
(2) defines the partial wave T-matrix in the new domain -2cf> < argE < 2IT- 2cf>. 
The maximum angle of rotation is determined in this case by the singularities 
of the potential V.e{k, kif) (Nuttall 1967). 



204 I. R. Afnan 

In this energy domain, the kernel of the Lippmann-Schwinger equation is 
compact, and ,the T-matrix can be written in terms of the solution of the 
homogeneous equation as (see the Appendix) 

(n) 
"tP.e . h { (n)1 T.e(E) = L 1 1 fJ:'\ an Wit an = tP.e V.e, 
n 

where An(E) and tP1n) satisfy the eigenvalue equation 

An tP1n) = K.e(E) tP1n) . 

(4) 

(5) 

It is clear from equations (4) and (5) that the energy at which any of the 
eigenvalues of the kernel Ke(E) is one, the partial wave T-matrix has a pole, 
and the residue at this pole is proportional to the corresponding eigenstate. 
In other words, the poles of the T-matrix are determined by the equation 

tP.e = V.e Go(E) tP.e , (6) 

for -21> < argE < 2rr- 21>. Here, 1> should be chosen such that the energy of 
the resonance is in the energy domain on which (6) is defined. This equation 
can be written in the form of the Schrodinger equation 

(E - Ho) (/J.e = V.e (/J.e , (7) 

where 

(/J.e = Go(E) tP.e , (8) 

and the free Hamiltonian in momentum space is given by Ho = kZ 1211, with 
k now along the rotated contour, i.e. k = I kl e-icp , and 1> > O. Here I would 
like to emphasise that (7), for 1> = 0, i.e. no contour rotation, is the usual 
Schrodinger equation for a Hermitian Hamiltonian, and the only solutions are 
for real energies, i.e. on the real E-axis. However, on the rotated contour, 
the Hamiltonian H = Ho + V.e is not Hermitian, and (7) admits solutions with 
complex E. In order to find a resonance at E = ER = Rr - iEi, the contour must 
be rotated by an angle 1> such that tan 21> > EilEr, and in this way the position 
of the resonance is in the energy domain -21> < argE < 2rr- 21>. Furthermore, 
since the kernel of the integral equation is a Schmidt operator, the residue 
at the pole is a projection operator (Lovelace 1964), which implies that the 
wavefunction tP.e is normalisable. 

To write the Schrodinger equation in coordinate space, I need to first 
consider (5) in momentum space for 11.= 1, i.e. 

tP.e(k) = f dk' k'z V.e(k, k') Go(E, k') tP.e(k'), (9) 

or, the corresponding equation for (/J.e(k) , which is given by 

(E - ~:) (/J.e(k) = f dk' k'z V.e(k,k') (/J.e(k'). (10) 
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~ 

Fig. 1. Contour of integration in momentum space. 

Here k and k' are along the ray defined by the angle -cf> (see Fig. 1). In other 
words, this equation can be written as 

( E - ~: e-2ic/> ) 1JI.e(ke-ic/» = f: dk' k,2 e-3ic/> V.e(ke-ic/>,k'e-ic/» 1JI.e(k'e-ic/>), (11) 

where k and k' are now real and the partial wave potential V.e is given by 

V.e (ke-ic/>, k' e-ic/» = ~ f: dr r2 j.e (kre-ic/» V(r)j.e (k' re-ic/» , (12) 

with j.e(kr) being the spherical Bessel function. A change of variables to 
~ = re-ic/> allows me to rewrite (11) as 

( E - ~: e-2ic/> ) 1JI.e(ke-ic/» = ~ f: d~ ~2 j.e(k~) V(~eic/» IJIt(~), (13) 

where 

IJIt(~) = f: dk k2 j.e(k~) 1JI.e(ke-ic/». (14) 

If I now multiply (13) by k2 j.e(kr), integrate over k, make use of the orthogonality 
of the spherical Bessel function, and the differential equation it satisfies, I 
get, after some algebra, 

{ e-2ic/> [~ ~ (r2~) _ .e(.e + 1)] + V (reiC/»} IJIt(r) = E IJIt(r). 
2J1 r2 dr dr r2 

