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Abstract 

The Melnikov method for estimating distances between invariant manifolds is applied to the 
perturbed system of ordinary differential equations obtained from the KdV equation, reduced 
by a travelling wave ansatz and including a diffusion term. The calculation is performed 
after one integration and the result is compared with numerical work carried out on the full 
system. 

1. Introduction 

Jeffrey and Kakutani (1972) have shown that soliton solutions of the 
Korteweg-deVries (KdV) equation are associated with homo clinic orbits in 
phase space. This association has been further developed by Holmes and 
Marsden (1981), as well as by Birnir (1988). Since the main application of the 
Melnikov method is to the splitting of the homoclinic orbit into stable and 
unstable manifolds due to perturbation of the nonlinear differential equation 
(Greenspan and Holmes 1983; Wiggins 1988), we have in this paper used the 
method to study the effect of periodic and dissipative perturbations on the 
KdV equation, 

Ut + Ux U + Uxxx = o. (1) 

To be more precise, we have extended equation (1) to the KdV-Burgers equation 
by allowing for a dissipation term proportional to Uxx and by adding an 
external force term that is periodic in space and time. 

We shall in fact only be studying the 'reduced KdV equation' which arises 
when a travelling wave ansatz is made: 

U(x, t) = u(x - ct) == u(y) , (2) 

where c is the wave speed. In this way we are left with the reduced third-order 
ordinary differential equation (ODE), 

Uyyy + Uy U - CUy = O. (3) 

0004·9506/91/010015$05.00 



16 J. Roessler 

As explained by Olver (1986), the most general periodic solution to this 
equation after two integrations reads 

u(y) =A cn2 (wy+o)+M, (4) 

where the constants A, wand M are actually interrelated and cn is the standard 
Jacobian elliptic function. It is called the 'cnoidal wave' solution. In the limit 
where the homo clinic orbit is approached and the elliptic modulus is k -> I, 
the solution (4) degenerates to the form 

u(y) = 3 sech2 (y/2 + 0), (5) 

which is the 'soliton' or 'solitary wave' solution. 
In Section 2 we apply a travelling wave ansatz to the KdV-Burgers equation 

under periodic forcing and analyse the phase portrait associated with the 
cnoidal and soliton solutions for the generalised KdV equation, 

Ut + aux u + buxxx = 0, (6) 

and discuss the effects of perturbations on the phase portrait. 
In Section 3 the Melnikov integrals as well as the tangencies of manifolds 

and bifurcation curves are calculated. This section is guided by the well-known 
application of the Melnikov theory to the Duffing system by Greenspan and 
Holmes (I983) and by Guckenheimer and Holmes (1984). Section 4 presents 
the numerical work, such as plots of the manifolds in the phase portraits, 
and compares the computations with the calculations of Sections 2 and 3. 
The agreement is good. 

2. Reduced KdV Equation 

(a) Travelling Wave Reduction 

We begin with a KdV-Burgers equation which is extended by an external 
periodic forcing term: 

Ut + aux u + buxxx + oUxx + ()( cos (kpx-wt) = o. (7) 

A travelling wave ansatz 

y = x-ct, c= w/kp (8) 

reduces equation (7) to 

- cUy + auy u + buyyy + OUyy + ()( cos (kp y) = o. (9) 

By redefining units of x and t, the wave speed c can be normalised to 
unity without loss of generality. Adopting this convention from now on and 
integrating equation (9) gives 

- u + au2 /2 + buyy + oUy + ()( sin (wy)/w = kl , (10) 

where kl is an integration constant. This equation is our main object of 
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analysis. To study it further we first find analytic solutions of (10) for 
vanishing dissipative and periodic forcing terms (ex = 8 = 0). These solutions 
are of course the travelling wave solutions of the KdV or MKdV equation and. 
after reintroducing small dissipative and periodic forcing terms (1 > ex, 8> 0) 
as perturbations. we have the conditions necessary for Melnikov's method. 

