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Abstract 

The most widely used formalisms to describe anharmonicity and disorder in crystallographic 
structure refinements are presented and their properties are reviewed. Their limitations are 
discussed and their range of applications is indicated. A comparative study on the lattice 
anharmonicity in Zns using different models is presented. The importance of measuring Bragg 
intensity data sufficiently far in reciprocal space is stressed. Some indications concerning the 
interpretation of the results are given and the decorrelation of electronic and atomic deformations 
is briefly discussed. 

1. Introduction 

The progress made over the last few years in establishing both experimental and 
analytical procedures to obtain high quality Bragg intensity data allows one to detect 
finer and finer details of atomic and electronic density distributions in crystalline 
materials. The usual spherical atom form factors to describe the electron distribution 
around an atom, as well as the harmonic description of atomic thermal motions, is 
less and less commensurate with the quality of Bragg intensity data. This has been 
widely recognised and a variety of formalisms is available to describe deviations of the 
atomic and electronic densities due to anharmonicity or atomic disorder and charge 
redistributions respectively. In this paper we will attempt to discuss the treatment 
of anharmonicities and disorder in atomic density distributions and compare some of 
the more widely used formalisms. 

The gaussian atomic probability density distributions resulting from harmonic 
thermal motions are modified to a variable degree by intrinsic anharmonicity (especially 
at higher temperatures), by curvilinear motion due to molecular or atomic vibrations 
or by static and dynamic atomic disorder. Most of the formalisms are in fact 
suitable to deal with all the aforementioned aspects of non-harmonic deformations. 
A distinction between e.g. intrinsic anharmonicity and atomic disorder is not always 
easy to make and usually has to be done via a study of the temperature dependence. 
In the following we will therefore use the term non-harmonicity in a general sense 
meaning any deviation of the atomic probability density function (pdt) from a gaussian 
distribution. 

• Paper presented at the International Symposium on Accuracy in Structure Factor Measurement, 
held at Warburton, Australia, 23-26 August 1987. 

0004-9506/88/030369$03.00 



370 w. F. Kuhs 

2. Formalism 

The formulation of a general description of non-harmonic thermal motion should 
have a sound physical base built into a manageable mathematical apparatus. The lattice 
dynamical expression of the Debye-Waller factor DW(h) describing the reduction of 
Bragg intensities due to thermal motion is given in the unit cell approach as 

DW(h) = eXP(-!N- l i mil ~ 121Th.e(kuq)12~(q)/CIJ](q»), (1) 
k }q 

i.e. the exponential of all lattice modes of vibration with polarisation e, energy E and 
frequency CIJ of all n particles k in the unit cell weighted with their mass m and the 
number of unit cells N in the crystal. Although DW(h) is the quantity one observes 
in a Bragg scattering experiment, there is no way to extract unique information about 
the lattice modes by evaluating this expression. Moreover, the double summation is 
impracticable for any more general application; therefore the Debye-Waller factor is 
usually split into the different atomic contributions and no longer defined in a simple 
way. One obtains the atomic temperature factor 

Tk(h) = exp( -!N-lmi1 ~ 121Th.e(kljq)12~(q)/CIJ](q»). (2) 

Furthermore, the lattice modes give rise to an actual distribution of displacements 
u, the thermodynamic average of which defines the atomic temperature factor 

Tk(h) = (exp( -21Ti h. Uk»thermodynamic. (3) 

Assuming that the electron cloud follows instantly the nuclear displacement, which 
seems well justified at least for the inner electrons and small displacements, this 
expression holds in the same way for X-ray and neutron Bragg scattering experiments. 
What is lost by the introduction of independent atoms (Einstein oscillators) is the 
direct information on the correlated motion of two atoms. However, the interaction 
modes are contained in the displacement tensors U and affect the magnitude of their 
components (Scheringer 1972): 

U = E. N- l 1: L -l(q), 
') q 

(4) 

where L is the (not mass adjusted) dynamical matrix. Thus, information on the 
interatomic repulsions and attractions is accessible by an analysis of the displacement 
tensors of second and higher order. 