(15) 

This is basically the radial Schr6dinger equation in coordinate representation 
with the substitution r -+ reic/> , and gives a non-Hermitian Hamiltonian, which 
implies that the corresponding eigenvalues, or energies, may in general be 
complex. Furthermore, from the above analysis in momentum space, it is clear 
that a determination of a resonance at E = Er - iEi on the second energy sheet 
will require that I rotate the contour by an angle cf>, where tan 2cf> > Ei/Er. This 
procedure of 'contour rotation' in coordinate space is commonly referred to 
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as a dilatation group transformation on the Hamiltonian (Aguilar and Combes 
1971; Balslev and Combes 1971; Simon 1973), and has been used in atomic 
and molecular physics for the determination of properties of resonances (Ho 
1983; Moiseyev 1984). On the other hand, the use of contour rotation in 
momentum space as first proposed by Lovelace (1964) has been used in nuclear 
two- and three-body systems. 

To impose resonance boundary conditions on (15), the solutions of this 
equation for r -+ 00 must be determined. This can be achieved by taking 
z = reicJ>, realising that the resultant equation is the Schrodinger equation in 
the variable z. If the potential V(z) goes to zero as r -+ 00, then the possible 
solutions to (15) are spherical Hankel functions of z, i.e. the most general 
solution is of the form 

We(z) =A h1+)(kz) + B h1-)(kz) , (16) 

where k 2 = 2J1E. For aresonance, the energy is given by E = Er-iEi, and k = I kl e-i8 

with tan 2e = EilEr. In this case, for the wave function to be normalisable, 
B = 0 and CP> e. Both of these conditions are required if the resonance states 
are to belong to the Hilbert space. I should point out at this stage that the 
condition on the angle cP for this dilatation group transformation is identical 
to the condition I obtain in momentum space on the rotation of the contour 
to expose the resonance pole of the T-matrix on the second energy sheet. 

From the above analysis of resonances in both momentum and coordinate 
representation, I can conclude that the inclusion of resonance states in our 
Hilbert space will require the rotation of the contour as defined above, and 
in this case the Schrodinger equation is given by 

cJ> cJ> HcJ>ll/ln) = En I I/ln>. (17) 

where -2</> < argE < 21T- 2</>. For CP> 0, the Hamiltonian HcJ> is non-Hermitian, 
and (17) admits solutions with complex energies on the second Riemann 
sheet of the energy plane. In the event that these solutions correspond to 
eigenenergies that are close to the real energy axis, they will be considered 
as resonances to the extent that they will effect the cross section. Since the 
Hamiltonian in this new energy domain is non-Hermitian, and satisfies the 
condition that 

H';p=H-cJ>' (18) 

I can rewrite (17) as 

-cJ> * -cJ> H-cJ> II/lnl ) = Enlil/lnl ) (19) 

This implies that for every state we have on the second energy sheet at energy 
ER, there is another state at energy EN. also on the second Riemann sheet. 
Furthermore, by multiplying (17) by (I/l~fl and the complex conjugate of (19) 
by II/l~) and subtracting, I get 

-cJ> cJ> -cJ> cf> -cf> cf> 
(I/lnl I Hcf> II/ln) - (I/lnl I Hcf> II/ln) = (En - Enl) (I/lnl II/ln) = o. (20) 
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This gives the orthonormality of the eigenstates of the Hamiltonian in the 
energy domain -2¢ < argE < 2rr- 2¢ and with proper choice of ¢ will include 
resonance states. I should point out at this stage that the normalisation of 
the resonance eigenstate with energy ER is not with its complex conjugate, 
but with the complex conjugate of the state corresponding to the energy ER· 
This is expected, considering the fact that the Hamiltonian in the new energy 
domain is not Hermitian. For the case when the eigenvalues of the Hamiltonian 
H", are real, i.e. a bound state, the wavefunctions 11J1*> and 11J1~"'> are identical, 
and the orthonormality is identical to that for a Hermitian Hamiltonian. 