(b) Cnoidal and Soliton Solutions of the KdV Equation 

The 'unperturbed' equation 

-u +au2/2 + buyy = kl (11) 

is obtained from (10) by setting ex = 8 = O. Multiplying it by Uy, integrating 
and regrouping terms, leads to 

Uy = [-u3 +3u2/a +6kl u/a +6k2la]~(a/3b)~ 
1 1 

= [(u - rd(u - r2)(r3 - u)J2 (a/3b)"2 . (12) 

The method of quadratures gives an elliptic integral (see e.g. Byrd and Friedman 
1971, #236·00, p. 79) and consequently the cnoidal wave solution 

u(y) = A cn2 [A(y- Yo), k] + r2 (13) 

of the reduced KdV equation 

-Uy +auyu +buyyy = o. (14) 

The abbreviations in (13) are as follows: 

1 

A r3-r2, A = [a(r3-rd/3bJ2/2, 

Yo = arbitrary phase shift, 
1 

k = [(r3- r2)/(r3- rdJ2 = elliptic modulus. (15) 

In the limit k --+ 1 the solution (13) reduces to 

u(y) --+ A sech 2 [A(y - Yo)] + r2 , (16) 

which is the solution of the KdV equation. We further note in this limit that 

rl = r2, r3 = 3/a -2rl, 

kl = ar?/2 -rl, k2 = d/2 -ar~/3. (17) 

These relations are easily derived by matching powers of u in (U-rl)2(r3 -u) 
with those in the polynomial of (12). 

(c) Phase Space of the Reduced KdV Equation 

In order to investigate the phase space of equation (14), within which the 
solutions (13) and (16) prevail, we represent (14) as a three-dimensional system 
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of first order equations: 

Uy = Ul, Uly = U2, U2y = (1-au)udb. (18) 

Clearly, the complete set of fixed points (us, Uls, U2s) of this system is the entire 
U axis in the phase space spanned by U, Ul, U2. Moreover, it is trivial to verify 
that the system (18) linearised about any of these fixed points has at least 
one eigenvalue equal to zero (all three eigenvalues are zero for aus = 1); the 
fixed points become degenerate. This means that the problem of degenerate 
fixed points for the (unreduced) KdV equation as noted by Birnir (1988) carries 
over to the reduced version (14) or (18) respectively. 

(a) 

Uy 
u 

Uy 
(b) 

u 

(c) 

Uy 

u 

Fig. 1. Vector fields in the 
phase space of system (19): 
(a) case kJ < -1/2a; 
(b) case kJ > -1/2a; 
(c) case kJ = -l/2a. 

The situation changes, however, with the two-dimensional system arising 
from (11) integrated once more, 

Uy=Ul Uly = (k1 + U -au2/2)/b. (19) 

Its fixed points (us, Uls) in U-Ul space are 

I 

Uls = 0, Us± = [1 ± (1 + 2akl)i"lIa, (20) 
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with eigenvalues 

1 1 1 

A.± = ±[(I-aus±)jb]2 = ±[±(1 + 2ak1)z /b]2 . (21) 

Depending on the integration constant kl, three topologically distinct cases 
are possible for the phase portrait: 

Case 1 : kl < -1/2a. (22) 

Equation (21) shows that there are no real zeros for Us± and thus no fixed 
points for the system (19); see Fig. 1 a. 

Case 2 : kl > -1/2a. (23) 

Equations (20) and (21) produce a saddle at (us-,O) and a centre at (us+,O); 
see Fig. 1 b. According to (20) the distance d between them is 

1 

d = 2(1 + 2akd z/a. (24) 

Case 3 : kl = -1/2a. (25) 

The distance d between saddle and centre is zero and so is the eigenvalue 
A.. This corresponds to a doubly degenerate Hamiltonian bifurcation in the 
terminology of Greenspan and Holmes (1983). The position of this degenerate 
fixed point is 1/ a; see Fig. 1 c. 

Uyy Uyy 

(a) (b) 

U U 

Fig. 2. (a) A family of periodic orbits on a parabolically curved invariant surface in the 
phase space of system (18) enclosed by a homoclinic orbit. (b) Set of homoclinic orbits in 
the phase space of system (18). 
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The phase diagram for the original three-dimensional system (18) can now be 
easily constructed. First, we add the dimension U2 = Uyy to the two-dimensional 
phase diagram of the system (19). Then, in any section parallel to the 
U-U2 plane, there is a family of parabolas defined by (11) and continuously 
parametrised by ki . Each one of these parabolas defines a surface P parallel 
to the Ul (= Uy) axis in U-UI-U2 space. Every such surface contains a phase 
portrait topologically equivalent to one of the three possible cases described 
by (22), (23) and (25). The specification of these three cases is: 

Case 1. The surface P is bounded away from the U axis. 
Case 2. The surface P is penetrated by the U axis at the saddle and centre 

of the phase portrait contained on P. 

Case 3. The surface P touches the U axis exactly where saddle and centre 
of the phase portrait on P merge. 
Figs 2a and 2b elucidate this geometry. 