The thermodynamic average in (3) is usually expressed in terms of a potential, 
which is, as a consequence of the approximations made to arrive at (3), a one-particle 
potential (OPP) or isolated atom potential (lAP). In the classical limit one obtains 
the atomic temperature factor as a mean over all displacements U of the atom k in 
the potential V, each displacement weighted by its thermodynamic probability: 

Tk(h) = f exp(- Vk/ks n exp(21Tih. Uk) d3 u / f exp(- Vk/ks n d3 u. (5) 



Anharmonic Temperature Factor 371 

Assuming that in a quantum system the potential (including its anharmonic 
components) remains unchanged, the corresponding pdf may be obtained by a 
perturbation calculation of the (anharmonic) OPP density matrix (Mair and Wilkins 
1976; Kara and Merisalo 1982). 

There is a second more direct access to a general non-harmonic temperature factor. 
It has been proved (Marshall and Lovesey 1971) that the structure factor for any form 
of the atomic density distribution in a crystal is the Fourier transform of the average 
density in the unit cell. This means that one may express the atomic temperature 
factor as the Fourier transform of the averaged atomic probability density pdf k: 

Ti h) = J pdfiu)exp(27Ti h. Uk) d3 u. (6) 

The two expressions (5) and (6) for the atomic temperature factor are starting 
points for a generalised treatment of non-harmonicity in thermal motions. Formalisms 
derived from (5) we call potential-based, in contrast to probabilistic formalisms derived 
from (6). One may expect that the potential-based formalisms are more closely related 
to quantities of physical meaning and indeed this is found to be the case. On the 
other hand, the description of statically disordered systems in terms of an anharmonic 
potential certainly means over-interpreting the results and a purely statistical approach 
seems to be more appropriate in this case. Ultimately there are ways of transforming 
the results of a potential-based formalism into a probabilistic description and vice 
versa, so that there is little to choose between the two approaches on general grounds. 
Rather, one has to be concerned with the limitations of any given formalism for the 
specific problem under consideration, and this will be discussed in Section 4. 

The determination of non-harmonicity in atomic thermal motions usually involves 
a crystallographic least-squares refinement procedure. Therefore, a parametrisation 
of the non-harmonicity is needed, which furthermore should allow the introduction 
of constraints in order to obey the point group symmetry of the atom position under 
consideration. The parametrisation of (5) is usually obtained via an expansion of the 
potential in powers of the displacement u: 

VgnrJ(u) = Vhar(u)+ Vj(u)+ 1-4(u)+ .... (7) 

This approach has been chosen by Willis (1969) and formulated for cubic point 
group symmetries. Recently (Tanaka and Marumo 1983) this formalism has been 
generalised to treat anharmonicity up to fourth order in any point group symmetry:· 

v. () 0 Ok ° °kl 
gnrJ U = Vhar(U)+'YijkU'u'U +8ijkI U'u'u U, (8) 

with 'Y ijk and 8 ijkl being the third and fourth order anharmonic potential parameters 
which are defined in an orthogonal coordinate system. The evaluation of the 
corresponding temperature factor involves the solution of Fourier integrals. Another 
formulation has been suggested by Scheringer (1985 a), which circumvents the tedious 

• Here and in the following the repeated index summation rules are assumed. Note that the 
index k for the atom under consideration has been dropped, since an lAP situation is assumed. 
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calculation of those integrals. The temperature factor is expressed as 

Tgnrl(h) = Thaih){ 1 -e Aijk (Tijk(h) _i4 Aijkl (Tijkl(h)} , (9) 

where Gijk are Hermite polynomials of the scattering vector h, which are contravariant 
in the crystal base vectors, while Aijk and Aijkl are the third and fourth order tensor 
components defined in the crystallographic axis system and used to describe the 
anharmonic potential; they may be transformed into the conventional anharmonic 
potential parameters 'Y and a. 