Although the above analysis was for the special case of a two-body system, 
there are no inherent problems in extending the arguments to a three-body 
system provided that the integral equation in momentum space has a compact 
kernel. In other words, the Faddeev equations need to be used in either 
coordinate space or momentum space. In fact most of the results presented in 
the next section will be for systems that can be approximated by a three-body 
Hamiltonian. The only modification that might be required for the three-body 
system is that the contour deformation to reveal the second sheet of the 
energy plane might prove to be more than a simple rotation of the contour, 
or alternatively, only parts of the second Riemann sheet of the energy plane 
will be accessible. This is mainly due to the fact that the kernel of the 
Faddeev equation includes the two-body T-matrix, which gives rise to moving 
singularities. These moving singularities are basically the boundary conditions 
on the three-body system. 

3. Application to Three-body Systems 

Having established the fact that the method of contour rotation in either 
momentum or coordinate representation exposes that part of the second 
Riemann sheet of the energy plane that has resonance poles, I turn my 
attention to the application of this method to light nuclear systems which 
can be modeled in terms of a three-body Hamiltonian. Here the rotation of 
contour in momentum representation has the advantage that the complicated 
boundary conditions associated with the three-body nature of the problem are 
included in the kernel and do not have to be imposed on the wavefunction. 
The applications I would like to examine in detail are: (i) The question of 
dibaryon resonances in the rrNN system. (ii) The spectrum of 6Li in an (XNN 
model. Both of these systems have similar structures in that the cross section 
for the scattering of a boson, rr or (x, from the deuteron, is dominated by 
enhancement in the cross section when examined as a function of energy. 
Furthermore, the subsystems in both cases have P-wave resonances in the 
form of the ..1(1232) for the rrN system, and the P3/2 resonance, i.e. the 
ground state of SHe, in the (X - N system. The question that has often been 
raised in the analysis of the data for rr - d and (X - d scattering is whether 
the observed structure is a resonance in the three-body system, or a result 
of the threshold for the production of a resonant sub-system, e.g . ..1(1232) or 
SHe. The analysis of the data in terms of two-body scattering theory fails 
because these structures are above the threshold for three-body final states. 
Furthermore, a fit to the phase shift with a Breit-Wigner form could be possible 
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even though the only singularity in the amplitude is a square root branch 
point due to the presence of a resonant sub-system rather than a pole. 

Since in both of these problems the dominant dynamics are the deuteron in 
the N-N subsystem and the P-wave resonance in the TT-N or OI.-N subsystem, 
it is a good approximation to represent the N-N, TT-N, and OI.-N interaction by 
a separable potential. Such separable potentials give a good description of the 
experimental phase shift at the relevant energies, and preserve the important 
features of the two-body amplitude, i.e. the resonance structure. From a 
practical point of view, the use of a separable potential reduces the Faddeev 
equation, after partial expansion, to a one-dimensional integral equation of 
the form 

X ex ,{3(k, k'; E) = Zex,{3(k, k'; E) 

+ "' foo dk" k,,2 Z (k kIf. E) T (E - k,,2) X a(k" k'· E) (21) L ex,y " y 2Jl y,,..,,, 
y 0 y 

where Jly is the reduced mass of the spectator particle and the interacting pair 
that form the quasi-particle ;yo Here, 01., {3 and ;y label the possible two-body 
channels, e.g. for the TTNN system the possible two-body clustering could 
be (NN)TT and (NTT)N. Furthermore, for the present analysis, I will assume 
there is one partial wave in the N - N interaction, i.e. the deuteron, and 
one channel in the IT - N interaction corresponding to the d(l232). In this 
approximation, (21) consists of two coupled integral equations. The Born 
amplitudes Zex,{3 correspond to one particle exchange, while in the kernel, 
Ty(€) is the quasi-particle propagator. Thus for ;y = d, Td(€) has a pole at 
the deuteron binding energy, i.e. € = -2·2246 MeV, while T ,1(€) has a pole at 
€ = M,1 - iT /2 = (1232 - 550 MeV, the position of the d(1232) resonance. 