(d) Analytical Solutions and the Phase Portrait 

We briefly comment on the three configurations above and on their connection 
to the analytic solutions mentioned in Section 2b. The vital quantity is the 
polynomial in (12) with roots rl, r2, r3: 

Case 1: The polynomial has one real and two complex conjugate roots. 
Case 2: The three roots are real, which corresponds to the cnoidal and 

soliton solutions. It is clear that the cnoidal solutions (13) define the family 
of closed orbits, concentric to the centre (us+,O) and parametrised by the 
elliptic modulus k (see equation 15), whereas the homoclinic orbit connected 
to the saddle (us-, O) and enclosing the concentric orbits provides the soliton 
solution (16). 

Case 3: The three real roots coalesce at U = II a. Centre and saddle meet 
there. 

(e) Phase Space of the Reduced KdV Equation under Perturbations 

Now we include the dissipation term and the periodic perturbation before 
investigating the phase space of equation (9), expressed as the three-dimensional 
first-order system: 

uy Ul , Uly = U2 I 

U2y = (l-au)ulib -8u21b -oc cos (wy)lb. (26) 

In particular, we examine the effect of perturbations on the parabolically bent 
invariant surfaces P introduced in Section 2c. The set of P is now defined by 
equation (10) and, as opposed to the unperturbed case, each surface of P has 
a slope of value 8 in the Ul direction, induced by the dissipation term 8uy 
in (10). The periodic forcing term induces a y-periodic oscillation of the set 
of P with frequency wand amplitude oclb along the Uyy axis. It is important 
to note that, despite these perturbations, a point in phase space representing 
system (9) remains on its particular surface P for all times. This indicates 
that the phenomenon of Arnold diffusion does not happen. 
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3. Perturbations and the Melnikov Method 

(a) Melnikov Integral of the Reduced and Perturbed KdV Equation 

We begin by expressing equation (0) as a two-dimensional first-order system 
of ODEs: 

Uy Ul, 

Uly = (-au2/2 +U+kl)/b -8Ul -oc sin (wy)/w, (27) 

after rescaling 8 -+ 8/b, oc -+ oc/b. From hereon we will only work with this 
rescaled equation. 

We recall that for a system such as 

Ut = fl (u, v) + €gl (u, v, t), 

Vt = f2(U, v) + €g2(U, v, t); 

U = u(t- to), v = v(t- to), 

g;(u, v, t) = g;(u, v, t + n, i = 1, 2, (28) 

with € as the perturbation parameter, to a phase factor and T the period of the 
perturbation (gl, g2), the Melnikov integral M(to) applicable to the solutions 
representing the homoclinic orbits of (28) is defined as 

M(to) = f~oo (fl g2 - f2 gr) dt. (29) 

System (27) is the system (9) with perturbation added, and comparison with 
the system (28) therefore shows that 

fl Ul, €gl 0, 

f2 = (-au2/2 +u+kr)/b, €g2 = -8ul-ocsin(wy)/w. (30) 

Introducing one more rescaling €g2 -+ g2, and observing that y plays the role 
of time t, the homoclinic Melnikov integral becomes 

M(yo) = f~oo Ul g2 dy = f~ooUy[-8Uy-(OC/W) sin (wy)] dy 

= -8f~oo u~ dy +oc f~oou cos (wy) dy -oc sin (wy)/w [ 

= -8f~}-2AA sech2 [.\.(Y-Yo)] tanh [.\.(Y_YO)]}2 dy 

+ ocA f~oo sech2 [.\.(y-yo)] cos (wy) dy. (31) 

Here we have integrated by parts and substituted the soliton solution (6). 

After shifting y -+ y+yo and applying some basic trigonometric identities the 



22 J. Roessler 

two integrals can be found in Gradshteyn and Ryzhik (1965) (p. 96,#2.416.1; 
p. 505,#3.982.1): 

M(yo) = 160M2 /15 - aAmo cos (ooYo)fA2sinh [1Too/(2A)]. (32) 

According to the definition for the subharmonic Melnikov integral Mm/n(to) 
of (28) 

fmT Mm/n(to) = 0 «(1 g2 - (2 gl) dy, (33) 

with nTk = mT, n, m being coprime integers and Tk the period of the unperturbed 
(€ = 0) periodic solutions of (28), we obtain in similar fashion 

f
mT fmT Mm/n(yo) = 0 (1 g2 dy = -aA 0 cn2(AY) cos [oo(Y+Yo)] dy 

fmT -40A2A2 0 sn2(AY) cn2(AY) dn2(AY) dy 

= -ocAlp-40A2A2/d. (34) 