The parametrisation of (6) is usually done via a differential expansion of the 
gaussian probability density function: 

pdfgnr1(u) = pdfhar(u){ 1- C iD i+(1/2 !)CijDiDj 

""k ""kl -(1/3 !)C1J DiDjDk +(1/4!)C'J DiDjDkDI + ... ), (10) 

where Ci... are tensorial coefficients and D denotes a differential operator. The 
function is expressed in terms of Hermite polynomials, which are covariant in the 
crystal base vectors, 

(-Drpdfhar(u) = Hr(u)pdfhar(u). (11) 

Two formulations of the general pdf given in (10) are known in statistics and both 
have been applied to describe non-harmonicity in the thermal smearing. To minimise 
correlation problems in a least-squares refinement, the non-harmonic first and second 
order terms are omitted. Johnson (1969) suggested the use of the Edgeworth (EW) 
expansion (up to fourth order): 

ijk 
pdfEw(u) = pdfhar(u){1 +(1/3 !)'YEW Hijiu) 

+(1/4!)a~~ Hijk/(U) +(1O/6!)'Y~~'Y~W Hijklmiu)}. (12) 

""k ""kl The terms 'Y~w and a~w are the cumulants of rank 3 and 4. If all terms up to infinity 
are included the Edgeworth expansion is not different from the Gram-Charlier (GC) 
expansion, which has been preferred for reasons discussed later by several authors 
(Zucker and Schulz 1982; Kuhs 1983; Scheringer 1985b). The Gram-Charlier series 
(up to sixth order) is given as 

ijk 
pdfoc(u) = pdfhar(u){1 +(1/3 !)'Yoc Hijk(U) 

+(1/4 !)ag~ Hijk/( u)+(1/5 !)Eijklm Hijklm( u) 

+(1/6!),g~lmn Hijklmn(U)}. (13) 

·"k "·kl 
The terms 'Y&: and agc are the quasi-moments of rank 3 and 4, which are related 
to the cumulants by 

ijk ijk 
'Yoc = 'YEW' 

'£;ijkl _ '£;ijkl 
Uoc - UEW' 

,g~/mn = ,~~mn+(10/6!)'Y~~'Y~W. (14) 
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The Fourier transform of (13) is known exactly and given by 

TGC<h) = Thar(h){ 1-(4/3)1T3i 'Yg~ hi hj hk 

+ (2I3)1T48gg hi hj hk hi +(4/15)1T5iEg~/m hi hj hk hi hm 

_(4/45)1T6,g~/mn hi hj hk hi hm hnl, 
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(15) 

while the Fourier transform of (12) is exact only under certain conditions concerning 
the relative importance of the terms in (11) (Kuhs 1983): 

TEW(h) = Thar(h) exp{ -i 'Y~;" hi hj hk +8~;; hi hj hk htl . (16) 

This is the first reason why the Gram-Charlier series should be preferred over the 
Edgeworth series for general applications. Both the EW and the GC series are valid 
in any crystal metric. The symmetry restrictions of the thermal tensor components 
are tabulated in the literature (Johnson and Levy 1974; Kuhs 1984). 

Yet another approach to describe non-harmonicity in thermal smearing exists: the 
Fourier-invariant (FlY) formalism as proposed by Kurki-Suonio et al. (1979). It 
is based on the Boltzmann function in a similar way to the other potential-based 
formalisms, but it uses symmetrised harmonic oscillator wavefunctions instead of the 
potential expansion given in (7). The expansion in cartesian coordinates reads in real 
space as 

pdfFIV(U) = (1/ P)pdfhar(u){ 1-'YfJ~ Hijiu) +8fJ~1 Hijk/(U) 1 , (17) 

where P is a normalisation factor cOntaining all even order non-harmonic terms. This 
normalisation assures that the second order terms (contained in pdfhar) maintain their 
usual meaning and are not merely second order terms in a series expansion, as are 
the quadratic terms in the EW and GC expansion. Due to the Fourier invariance the 
expression for the temperature factor assumes a similar form: 

TFIV(h) = (1/P)Thar(h){1-'YrJ~ Hijk(h)+8fJ~/Hijk/(h)1. (18) 

This formalism is valid for any crystal metric as long as a local cartesian coordinate 
system is used as reference for the oscillator eigenfunctions. 

