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Abstract 

Elastic scattering measurables for 547 MeV proton scattering from l3C are calculated using a 
nonrelativistic optical model potential in which deformation of the conventional Woods-Saxon 
forms of the real and imaginary central potentials is allowed, as well as incorporating spin 1 
transfer contributions. The latter are estimated from folding a simple two nucleon t-matrix 
with a Op-shell model wavefunction. 

Microscopic models of optical model potentials for nucleon elastic scattering 
from nuclei have been made for use both in Schrodinger (nonrelativistic) 
equations (Rikus et al. 1984; Haider et al. 1988) and in Dirac (relativistic) 
equations (Murdock and Horowitz 1987). Both methods of data analysis, given 
the use of realistic two-nucleon t-matrices and nuclear density distributions, give 
good fits to differential cross sections and to analysing powers. Furthermore, 
it is possible to relate the scalar and vector potentials of the relativistic 
formulation to those of the nonrelativistic Schrodinger formalism (von Geramb 
et al. 1988), thereby explaining the strong energy dependences of the latter. The 
very success of these microscopic model calculations is indicative that, of the 
many approximations necessary to facilitate evaluations, none are traumatic. It 
is also evident that the radial variation of the nonrelativistic model potentials 
vary distinctively from that of the conventional, phenomenological optical 
potentials, i.e. of Woods-Saxon form. 

But, to this day, data analysis made using phenomenological optical model 
potentials are the most convenient and are almost exclusively used in distorted 
wave approximation calculations of non-elastic measurables. In nonrelativistic 
model calculations we thus anticipate a strong energy dependence of the 
potential strengths and radial variations (to the standard Woods-Saxon forms) 
and with both due, at least in part, to relativistic effects. The former is a 
simple matter of adjustment of strengths to give a best fit to data, but the 
latter is not so easily accommodated within standard programs. Furthermore, 
the derived potential shapes from microscopic model studies may reflect 
quite strongly the chosen nuclear density function. Whatever the cause 
one can tune the usual nonrelativistic Woods-Saxon optical potentials by 

0004-9506/89/060591 $03.00 



592 K. Amos and J. Raynal 

allowing non-spherical (deformation) contributions to the ground state density. 
With standard collective model prescriptions this leads to coupled equations 
which can be solved numerically using the program ECIS88 (Raynal 1988). 
The program incorporates within the elastic channel potential contributions 
of all orders from deformations. Thus, whatever the actual physical basis 
underlying the non-standard radial variation of the optical potential, the 
deformation corrections associated with coupled channels calculations are 
convenient representations. The size of these effects are studied here for the 
case of 547 MeV polarised protons scattering from Be. 

The choice of reaction was made partly in anticipation of experiments being 
made using polarised targets, from which one can obtain data other than 
the usual differential cross sections and analysing power, and partly because 
13C has a spin-parity ground state of i -. As a consequence there exist Ml 
contributions to elastic scattering and recent studies of electron scattering 
have shown that the Ml form factor is quite unusual and very sensitive to 
details of nuclear structure (Millener et al. 1989; Amos et al. 1989). 

In an (LS)] representation, there are two Ml contributions to elastic scattering, 
namely (01)1 and (21)1, and we used a very simple folding model with Op-shell 
model wavefunctions (Amos et al. 1989) and the Love-Franey (1981) t-matrices 
to define contributions to the optical potential. For extreme simplicity, by 
using Op-shell model wavefunctions, contact (delta function) t-matrices and 
harmonic oscillator wavefunctions, we have S = 1 potentials of the form 

U = -(a + i b)r2 exp(-O· 39 r2), 

with strengths (a, b) of (2·9, 1 ·1) and (3·2, 1 ·2) for L = 0 and 2 respectively. 
We have not sought to define more realistic form factors by using better 
t-matrices and nuclear density distributions or by accounting properly for 
antisymmetrisation for example, as our purpose at this stage is simply to 
suggest whether or not Ml contributions to p-13C scattering ought to be 
considered in better data analyses. 

We have used Woods-Saxon forms for the basic (S = 0) undeformed optical 
potential with parameter values that best fit the cross section and analysing 
power data. 

Specifically, with form factors 

f(r,R,a) = [1 +exp{(r-R)/aW1 , 

the U(OO)O potential for 547 MeV protons scattering from 13C is 

U(OO)O = -9· 2f(r, 2·67,0·33) - 70· 29i f(r, 1· 99,0·55) 

+(h/mrr c)I.ij{-l· 76f'(r,2· 36,O·478)/r + 2· 59if'(r,2 ·02,0 . 434)/r} + Vdr). 

Here primes denote differentiation with respect to rand Vdr) is the Coulomb 
potential of a uniformly charged sphere of radius 2·67 fm. 