To determine the position of resonance poles for these two three-body 
systems, I need to consider the homogeneous integral equation corresponding 
to (21) as an eigenvalue problem, i.e. 

An tj>~(k; E) = 2: foo dk' k,2 Zex,y(k,k'; E) Ty (E - ;2 ) tj>~(k',E). (22) 
y 0 Jly 

To gain access to the region of the energy plane where the resonance poles 
reside, I need to deform the contour of integration to allow me an analytic 
continuation of (22) in the energy variable. This can be achieved by the 
contour rotation k --+ k e-icf> and k' --+ k' e-icf> in (22). In carrying through this 
contour rotation, I need to insure that there are no singularities from the Born 
amplitude Zex,y and the quasi-particle propagator Ty in the k'-plane that are 
crossed in the transformation. In general, Zex,y is of the form 

Z (k k'· E) f+1 d f(k, k',x)P.e(x) (23) 
ex,y , ,oc X 2 ,2 " 

-1 E-ak -bk -ckkx 

where f(k,k',x) depends on the form of the separable potential, and P.e(x) is 
the Legendre polynomial of order .e, while a, band c depend on the masses 
of the three particles. In general, Zex,y develops logarithmic branch points in 
the k'-plane when the poles of the integrand in (23) coincide with the end 
points of the integration, i.e. x = ±1. By taking k --+ k e-icf> and k' --+ k' e-iCP and 
I argEI < 21>, Zex,y can have branch points only from the poles of f(k, k',x), and 
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these are, for a Yamaguchi-type separable potential, along the imaginary k'-axis 
(Stelbovics 1977). Thus, as far as Za;y is concerned, I can analytically continue 
(22) to cover the full energy domain where the resonance poles might reside. 

Having established that the Born amplitude does not create any problem in 
rotating the contour of integration provided both k and k' are rotated by the 
same angle, I turn my attention to the quasi-particle propagator Ty(E-k,2/2Jly). 
This quasi-particle propagator can be written as 

T(E-~) = 2Jly 

Sy (E- ~2y) 
/C2 

E--,-,+B 
2Jly 

Sy (E- ~2y) 
E /C2 M l'r --- r+-I 

2Jly 2 

for N-N 

(24) 

for 7T-N or oc-N, 

where Mr is the mass of the resonance, i.e. the mass of the L\ for the 7T - N 
system, or the mass of SHe for the oc -N system, and r is the width of the 
resonances. Here, Sy at the pole is the residue of Ty, and in general has a 
square root branch point at E - k,2 /2Jly = 0, which gives rise to the unitarity cut 
in the two-body subsystem and determines the three-body threshold. From 
the above expression for Ty it is clear that as I analytically continue (22) into 
the second Riemann sheet of the E-plane, there is a corresponding change in 
the position of the poles and branch point of Ty in the k'-plane. These poles 
and branch pOint, which are the result of including the two- and three-body 
boundary condition in the integral equation, will constrain the domain in the 
energy plane that I can access using this procedure (Pearce and Afnan 1984). 

To determine how far I can analytically continue (24) into the second Riemann 
sheet of the energy plane, I need to examine how these Singularities from T y 
effect the contour rotation. In particular, to guarantee that the singularities 
of Za.y remain on the imaginary k'-axis I need to have both k and k' in (24) 
on the same ray, making an angle of cp with the real k'-axis and in the fourth 
quadrant. The branch points in T yare at 

kb = ±~2JlyE, (25) 

which for E = Er - iE;, E; > 0, have the pole of T y, in the fourth quadrant of 
the k'-plane, at an angle (Jb given by 

E; 
tan 2(Jb = Er . (26) 

Thus as far as these branch points are concerned, I need to take cp > (Jb to 
avoid these singularities. I now turn to the deuteron pole in T y. In this case 
the pole in the k'-plane is at 

1 

k~ = ±{2Jly(E + Bn'2 . (27) 
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This pole subtends an angle of CPd in the fourth quadrant of the k'-plane and 
is determined by the equation 

E; 
tan2ed= Er+B" (28) 