We have substituted the cnoidal wave solution (13) here. The integral Ip, 
denoting the periodic part of Mm/n, is evaluated using a Fourier expansion of 
dn2 = 1- k2 - k2cn2, as given in Greenhill (1892) (p. 286, #49): 

fmT Ip = 0 [k2 -1 + dn2(Ay)/k2] 

x [cos (ooy) cos (ooYo) - sin (ooy) sin (ooYo)] dy 

= f~T (k2 -1 + E(k)/K(k) + [1T2/K2(k)]. 

x ~) cos U1TAY/K(k)]/sinhU1TK(k')/K(k)]) 

x [cos (ooy) cos (ooYo)- sin (ooy) sin (ooYO)]/k2 dy. (35) 

Here K, E are the first and second elliptic integrals and /(2 = 1-k2 • Due to 
orthogonality of circular functions the only nonzero term in the integral (35) 
is 

(j1T2 cos (ooyo)/K2(k)k2 sinh U1TK(k/)/K(k)])f~T cos U1TAy/K(k)] cos (ooy) dy, (36) 

if and only if the orthogonality condition 

j1TAjK(k) = 00 (37) 
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applies. Otherwise all terms vanish. From (37) and the resonance condition 

mT = nTk with T = 2rr/w, Tk = 2K(k)/l\, (38) 

we find that 

jrrl\/K(k) = w = mrrl\jnK(k) or j = m/n. (39) 

In other words, for the indices j to be integer, we have the condition 

n = 1. (40) 

The integral Ip therefore collapses to 

Ip = wrr cos (wYo)/l\2k2sinh [wK(k')/l\]. (41) 

The dissipation part Id can be similarly evaluated using Gradshteyn and Ryzhik 
(1965) (p. 630, #5.134.3). The Melnikov integral then becomes 

Mm(yo) = Aawrr cos (wyo)/l\2k2 sinh [wK(k')/l\] 

+ 16A2l\0[(1- k2)(k2 - 2)K(k) + (k4 - k2 + I)E(k)1I15k4 . (42) 

Note that k is a function of m, such that 

k(m -+ 00) -+ 1, (43) 

and the homoclinic limit is correctly reached for k -+ 1: 

Mm(yo) -+ M(yo). (44) 

(b) Tangencies and Quadratic Zeros 

From (32) it is clear that the homoclinic Melnikov function M(yo) has 
quadratic zeros for cos(wYo) = 1. Therefore, the invariant manifolds WS and 
WU must have tangency points, and we define the tangency ratio R(w) for 
a = ac and 0 = Dc: 

R(w) = ac/oc = 16Al\3 sinh (rrw/2l\)/15rrw. (45) 

The significance of this ratio can now be expressed in the form: 

a/o > R(w) ~ WS A WU i- 0 (transverse intersection), 

a/o = R(w) ~ ws A WU i- 0 (tangency), 

a/o < R(w) ~ ws A WU = o. (46) 
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Saddle positions on u axis 
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Fig. 3. Bifurcation curves in (xc/oc versus w for various saddle positions. 
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Fig. 4. Bifurcation curves in (xc/oc versus saddle position for various w. 
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By using (17) and (15), A and 71. can be replaced in (45) and R(w) can be 
rewritten in terms of the coefficients a, b and the saddle position Ys (= YI = Y2) 

on the u axis: 

R(w) = 2bBs sinh (rrw/B)/5arrw; 

The limit cases are 

R(w = 0) = 2bB4 /5a , 

Ys = l/a (saddle and centre merge) : 

1 

B = [(1-ays)/bF . 

R(w # 0) = 00 

R(w = 0) = o. 

(47) 

(48) 

Figs 3 and 4 show the bifurcation curves of R versus wand versus the saddle 
position Ys respectively. 