3. Limitations 

There is a series of limitations to all the formalisms discussed in Section 2. 
Some of them are of a fundamental nature, while others are imposed by more 
practical considerations. The approximation e:- x ::::: 1- x made in all potential-based 
formalisms limits their validity to relatively small non-harmonicities and makes them 
less suitable for the description of disordered systems., There is some ambiguity in the 
Fourier transformation of the OPP formalism, which means that a unique formulation 
of the corresponding temperature factor cannot be given (Mair 1980; Scheringer 
1985a). The relative importance of the higher order terms determine whether one 
or another formulation is preferable, which makes a straightforward interpretation 
difficult. The exact Fourier-transformability certainly has some advantages in the 
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interpretation of results obtained in a crystallographic least-squares refinement. The 
ambiguity in the Fourier transform of the EW series has been mentioned in Section 
2. Even if in some cases the EW temperature factor expression (16) gives a better fit 
to the data than any other formalism (and there is some evidence that under special 
circumstances this could be so), one is left with only an approximate probability 
density function after the Fourier transformation (12). The exact Fourier transforms 
are known for the GC series (equations 13 and 15) and the FIV formalism (equations 
17 and 18). 

Some further important restrictions are found when one analyses the convergency 
behaviour of the different series expansion. It has been shown by Scheringer (1985a) 
that series expansions of the Boltzmann function are always divergent. This restricts 
the range of interpretation to the lower excited levels ofthe OPP. Similar divergencies 
may occur in probabilistic formalisms when one is trying to calculate the OPP from 
the obtained \pdf via the Boltzmann function. * Certain combinations of parameters 
give a slightly negative pdf with a resulting divergency in the OPP. Although in 
these cases the pdf is not defined in a mathematical sense (a pdf must be integrable 
and everywhere positive), it still may form a good approximation to the true density 
distribution in the crystal. Often slightly negative values of a pdf are encountered in 
regions of low atomic density where the sensitivity of Bragg intensity data is small 
anyhow. If necessary, more rigorous conditions on the pdf or the potential (global 
positivity or boundness) may be imposed by fitting some appropriate function to the 
result obtained from a crystallographic experiment. One should note that even if no 
divergencies occur some spurious features may be obtained at larger displacements. 
Any interpretation therefore has to be restricted to a range commensurate with the 
extent and quality of the Bragg intensity data and to thermal displacements not too 
far from the atomic positions. 

Much more problematic are divergencies encountered in reciprocal space 
expressions, because there they affect directly the result of the least-squares refinement 
procedure. It should be stressed that the Fourier transform of the EW series due to 
its exponential form is always divergent; an example of this is shown in Fig. 1. The 
extension of data to higher scattering angles will increasingly invalidate the results 
obtained. Moreover, the stronger the non-harmonicities, the lower are the values 
of sin 8/A at which the divergency will occur. This gives a very strong argument 
for abandoning the use of the EW series to describe non-harmonic thermal motions. 
Moreover, the exponential form assumed by the Fourier transform of the EW series 
(16) does not allow highly disordered systems to be modelled, because the temperature 
factor T(h) of such a system is negative at certain scattering angles h. On the other 
hand, the Fourier transform of the GC series (15) is quite flexible in its ability to 
reproduce the features of a disordered system, as shown in Fig. 2. Specific models 
are necessary in the case of the potential-based formalisms to model systems with 
pronounced disorder (Mair 1983a, 1983b). 