Clearly, this angle is smaller than that due to the branch point, Le. eb, and 
to that extent I need not worry about its constraint on the angle of rotation 
of the contour cpo 

The resonance pole in T y gives rise to a square root branch point in the 
scattering amplitude and the solution of (22) in the E-plane at E = Mr - iiT. 
This branch point can, if close to the real axis, effect the energy dependence 
of the cross section to the extent that it could be mistaken for a resonance 
in the three-body system. More important, at this stage, is the fact that this 
branch point and associated branch cut divides the fourth quadrant of the 
E-plane where the resonances might reside into four regions as illustrated in 

~ 

I II 

I 

IA _ 
- .. -------

III IV 

Fig. 2. Region of the energy plane that can be accessed via 
contour rotation. The pOint A at E = Mr - tif corresponds to 
the branch point resulting from the resonance in the two-body 
subsystem. 

Fig. 2. Here the two-body resonance pole in Ty leads to two poles in the 
k'-plane at 

1 

k~=±{2J1y(E-Mr+i;nr . (29) 

The corresponding angle for the resonance pole in the k'-plane is er , and is 
given by 

E;-iT 
tan 2er = - Er -Mr' (30) 

where I have taken E = Er - iE;. For E = 0, the angle 2er is in the second 
quadrant, and therefore, rr/4 < Br < rr/2. As I proceed along the real energy 
axis to the point E = Mr , er gets to a value of rr/4, while proceeding along 
the imaginary axis to E = -iiT, er gets to a value of rr/2. If I now carry 
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~ 

Fig. 3. The shaded area is the domain of the second Riemann 
sheet of the energy plane to which I can analytically continue 
(22), while maintaining the contour deformation along a ray 
in the fourth quadrant of the k'-plane. 

I 

I 

IA 

~ 

II 

Fig. 4. The shaded area is the domain of the third Riemann 
sheet of the energy plane to which I can analytically continue 
(22), while maintaining the contour deformation along a ray 
in the fourth quadrant of the k'-plane. Access to this sheet is 
via the square root branch cut resulting from the resonance 
pole in Ty. 

211 

this analysis through, I find that as I analytically continue my equation in 
the energy variable from the real axis through region I to region III and then 
to region 1V (see Fig. 2), one of the resonance poles in the k'-plane gets 
into the region -rr/4 < Br < 0 approaching from Br = -rr/4. At this stage the 
two-body unitarity branch point is moving towards an angle B = rr/4. These 
two singularities could force the contour to deviate from being along the 
ray, and this in turn will introduce logarithmic branch points from the Born 
amplitude Zex,{3' Thus the energy domain on the second Riemann sheet, to 
which I can analytically continue (22) without introducing elaborate contours 
of integration, is shown as the shaded area in Fig. 3 (Pearce and Afnan 1984). 
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In addition to the above energy domain, I can analytically continue (22) onto 
the third Riemann sheet through the branch cut generated by the resonance 
pole in T y , i.e. start on the real axis in region II, then proceed through the 
branch cut to region IV on the third Riemann sheet, and then to region III on 
the third Riemann sheet (see Fig. 2). In this case as I proceed from region 
II to region IV, the resonance pole in the k'-plane crosses the real axis into 
the fourth quadrant, and I can analytically continue the equation into region 
IV and then III of the third Riemann sheet. However, if I attempt to go to 
region I of the third energy sheet I find that the contour of integration is 
forced onto the negative imaginary k'-axis by the resonance pole, and here I 
encounter the singularities of the Born amplitude Za,y. Thus the only part of 
the third Riemann energy sheet I can access is the region with ~(E) < -~r (see 
Fig. 4). In this way I have gained access to most of the second and third 
Riemann sheet of the energy plane where a resonance pole could influence the 
scattering amplitude on the real axis, and thus produce rapid variation in the 
measured cross section. To go beyond this energy domain I need to resort 
to contours that are not a simple ray and trace the motion of the logarithmic 
branch points resulting from the Born amplitude Za,y. 

