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Abstract 

Previously the functional integral formulation of quantum chromodynamics <QCD) has been 
transformed into one involving colour singlet and colour octet bilocal fields describing qq 
states. While useful in determining the effective action for the observable colour singlet 
mesons, this formulation is of no use in determining the effective action for the baryon 
states. Here we show that there exists an alternative bosonisation of QCD in which the 
colour singlet meson fields and the colour triplet diquark fields form a complete set of 
functional integration variables. These diquark fields play an essential role in the colour 
singlet baryon states. 

1. Introduction 

In quantum chromodynamics (QCD) the hadrons are understood as quark 
bound states bound by gluon exchange. Thus while the fundamental quantum 
field theory (QFT) is defined in terms of quark and gluon fields, the observables 
(i.e. the hadrons) correspond to fields in another QFT which, for a long 
time, has been known to describe low energy hadronic physics very well. 
Hence one of the most fundamental problems in QCD is to discover if and 
how the quark-gluon QFT may be transformed into a meson-baryon QFT. The 
meson-baryon action in that QFT must specify meson and baryon masses 
and their various coupling constants, and all of these parameters must be 
determined by the fundamental quark-gluon dynamics. There has in fact been 
considerable progress in the study of this problem, particularly as far as the 
meson sector of the hadronic QFT is concerned. Early studies of this were 
by Kleinert (1976) and Schrauner (1977), but these ignored colour and the 
baryon sector. In Roberts and Cahill (1987), an extension of Cahill and Roberts 
(1985), it was shown how QCD could be formally transformed, using functional 
integral methods, into a QFT involving bilocal fields describing colour singlet 
(Ie) and colour octet (Be) qq states. This formulation is ideal for studying the 
realisations of chiral symmetry in QCD. Praschifka et al. (1987a, 1987b) and 
Roberts et al. (1988, 1989) have shown that the bilocal Ie qq fields may be 
expanded in terms of local fields which correspond to the meson fields. This 
was demonstrated by deriving the effective action for these meson fields. The 
meson masses occurring in this effective action were shown, in Cahill et al. 
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(1987), to be same as those that arise in a Bethe-Salpeter description of qq 
bound states. This illustrates the general rule that the powerful functional 
methods lead very efficiently to the same results as would follow from older 
QFT methods. 

However the above bosonisation of QCD in terms of Ie and 8e bilocal 
bose fields suffers from one major deficiency, and that is that the 8 e fields 
correspond to unbound qq states. This is because gluon exchange in such 
states is repulsive (this is most easily seen in Cahill et al. 1987). Hence 
the 8 e boson fields do not permit any sensible expansion into local fields. 
Thus it has been completely unclear up to now as to what should be done 
with these unphysical bose fields. The purpose of this paper is to show that 
there is an alternative bosonisation of QCD. In this bosonisation the bilocal 
fields that arise are only the Ie qq fields that arose in the first bosonisation 
and 3e qq diquark fields (and their 3e qq antimatter partners). This result is 
important for two reasons. First, because gluon exchange between q and q in 
3c states is attractive (see Cahill et al. 1987), their exists, as we will discuss 
here, an expansion of the bilocal diquark fields into local diquark fields, with 
each such local diquark field describing a particular diquark bound state. The 
masses of these states will be seen to be identical to those derived in Cahill 
et al. (1987) using Bethe-Salpeter techniques. Second, the 3e qq states playa 
fundamental role in baryon structure because baryons in QCD are three quark 
colour singlet states and hence [see Cahill et al. (1987), (1989, present issue 
p. 129)] any two of the quarks are necessarily in 3e states. Hence the diquark 
boson fields that arise in the new bosonisation of QCD are the components 
of the baryons, and we are clearly on the path to a meson-baryon effective 
action description of QCD. Interestingly the diquark 6 e states, for which gluon 
exchange is repulsive, do not arise in the new bosonisation. Hence it could 
be said that we have replaced the unphysical 8 e qq sector by the physical 3e 

and 3e diquark sector. 
In Section 2 we derive the new bilocal meson-diquark bosonisation of QCD, 

and in Section 3 we extract the effective action for, as an example, the f = 0+ 
diquark states, which naturally introduces the form factors for these bound 
states and which ensure the absence of any divergences in the integrations 
which determine the parameters in the action. Section 4 summarises the 
results. The proof of a determinant identity is given in the Appendix. 