Apart from the limitations inherent in the formalisms, there are restrictions imposed 
by the quality and the extent of the Bragg intensity data. The relative changes of the 
pdf (or the potential) at small displacements are a few per cent of the total density in 
most cases. At higher displacements the relative changes become increasingly greater, 

• In the case oflow temperatures (relative to the Debye temperature), the corresponding quantum 
expression has to be used. 
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Fig. 1. Divergent temperature factor (Fourier transform of the Edgeworth series) in ZnS at 
1300 K along the [111] direction as a function of sin e / A. Shown are the harmonic part, the total 
(non-harmonic) temperature factor and the non-harmonic contribution (exaggerated by a factor 
of 10). 
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Fig. 3. Non-harmonic contribution to the total temperature factor (Fourier 
transform of the Gram-Charlier series) of the Cu atom in the solid ionic 
conductor CU6PSsI along the conduction channel as a function of sin II II.. 
Shown are the third, fourth and fifth order contributions. The positions of the 
maximal modifications are marked as hn' as calculated from equation (19). 

but at the same time the Bragg intensity data become less sensitive. The greatest 
absolute changes in the reciprocal space expression occur at some mathematically 
well-defined value of the scattering vector. In order to possess enough sensitivity in 
the refinement of terms of order n one should measure at least out to a wave vector h n 

whose value increases as the order n of the non-harmonic expansion increases. The 
following expression holds for the GC series, but is also a reasonable approximation 
for other formalisms: 

1 3 1 2 1 
h n = ni(2'l7ri(2In2)i<u )-i, (19) 

where < u2) is the harmonic mean-square displacement of the atom and direction 
under consideration. The position of hn together with the absolute non-harmonic 
modification is shown in Fig. 3 for the case of a strongly non-harmonic system. Note 
that a combination of higher order terms of different order could shift the value of 
hanh (the maximum of the total anharmonic modification) to lower scattering angles 
or create even two extrema at different angles. Many attempts to refine higher order 
terms in atomic probability densities appear to have failed because the data set was 
not measured far enough in reciprocal space, rather than due to deficiencies in the 
formalism or the quality of the data. 

Often the large number of non-harmonic terms has been considered as a drawback 
to all the formalisms. However, the increased dynamic range of modern X-ray and 
neutron diffractometers in general allows a sufficient number of independent data 
to be collected by going to smaller wavelengths, and thus to over-determine the 
problem by a factor of 5 to 10 even when going up to fourth order terms. Moreover, 
insignificant terms are usually set to zero and not varied in the final refinements. 
Likewise, 'chemical' constraints on the different tensor components could be easily 
introduced and the number of freely refined parameters reduced in this way. 
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4. Interpretation 

In order to draw the appropriate conclusions from the result of a refinement 
including non-harmonic terms, the flexibility of the underlying models and their limits 
must be known. The discussion in the preceding section has shown that results 
obtained with the EW formalism have to be considered with care. Spurious results 
are easily obtained (especially when fourth order terms are included) and in general 
meaningful non-harmonic parameters are derived only for moderately non-harmonic 
systems. 

The flexibility of all models discussed in Section 2 is considered to be sufficient 
at least for small deviations from harmonicity. The interplay of harmonic and 
non-harmonic parameters allows for a widely variable shape in the resulting densities 
or potentials. If necessary the flexibility may be increased by the introduction of 
fifth and sixth order terms (especially in disordered systems). Usually, however, the 
inclusion of terms up to fourth order is sufficient to describe the higher order moments 
of atomic displacements within the experimental accuracy. 