4. Numerical Results 

The motivation for this study has been to demonstrate that structures in 
the energy dependence of the cross section above the threshold for three-body 
final state do not have to correspond to resonances only. To illustrate this 
I will consider the two systems discussed above. In many ways the ITNN 
and ()(NN are similar in that they correspond to the scattering of a spin zero 
particle from the deuteron. In both systems the spin zero particle and the 
single nucleon form a well known resonance. Finally, the cross sections for 
both ()( - d and IT - d scattering show an enhancement close to the threshold 
for the production of a resonance subsystem. 

(a) IT - d Scattering 

The question of resonances in the ITNN system is an old one which is still 
of interest. In the N - N sector of this problem there was a suggestion that the 
structure observed in the polarisation data is due to a dibaryon resonance. 
However, it is now accepted that this structure is in fact due to the branch 
point resulting from the ..1 resonance. In the IT - d sector, the cross section is 
dominated by a peak which could be considered a resonance if the data are 
analysed in terms of two-body scattering theory with an amplitude that is the 
sum of a Breit-Wigner resonance and a background term. If I consider IT - d 
scattering in terms of the three-body model discussed in the last section, I 
find that if the pion is treated relativistically, which is required to get the 
right total cross section, then the resonance pole is on the third energy sheet 
at E=(118-141i)MeV (Pearce and Afnan 1984). This is much further from the 
real energy axis than the branch point at E = (152 - 55i) MeV or the position 
of the resonance as predicted from an analysis of the cross section, using a 
Breit-Wigner form, of E = (143 - 90i) MeV. This suggests very strongly that the 
extraction of resonance parameters from the data, using standard two-body 
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scattering theory, can be misleading_ In fact, the cross section seems to be 
partially dominated by the branch point due to Ll resonance, which is not 
included in the standard method of analysis of the data. 

(b) Resonances in 6U 

If I consider 6U as an exNN system, which seems to be a good approximation 
for ex - d scattering below the threshold for 3He-3H production of 14·32 MeV, 
then I can study the low energy resonances in 6U using the above three-body 
equations. In particular, 6U has a 2+ resonance state at 0·61 MeV above 
the threshold for ex - n - p, with a half-width of 0 ·85 ± 0·2 MeV. In this case 
the square root branch point at E = (0·777 - 0·3201) MeV is due to the ex - N 
resonance, i.e. sHe. Here again, the resonance is close to the square root 
branch point and could effect the analysis of the ex - d scattering data, and 
in particular the extraction of resonance parameters. To get a realistic result 
that can be compared with experiment, I have included in addition to the 
3 Sl N - Nand P3/2 ex - N interactions, the Sl/2 and P1/2 ex - N interactions. In 
this case I find that the resonance pole is on the second Riemann sheet of 
the energy plane at E = (0 . 15 - 0 ·4;) MeV (Eskandarian and Afnan 1990). This 
discrepancy with experiment can be reduced by changing the input two-body 
ex-N interactions. In fact if I fit the low energy ex-N phase shifts, the position 
of this resonance can be shifted to E = (0·53 - 0·65;) MeV (Eskandarian and 
Afnan 1990). In either case, the closeness of the branch point to the pole 
suggests that any analysis of the data should take into consideration the 
fact that there is a branch point close enough to the real axis that it could 
influence the energy dependence of the cross section. 

5. Conclusions 

In the present analysis I have shown that resonances can be considered 
as part of the spectrum of the Hamiltonian if I extend the energy domain to 
include the second Riemann sheet of the energy plane where resonance poles 
reside. The eigenstates corresponding to the resonance states are part of the 
Hilbert space and form an orthonormal basis with a minor modification of 
the definition of normalisation. To achieve this analytic continuation of the 
Schr6dinger equation in the energy variable it was necessary to perform a 
contour rotation in either coordinate or momentum representation. 

To illustrate the above result I have considered two three-body problems 
in which one of the pairs form a bound state, while the other two pairs 
have resonance states. To include the three-body boundary condition I have 
carried out the analysis in momentum representation. Here, I demonstrate 
how the different boundary conditions restrain the energy domain to which I 
can analytically continue my equation. 