The critical ratio ac/lie at which saddle-node bifurcations occur is determined 
from the subharmonic Melnikov function (42), 

Rm(w) = 16A7I.3 [2(I-k2)(k2 - 2)K(k) 

+ (k4 - k2 + I)E(k)] sinh [wK(k')/71.1/15rrwk2 • (49) 

This can also be rewritten in terms of a, band m. We find through (15) and 
the resonance condition (38) that 

A = 1271.2k2b/a, 71. = wK(k)/rrm , (50) 

Rm(w) = 64w4Ks(k)b[(l-k2 )(k2 - 2)K(k) 

+ (k4 _k2 + I)E(k)] sinh [rrmK(k')/K(k»/5rr6m Sa. (51) 

The function Rm(w) can now be interpreted as the subharmonic version of 
(46): 

a/li > Rm(w) ¢} resonance, 

a/li = Rm(w) ¢} saddle node bifurcation, 

a/li < Rm(w) ¢} quasiperiodicity. (52) 

Since the functional dependence of k on m is rather complicated due to the 
dependence of 71. on k through the roots YI, Y2, Y3-aS can be seen from (50) and 
(15)-the critical ratio ac/lie at which bifurcations occur cannot be determined 
by straightforward application of (51). The evaluation of Rm as given by (51) 
is described in the Appendix and examples of the resulting bifurcation curves 
for various resonance orders m are shown in Fig. 5. 

4. Numerical Calculations and Computer Graphics 

With the exception of Figs 1, 3, 4 and 5, the plots in all figures were 
produced by the application of the Runge-Kutta-Fehlberg FORTRAN ODE solver 
RKF45 (Shampine et al. 1976) on the three-dimensional system (18) or its 
perturbed version (26). Invariant manifolds are graphed in Figs 6 and 7 for 
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(a) Uy 

4'0 

U 

-4'0 6'0 

-4'0 

(b) 
Uy T 4·0 

~ 
U 

-4'0 -2'0 

-4'0 

(c) Uy 3'0 

U 
-3'0 -1'0 

Fig. 6. Invariant manifolds for saddle at (a) u = -1, w = I, IX = 0 ·17, 0 = _ O. OS, MR = 3.2815; 
(b) u=-0·5, W=I·2, IX=0·064, 0=-0·02, MR=3.1682; and (e) u=O, W=I.5, IX=0.095, 
8=-0·02, MR=4.72410 

27 
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Uy 

U 

Fig. 7. Invariant manifolds for saddle at u=O·S, w=2, a=0·081, 8=-0·002 and 
MR = 40·6738. 

a = b = 1 and for saddle positions on the u axis with perturbation frequencies 
00, amplitudes (X and dissipation coefficients 0 as given in the captions. These 
values are about the lowest frequencies and largest perturbations which show 
tangencies and for which reasonable agreement with the critical ratio (xc/oc 
calculated from (47) (included in the captions as MR) could be achieved. An 
exception is set by the graph of Fig. 7 with saddle position u = 0·5. Since this 
value is close to the saddle centre merging point u = 1/ a, numerical errors 
become significant and the applicability of the Melnikov method as a first-order 
approximation becomes questionable, evidenced by the large perturbation 
values for (X needed to produce tangency (see Figs 3 and 4). 

In practical terms, the graphs for the invariant manifolds are generated 
by starting with a point Pi with coordinates (Ui, 10-6 ,0). There Ui is the 
saddle position on the U axis with an offset by 10-6 from the U axis; the 
offset is needed to obtain a finite displacement of Pi under the Poincare map 
Pi -+ P(Pi), which is then performed by advancing Pi by a timestep equal to 
the perturbation period T = 2rr/oo. A good approximation for the initial line 
element on the invariant manifold WU (or WS respectively by using negative 
time) can now be obtained by generating further points using Pi as the initial 
condition and solving the perturbed system (26) for (X = 0 and small timesteps. 
The stepsize is decreased exponentially with respect to the number of steps 
performed in order to compensate for the 'stretching' of the manifold under 
increasing time. After about 200 to 300 timesteps the set of points so 
generated will have reached a small enough neighbourhood of P(Pi) to stop 
the process and readjust the resulting line of points to pass directly through 
P(Pi). Further iterations of this line element assemble the invariant manifold 
and are generated by simply Poincare mapping its individual points. It is 
evident from this method that the shorter this initial line element is, the 
better the approximation of the manifold will be. This explains why higher 
frequencies 00 are needed to analyse smaller homo clinic orbits and enlightens 
the problem described in connection with Fig. 7. 
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The graphs showing the projections of the perturbed manifolds into the 
UyrUy plane and the UyrU plane, as well as the perspective view (Figs 8 and 
9), give numerical evidence of the properties described in Section 2e, such as 
invariant surfaces of parabolic curving and slopes in the direction of the Uy 

axis with values equal to the dissipation coefficient 8. 

Uyy (b) 
Uyy (a) 

Uy 

Fig. 8. Projection of the invariant manifolds into (a) the uy-Uyy plane and (b) the U-Uyy 

plane. 