The consistency of results obtained with different formalisms give some further 
indication of the significance of the results obtained. Comparisons have been published 
by several authors (Moss et af. 1980; Larsen et af. 1982; Zucker and Schulz 1982; 
Kuhs 1983). There are clear differences in the quality of the fits and in the densities 
(or potentials) obtained. A detailed discussion and comparison is beyond the scope 
of this paper. As an example only, some results obtained for ZnS are given in 
Table 1 and shown in Figs 4-6. These results should not be generalised, although 
they confirm once more the impression (Zucker and Schulz 1982; Kuhs 1983) that 
the best fit to the data is obtained by employing the GC formalism. In the rare 
cases where the EW formalism was more successful (especially at high temperatures), 
the inclusion of sixth order terms (which are implicit in the EW series) in the GC 
series led to an equally good or even better fit. The remaining slight differences 
(see Figs 4-6) in the results could indicate some inadequacy in some (or all) of 
the models, which however in many cases is much smaller than the magnitude of 
the non-harmonic deformation. It is worth noting that convergency problems were 
encountered in the refinements employing the FIV formalism. They mainly arise 
because the normalisation factor P (see equation 17) is a function of the non-harmonic 
even order terms; consequently, the corresponding derivatives are very lengthy and 
were calculated only in an approximate way by setting P equal to 1. 

An important test has to be performed before any interpretation of the result 
is attempted--even when the refined terms seem to be significant-because strong 
correlations between parameters could lead to spurious results. The pdf must be 
positive everywhere; negative regions are tolerable only for very large displacements. 
Likewise, the potential obtained should not diverge or, if it does, only for large 
displacements outside the range seen in the diffraction experiment. 

The main advantage of the potential-based formalisms is that they produce results 
of immediate significance. Results from the probabilistic approaches need to be 
translated into quantities with a more obvious physical meaning. This could be 
done either by directly transforming the refined tensor components into potential 
parameters (Kontio and Stevens 1982) or by a calculation of the potential from the 
Boltzmann function: 

V(u) = - kB T{lnpdf(u) -In pdf(u=O)}. (20) 
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Table 1. Results of refinement including non-harmonic terms using data on Zns from Moss 
et al. (1980) 

Parameters were refined by a full-matrix least-squares procedure where the quantity minimised 
was 1: w(F5 - kF~), where k is the scale factor. An extinction parameter in the model type 
I with Lorentzian distribution function in the formulation of Becker and Coppens (1975) was 
included in the refinement. The upper entry in the table gives the weighted R factor 

2 22 .,.41 
Rw = (1: w(Fo-Fc) IWl'ol!, 

with W = 1/0-2(1'0), and the lower entry the goodness-of-fit 

S = (1: w(F5-F~)2/(N-P)I!, 
with N the number of observations and P the number of parameters. OPP is the one-particle 
potential; FlV, the Fourier invariant; EW, Edgeworth; OC, Gram-Chatlier; all, all fourth order 

terms refined; and R, only 81111 refined 

TA (K) OppB FlVaII EWR 

520 0·0112 O.Oll2C O.Oll1C 

0·51 0·50 0·51 
960 0·0216 0.0230C 0·0213 

0·85 0·89 0·83 
1150 0·0371 0.0389C 0·0338 

1·02 1·01 0·93 
1300 0·0300 0·0297 0·0291 

0·75 0·74 0·73 

A Revised temperature scale (see Moss et al. 1983). 
B Results taken from Moss et al. (1980). 

OCR OCaII 

O.OllOC O.OllOc 
0·51 0·51 
0·0211 0·0210 
0·82 0·81 
0·0328 0·0300 
0·90 0·84 
0·0299 0.0287D 

0·74 0·73 

C Only third order terms included. The FIV refinements at 960 and 1150 K including fourth 
order terms were slowly diverging-ciamping of parameter shifts has not been tried. 
D Results including sixth order terms are Rw = 0·0268 and goodness-of-fit of 0·70. 
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Fig. 4. Third order non-harmonic contribution to the temperature factor (multiplied by 10) in 
Zns at 1300 K along [111] as a function ofsin 81 A. Shown are the Gram-Charlier. the Edgeworth 
and the Fourier-invariant results. 
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The higher order moments IJ. n of the distribution for a certain direction u are 
obtained by numerical integration: 