For such a three-body system it is often observed that near the threshold for 
the production of a resonance subsystem, the cross section has rapid energy 
dependence. This energy dependence is often attributed to the existence of 
resonances in the full system. By considering as examples the rrNN (Pearce 
and Afnan 1984) and the exNN systems (Eskandarian and Afnan 1990), I have 
demonstrated that the extraction of resonance parameters from scattering data 
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will require the inclusion of the threshold for the production of the resonance 
subsystem. This is often not included in the analysis of experimental data. 
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Appendix: Solution of Integral Equation 

When writing the solution of the inhomogeneous integral equation in terms 
of the eigenvalues and eigenstates of the kernel in (4), it is commonly assumed 
that the kernel is Hermitian. However, on deforming the contour of integration, 
the. kernel ceases to be Hermitian. The present appendix is devoted to the 
generalisation of (4) for the case when the kernel is not Hermitian. 

Let me consider the inhomogeneous -integral equation 

f(x) = g(x) + J: dy K(x, y) fey) . (Al) 

The corresponding homogeneous equation is then given as an eigenvalue 
problem of the form 

An <Pn(x) = J: dy K(x, y) <Pn (y) . (A2) 

I now can write the solution of the inhomogeneous equation in terms of the 
solution of the homogeneous equation as 

f(x) = 2: bn <Pn(x). (A3) 
n 

With this result in hand I can write (AI) as 

2: bn<Pn(x) = g(x) + 2: bn An <Pn(x) , (A4) 
n n 

which can be rewritten as 

2: (1 - An) bn <Pn(x) = g(x). (AS) 
n -
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To solve this equation for the coefficient bn, the orthogonality of the basis 4>n(x) 
needs to be determined. For the case of a Hermitian kernel, i.e. K*(x,Y) = K(y,x), 
the orthogonality is given by 

f: dx 4>:n(x) 4>n(x) = omn. (A6) 

In this case the coefficients bn are given by 

I foo bn = I _ An 0 dx 4>~(x) g(x) . (A7) 

In other words, the solution of the integral equation, (AI) is given by 

4> ~)a foo f(x) = ~ ; _ An n with an = 0 dx 4>~(x) g(x), (A8) 

which is the result given in (4). 
When the contour of integration is rotated into the complex plane to reveal 

the energy domain that has the resonance poles, the kernel of the integral 
equation along the rotated contour is not Hermitian, and the above results 
need to be generalised. In this case, the kernel of the equation depends on 
the angle of rotation of the contour, and satisfies the condition 

K_ef>(x,y) = K~(y,x). (A9) 

The homogeneous equation can now be written for both Kef> and K-ef> as 

ef> ef> foo ef> An 4>n (x) = 0 Kef> (x, y) 4>n (y), (AID) 

and 

-ef> -ef> foo -ef> Am 4>m (x) = 0 K_ef>(x,y) 4>m (y). (All) 

If I now multiply (AID) by 4>;;.,cP' and integrate over x, and multiply the 
complex conjugate of (All) by 4>~(x) and integrate over x, then subtract the 
resultant two equations making use of the symmetry of the kernel, i.e. (A9), 
I get 

( ef> -ef>') f 00 -ef>' ef> An - Am 0 dx 4>m (x) 4>n (x) = D . (AI 2) 

For this equation to be satisfied, I will need to take 

A~=A~ef>' and f:dX4>~ef>'(X)4>~(X)=1 for n=m, (Al3) 

and 

s: dX4>~ef>' (x)4>~(x) = D for n of. m. (AI4) 
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This result is identical to that stated in (19) regarding the orthonormality 
of the resonance wavefunctions. Making use of the orthonormality of the 
eigenstates of the homogeneous integral equation, I can write the solution of 
the inhomogeneous equation as 

cJ>~ (x) a J 00 -cf>' 
f(x) = ~ 1 _ An n with an = 0 dx cJ>n (x) g(x). (A15) 

This result, when applied to the Lippmann-Schwinger equation or the Faddeev 
equations, gives the position of the poles of the scattering amplitude to 
correspond to those energies where one of the eigenvalues of the kernel is 
unity. 
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