U 
Fig. 9. Invariant manifolds in 
the u-uy-Uyy phase space. 

As there is only one homocl.inic orbit connected to each saddle, solutions 
outside this homoclinic orbit must grow or decrease unbounded. As a 
consequence, only temporary or intermittent chaos is possible for the 

U 
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perturbed system. If the initial conditions are too far from the original centre 
of the unperturbed system, the solution will, after a few chaotic oscillations, 
decrease unbounded. For initial conditions close enough to the original centre 
the solution will experience some damping and, after a short interval of 
irregular oscillations, will become resonant (see Fig. 10). 

u 

3·0 

1·0 

co 

Fig. 10. Time series for the system (18). 

S. Summary 

The most relevant observation of this study is the fact that the Melnikov 
analysis on a degenerate three-dimensional system can be relegated to the 
set of reduced two-dimensional systems obtained by integration of the three­
dimensional system and parametrised by the integration constant. As a result 
there is a set of homoclinic orbits embedded in the phase space of the 
three-dimensional system as depicted in Fig. 2b. This set corresponds to a set 
of soliton solutions which are more peaked (Le. higher and narrower in wave 
form) for larger homoclinic orbits. The dissipative part of the perturbation 
applied modifies the solitons into shock waves which decay into damped 
oscillations, corresponding to the wave solutions for the KdV-Burgers equation; 
see Jeffrey and Kakutani (1972). The periodic part of the perturbation causes 
a sinusoidal wavetrain to interact with these modified solitons. It is important 
to note that for the Melnikov method to be applicable the phase velocity of this 
perturbing wave train must be equal to the velocity c in the travelling wave 
ansatz (see equation 8). This, however, does not mean that the velocity of the 
perturbing wave train is equal to the soliton or modified soliton phase velocity. 
In fact, as can be seen by the scale transformation shown by Jeffrey and 
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Kakutani (1972), the velocity of the travelling wave ansatz c and thereby the 
velocity of the perturbation has very little effect on the velocity of the original 
soliton. However, the effect of the perturbing wave train on the amplitude of 
the modified solitons depends on the ratio ex/8 of perturbation amplitude ex 
and dissipation coefficient 8 for a given perturbation frequency w. This effect 
is described by the relations (45), (46) and the accompanying bifurcation curves 
of Figs 3 and 4. The interpretation is that, when the ratio ex/8 is less than 
the critical ratio exc/8c , dissipation is the dominating effect causing temporary 
chaos, until the soliton is reduced to a periodic wave in resonance with the 
perturbing wave train, as can be seen in Fig. 10. The feature of temporary 
chaos occurs when the soliton undergoes a sequence of reversed saddle-node 
bifurcations (see equation 52) as it progresses to lower energy periodic waves, 
corresponding to closed periodic orbits in the phase portrait. At the critical 
ratio exc/8c a bifurcation occurs and the soliton degenerates into unbounded 
oscillations. Above the critical ratio the behaviour is essentially the same 
except for a very short period of chaotic oscillations before the unbounded 
growth. Because transversal intersections of the invariant manifolds now occur, 
this chaotic behaviour can be explained by the Smale-Birkhoff homo clinic 
theorem. 
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Appendix 

To evaluate the bifurcation ratio Rm as given by (51) we first eliminate A 
from (15) and the resonance condition (50) and obtain 

1 

[a(r3 - rd/(3b)]2 = wK(k)/rrm; k2 = (r3 - r2)/r3 - rd. (AI) 

This relation shows the dependence of the elliptic modulus k or the roots 
rl, r2, r3 as given by (12) on the order of resonance m and the perturbation 
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frequency w. From (12) we can further derive by matching powers, 

3/a = ri + r2 + r3, - 6kda = ri r2 + r2 r3 + r3 rI, 6k2la = ri r2 r3. (A2) 

The integration constant ki can be determined from (11) by substituting a 
given saddle position (rs, 0, 0) on the u axis: 

ki = arU2 -rs· (A3) 

The integration constant k2 varies within the set of periodic solutions (13) 
and therefore cannot be determined without knowing which solution becomes 
resonant for a given wand m. The three determining equations for r1, r2, r3 
are therefore (AI) and the first two equations of (A2), which can be used to 
express two of the roots in terms of the third one and substitute them into 
(AI), which can now be solved numerically for k. This modulus so obtained 
can therefore be used to evaluate Rm via (51) assuming the given coefficients 
a, b, saddle position,s, resonance order m and perturbation frequency w. 
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