2. Bilocal Fields 

In this section we show how the generating functional of QCD, which involves 
functional integration over quark and gluon fields may be transformed to one 
involving bilocal meson and diquark fields. The transformation essentially 
amounts to a change of variables in the functional integrations, but importantly 
to a set of variables which is far more useful in analysing the low energy 
states of QCD-the hadrons. 

The generating functional for QCD in Euclidean metric is 

ZU~J7.'7] = 

f DqDqnDA~.1rlA~lexp( -S[A~.q.ql+ f d4X(l7q+q'7+J~A~)). (1) 
aJ1 
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where 

and where j~, f/, I] are external sources and .1r[AJ is the Faddeev-Popov 
determinant. When the sources are put equal to zero then 

Z(T) = Z(O) L exp(-En T ), 
n 

where T is the Euclidean time interval and {En} is the energy spectrum of QCD. 
Here we consider massless quarks and as well as the local colour symmetry 
the action then has global chiral symmetry G = UdNr) ® UR(Nr). As shown in 
Roberts and Cahill (1987) (1) may be written as (we may now put j = 0) 

where 

(3) 

W UaJ ~ f d4 d4 1 Dal ... an ( ·J:)nn jai ( ) 
I 11 = nL=3 Xl··· xni 111 ... l1n XI··.xn , '" l1i Xi • 

n. i=l 

Here WI involves the n ~ 3 point connected gluon Green functions. To simplify 
the presentation of the following we shall use the gauge in Cahill and Roberts 
(1985) in which the n = 2 point function in (3) is expressed as 

and the case of more general gauges may be easily determined by the 
application of the results of Roberts and Cahill (1987). 

It is at this stage that the present analysis differs markedly from the earlier 
bosonisation, for we now perform a Fierz rearrangement of the quartic part 
of (3) which introduces the Grassmannian structures which ultimately lead to 
the meson and diquark states of QeD. 
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Consider the following Fierz spin identity: 

I.I.JI -Ka Ka.{Ka}-{I· i 1.1 i 1.1 } Yrs¥tu- ru ts' - ,IYs,-;,nY,-;,nYYs. 

Using the following properties of the charge conjugation matrix C = y2y4; 

where T denotes the transpose, we also obtain, 

For the generators of the (Ne = 3) colour group we have (Cvitanovic 1976) 

which on using 

3 

L €pocy€pf38 = 8 ocf38Y8 - 8 oc88 yf3, 
p=l 

we obtain the Fierz colour identity 

We also have the Fierz flavour identity 

(4) 

(5) 

(6) 

(7) 

for NF = 3 flavours where Ta = ii\a are the generators of the SU(3) flavour 
group, and 

(8) 

where {sm, m = 1, ... 6} are the 6 symmetric 3 x 3 matrices given in (A3). 
Anticommuting the Grassmann elements in the quartic part of (3) and using 

the Fierz identities (4)·(8), we obtain 

(9) 
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where qC = Cq , if = qC, EP is a colour matrix with elements Epex/3, and where 
Dirac, colour and flavour indices are suppressed. It is straightforward to 
check that in the quartic terms in (9) q(y)KafCq(x) are Ic qq fields with the 
flavour (IF or SF) representations determined by FC, while q(y)cTKaEPHf q(x) are 
3c qq fields with the flavour (3F or 6F) representations determined by the Hf. 

These results follow from the colour and flavour representations of the quark 
fields. The (integral) spin of these boson fields is determined by the Ka. It is 
very significant to the physics of QeD that it is only these qq and qq (and 
their qq conjugate) colour reoresentations which arise from the above Fierz 
rearrangements. 

It is convenient to introduce the notation {M~} = {JjKafC} and {M:} = 

{iJ~KaEPHf} for the various tensor products in (9). We now extend the usual 
procedure of producing the quartic terms in (2), in which S[q, q] has the form 
of (9), by means of functional integrals for bilocal fields, and (2) can be written 
(up to unimportant factors) 

Z[O, fj, 17] = exp(Wd f DqDqD:BD1J*D1J exp(f f [ -q(x)y.a84 (x - y)q(y) 

:Be (x, y):Be (y, x) 

2D(x- y) 

1J¢(x, y)1J¢(x, y)* 

2D(x-y) 

(10) 

where :Be (x, y) = :Be(y,x)* are 'hermitean' bilocal fields (* denotes complex 
conjugation). The functional integrations over 1J and 1J* denote integrations 
over the real and imaginary parts of 1J. To confirm the results of the above 
bilocal functional integrations it is necessary to expand the exponential in 
powers of the Grassmann elements before doing the integrations, and then 
resumming the resulting series, which gives the exponentiated quartic terms 
in (9). 