Calculations have also been made with the central complex potential 
components corrected to all orders by allowing a quadrupole deformation in 
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Fig. 1. Central real and imaginary optical potentials for 547 MeV protons on \3c. The real 
potentials include the Coulomb contribution. The standard (Woods-Saxon) optical potentials 
are displayed by the dashed curves and when allowance is made for deformation (fh = -0·6) 
the results are given by the solid curves. 
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Fig. 2. Differential cross sections and analysing power predictions obtained using the 
standard S = 0 optical model potentials (dashed curves) and with those potentials modified 
by deformation corrections (solid curves). 

the ground state mean field. The deformation parameter was chosen to be -0·6; 
a value required in coupled channels calculations of proton scattering from 
12C when the elastic and 2t(4· 44 MeV) channels are coupled. The resultant 
central potentials, both real and imaginary, are displayed in Fig. 1. The real 
potentials include the (repulsive and deformed) Coulomb contribution whence 
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the net refractive field is much reduced at the origin from -9·2 MeV and, as 
a consequence, for r < 3 fm, the imaginary potential dominates. The dashed 
curves are the potentials without deformation corrections and the solid curves 
those with these corrections. Clearly, the adjustment in shapes are slight 
but are not negligible. By effecting a more diffuse central field, noticeable 
changes occur in differential cross sections and analysing powers, as shown 
in Fig. 2. Again the standard potential results are displayed by the dashed 
curves and the deformation corrected potential results by solid curves. The 
variation in predictions is quite pronounced with the changes produced by the 
deformation corrections giving results with momentum transfer characteristics 
quite similar to those obtained by relativistic (Dirac) optical model calculations. 
In this case, at least, deformation corrections match the essential shapes of 
nonrelativistic potentials one would derive by transforming the scalar and 
vector Dirac potentials (Raynal 1987; von Geramb et al. 1988). With this result 
we do not suggest at all that the relativistic optical model approach using 
the Dirac equation is inappropriate. Rather, it seems to us that deformation 
corrections should also be entertained in (phenomenological) relativistic optical 
model calculations. But attention is drawn to a caveat emptor: we have not 
made an exhaustive search upon the optical potentials to be able to cover 
uniqueness of the deformation effects in the scattering data analyses. 
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Fig. 3. Differential cross sections and analysing power results obtained using the S = 0 
deformation corrected optical model potentials (solid curves) and with S = 1 contributions 
included (dashed curves). The data are those of Seestrom-Morris et al. (1984). 

In contrast the spin 1 components have little effect upon scattering. Indeed, 
while the real parts are not negligible in comparison with the S = 0 contributions, 
they are of significance at radii where the absorption potential dominates. Even 
boosting the S = 1 distribution by an arbitrary factor of 5 had little effect on the 
measurable data. The results of including fivefold S = 1 components (dashed 
curves) are compared with those of the underlying S = 0 optical model with 
deformation corrections calculations (solid curves) in Figs 3 and 4. In Fig. 3, 
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Fig. 4. Rotation and depolarisation parameters obtained 
from the same calculations giving the cross section and 
analysing powers displayed in Fig. 3. 
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the cross sections and analysing power results are compared with the data of 
Seestrom-Morris et al. (1984). Clearly the S = 1 components have only a minor 
effect upon predictions of these measurable properties and the deformation 
corrected, nonrelativistic optical model calculations are in very good agreement 
with the data. But there are other measurables and of the complete set, the 
rotation parameters R(O) and R'(O) and the depolarisation parameter D(O) are 
likely candidates to show spin transfer effects. The predictions of these three 
parameters are shown in Fig. 4. For these results only the depolarisation 
parameter shows any sizeable variation with spin character since only the 
S = 1 components give a variation with momentum transfer from the value 
-1. It does so noticeably only at momentum transfer values for which the 
differential cross sections have minima and so a measurement of the required 
accuracy may be quite difficult. However, the largest variation occurs at the 
very first minimum of the cross section and careful measurements of such 
data are feasible. 

In summary, there appears to be a definite need to vary the radial 
distributions of the conventional nonrelativistic optical model potential, which 
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can be attributed to relativistic corrections and/or deformation of the ground 
state density. But it seems unlikely that nonzero spin transfer contributions 
will have much influence in analyses of measurable data (at least if the target 
is unpolarised). Nevertheless, one may entertain hope that the depolarisation 
parameter will directly reflect the spin 1 attributes in Be scattering. 

References 
Amos, K., Berge, L., and Kurath, D. (1989). Phys. Rev. C (in press). 
Haider, W., Kobos, A. M., and Rook, R. J. (1988). Nucl. Phys. A 480, 1; 20. 
Love, W. G., and Franey, M. A. (1981). Phys. Rev. C 24, 1073. 
Millener, D. J., Sober, D. I., Crannell, H., O'Brien, J. T., Fagg, L. W., Kowalski, S., Williamson, C. F., 

and Lapikas, L. (1989). Phys. Rev. C 39, 14. 
Murdock, D. P., and Horowitz, C. J. (1987). Phys. Rev. C 35, 1442. 
Raynal, J. (1987). Phys. Lett. B 196, 7. 
Raynal, J. (1988). Proc. Workshop on Applied Nuclear Theory and Nuclear Model Calculations 

for Nuclear Technique Applications (ICTP: Trieste). 
Rikus, L., Nakano, K., and von Geramb, H. V. (1984). Nucl. Phys. A 414, 413. 
Seestrom-Morris, S. J., Franey, M. A., Dehnhard, D., Holtkamp, D. B., Boudrie, R. L., Amann,]. F., 

Idzorek, G. c., and Goulding, C. A. (1984). Phys. Rev. C 30, 270. 
von Geramb, H. V., et al. (1988). Fifth Int. Symp. on Nucleon Induced Reactions, Smolenice, 

Czechoslovakia. 

Manuscript received 30 June, accepted 6 September 1989 