The integrations over the Grassmann elements may now be performed (see 
Berezin (1966) for the general theory of such integrations) and we obtain 

(-J J :Be(x,y):Be(y,x) - J J 1J¢(x,y)1J¢(x,y)* 1 J 8-r8T) (11) 
x exp 2D(x _ y) 2D(x _ y) + 2 J , 
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where e = (ry,_1]T), and 

-r-1['B 'D 'D*] = (-'D C-IT) 
J " -C-1 -'D ' 

C-1(x,y, ['BD = y.884 (x - y) + 'B(x,y), 

) li( )M~ 'B(x,y = 'B x,y 2' 

The anticommutation of the Grassmann elements in (l0) causes the matrix 
valued bilocal fields 'D(x,y) and 'D(x,y) to be completely antisymmetric (including 
the two space-time variables). This ensures that, when the local diquark fields 
are introduced in Section 3, the diquark states satisfy the Pauli exclusion 
principle. Then, for example, for S-wave states the 3f diquarks must have 
spin 0 whilst the S-wave 6f diquarks are spin 1. 

Using the identity (AI) from the Appendix we may rewrite the determinant 
in (11) as 

and (1I) may be written 

Z(T) = J D'BD'DD'D* exp( TrLn(C['Br1) + i TrLn(1 + C['B]'DC['Bf 'D) 

J J 'Bli'Bli J J 'Dcf>'Dcf>t - ) - -W - 2D - R['B, 'D, 'D] , (12) 

where 

Equation (12) is the main result of this work, and shows that (1), which 
described QCD in terms of the fundamental quark and gluon variables, may 
be reformulated as a functional integral over colour singlet qq and colour 
triplet qq bilocal fields. That is, once the various n-point gluon propagators 
are known the quark degrees of freedom of QCD may be completely replaced 
by the above bilocal fields. The effective action defined by (12) is similar 
to that in Cahill and Roberts (1985) and subsequent papers, but differs in 
the important point that C only involves Ie fields and not 8 e , and in the 
presence of extra terms containing 3e and 3e diquark fields. We show later 
how local fields emerge from the bilocal fields, but the very important point 
is that diquarks are now shown to play a fundamental role in the rigorous 
reformulation of QCD. Of course they will ultimately emerge as constituents 
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of the Ie baryons. We note that if we neglect the 'R contribution to the 
effective action then we obtain the global colour symmetry model (GCM) of 
the meson-diquark bosonisation of QCD. The essence of this model is to 
compensate the neglect of 'R by using an effective gluon 2-point function. 
The features of the GCM are that it is Lorentz and chirally invariant, includes 
the colour algebra and models quark confinement. 

3. Local Diquark Fields 
The fundamental result (12) is that QCD may be written in terms of colour 

singlet and colour triplet boson bilocal fields. As shown before for the mesons 
each bilocal field corresponds to an infinite set of local fields, each with its 
own mass and each corresponding to one observable or physical meson. We 
shall illustrate the physical content of (12) for the diquarks by extracting the 
action for the scalar diquarks and hence finding the mass functional for these 
states. Consider the local field expansions of the bilocal diquark fields 

vcf>(x,y) = vt(x - y) + L dt(x ;r )ft(x - y), 
k 

(13) 

where {rt(z)} is a complete set of real functions (arbitrary at this stage) and 
the local diquark fields dt(w) are considered the expansion coefficients. The 
vt(x - y) are the translation invariant minima of the action for the diquark 
bilocal fields in (12), which would be diquark condensate fields if they are 
non zero. We shall not consider them here. 

Let us now consider one specific diquark state-the jP = 0+ scalar, which 
is important for the nucleons. This state corresponds to the M~ for which 
KQ = irs and Hf = . ./ii€f. To second order the action for this field is, from (12) 
(and neglecting the 'R contribution) on expanding the functional Ln, 

in which we suppress the flavour and colour superscripts Md and on d and 
d* (the d fields E 3f and 3e representations). Extracting the long wavelength 
parts of this action (see the Appendix of Cahill and Roberts (1985) for the 
method) we obtain 

So[d*,d] = f2Jn f d4x(a~d*(x)a~d(x)+M6[nd*(x)d(x»)+... (15) 

In Cahill et al. (1987), using the equivalent Bethe-Salpeter integral equation 
formulation, it was also shown there that the diquark form factor is determined 
by the minimisation c5M[n/c5r = O. In this way, in general, the complete set of 
f's in (13) is to be determined. Because the mass spectrum of these various 
states is rapidly increasing, the expansion in (13) may be truncated after only 
a few terms if we are interested only in low energy hadronic phenomena. 
By modelling the gluon 2-point function it has been possible to study the 
scalar diquark state (Praschifka et al. 1988a) and from that study emerged 
the discovery of the cause of the quark constituent mass effect. In fact the 
ratio of the constituent quark mass to the diquark mass was found to be ~ i 
suggestive of weak binding, whereas the quark propagators were confining. A 



168 R. T. Cahill et al. 

comprehensive study of the constituent quark mass effect in diquark states, 
as well as the meson states, was reported in Praschifka et al. (1988b). 

4. Summary 
We have shown here that the generating functional for QCD, initially defined 

in (1) in terms of quark and gluon fields, may be rewritten, in (12), in terms 
of colour singlet and triplet bilocal boson fields. These bilocal fields may be 
expanded in terms of local fields and, as shown here and elsewhere, describe 
the physical colour singlet mesons and the diquark components of the colour 
singlet baryons. As before once the various gluon n-point functions are known 
this new formulation allows a divergence free and very practical means of 
determining low energy hadronic physics from QCD. Again it is very significant 
that it is only those states needed for colour singlet mesons and colour singlet 
baryons that arise in this formulation. The other colour states, which from a 
group theory point of view could have been present, i.e. those corresponding 
to unbound and hence unphysical Be qq and 6e qq states, do not occur. 

It will be shown elsewhere that this bosonisation gives rise to a functional 
integral formulation of the baryon states in QCD, leading to approximations 
for baryon structure, mass spectrum and couplings to mesons, i.e. the basics 
of nuclear physics. 

It is also possible to repeat the argument (Cahill et al. 1988) against the 
Skyrmion model in which baryons are modelled as topological solitons of the 
Euler-Lagrange equations of the purely mesonic sector of the action in (12). We 
see that to derive the Skyrmion model we must arbitrarily discard the diquark 
part of the effective action and, as well, judiciously select only certain of the 
long wavelength terms of the meson sector so as to ensure stability of these 
solitons. However it is becoming much more definite that baryons are three 
quark states and then any two of the quarks are necessarily in a 3e state, and 
that these quark pairs are most easily understood in terms of their bound 
states-the diquark states. We refer readers to Fredriksson and Jandel (1982) 
and Anselmino et al. (1987) for discussions of various aspects of diquarks and 
to Skytt and Fredriksson (1988) for a compilation of the diquark literature. 
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Appendix 

(a) We first show that for n x n matrices A,B,C and D we have the identity 

Det (~ ~) = Det(CB)Det(Cl DB-1 A-I). (AI) 

We have the well known identities, for n x n matrices I,a,a' and b, 

Det(~, ~) = Det(! :) = Det(b). 

Now 

where d = a' a + b2 • Thus, taking the determinants of both sides, we get 

Det(b2) = Det(d - a' a) = Det (~, : ) . (A2) 

The decomposition 

( A B)=(A 0)(1 A-IB) 
CD 01 CD' 

and (A2) then allow us to write 

Det (~ ~) = Det(A)Det(D - CA -1 B) 

= Det(A)Det(BDB-1 -BCA-1) 

= Det(A)Det(B)Det(C)Det(Cl DB-1 - Kl), 

which gives (AI). In Section 2 identity (AI) is used for functional determinants 
which arise from the Grassmannian integrations of the quark fields. 

(b) The elements of the matrix set {sm, m = 1, ... 6} are encoded in the relation 

6 1 (a1J2 a4 as) 
~ amSm = J2 a4 a2J2 a6 . 

m-l as a6 a3J2 
(A3) 

Alternatively from (8) we may obtain (c. D. Roberts, personal communication 
1988) 

{Hf,( = 1, ... , 9} = {FC,c = 7,5,2,0,1,3,4,6, 8}. 
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