IJ.n(u) = f unexp{ - V(u)/kB T} dU/ f exp{ - V(u)/kB T} duo (21) 

The corresponding cumulants may be calculated using a standard transformation 
(Kendall and Stuart 1976): 
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kl(U) = I-'-I(U), 

~(U) = 1-'-2(U)-I-'-~(U), 

~(U) = 1-'-3(u)-31-'-2(U)I-'-I(U)+21-'-~(u), 

~(U) = 1-'-4(u)-41-'-3(U)I-'-I(U) 

- 31-'-~( u) + 121-'-2( u) I-'-~( u)- 61-'-1 ( u), 

w. F. Kuhs 

(22) 

where 1-'-1 gives the shift of the atomic position from the refined value along the 
direction u. If u is in the direction of a bond, 1-'-1 may be used to get a better 
estimate of the bond distance. Also, 1-'-2 gives the total mean square displacement 
(msd). A comparison with the harmonic msd allows the softening or hardening of 
the potential in the direction u to be quantified. A direct measure of the skewness of 
the distribution is found in k3 and a direct measure of the kurtosis in k4. Similarly 
the skewness S(u) and kurtosis K(u) may be defined in terms of the moments: 

3 

S(u) = 1-'-3(U)I-'-;-2(U), K(u) = 1-'-4(u) 1-'-2"2(u)-3. (23) 

In contrast to the refined tensorial quasi-moments (15) and cumulants (16) the 
quantities S(u) and K(u) are largely temperature independent. A change of S(u) or 
K( u) indicates a change of relative importance of the third and fourth order terms, 
in a similar way that a change in the potential parameters indicates a change of the 
potential. 

The modelling of systems with unresolved disorder by inclusion of higher order 
terms proved to be very powerful (e.g. Kuhs and Lehmann 1987). The degree of 
disorder (i.e. the deviations of the atomic positions from the averaged atomic site) for 
any direction u is well characterised by the skewness S(u) (for acentric sites) and/or 
the kurtosis K( u) (for acentric and centrosymmetric sites). Again any temperature 
dependency of S( u) or K( u) indicates a change in the degree of the disorder. 

The directional aspects of the non-harmonicity are best visualised by plotting the 
non-harmonic deformation density maps (or disorder deformation density maps in 
the case of atomic disorder), i.e. the modifications of the harmonic pdf due to higher 
order terms: 

pdfdeC<u) = pdfanr1(u)-pdfhar(u). (24) 

The absolute magnitude of the density modifications depends on the harmonic 
densities. The quantity of interest is the normalised density modification, which does 
not show a systematic change as a function of temperature for an unchanged potential 
(or unchanged disorder pattern): 

pdfdcf,norm(u) = pdfdCC<u)/pdfhar(u=O). (25) 

An example of a disorder deformation density map is given in Fig. 7. 
It is worth noting that purely electronic deformations (due to bonding effects) 

only slightly influence the magnitude of non-harmonic deformations and vice versa. 
Refinements using high order X-ray data are a reasonable way to determine just the 
non-harmonic deformations. Cooling the sample clearly helps to separate both 
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Fig. 7. Normalised disorder deformation density map of the oxygen 
atom in 0 20 ice Ih in the molecular plane at (0) 223 K and (b) 275 K. 
The increase of molecular disorder on approaching the melting point is 
clearly seen. 
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effects further (compare equation 19). An improved decorrelation is usually achieved 
by a combined refinement of parameters describing electronic and anharmonic 
deformations. In some cases (e.g. lone-pair densities, strongly librating atoms, * 
hydrogen atoms in general), a complete decorrelation is difficult and independent 
information on the anharmonic deformations must be gained from neutron diffraction 
experiments. 

5. Conclusions 

All of the aforementioned formalisms to describe non-harmonicity in thermal 
motion have their own special features and there is some evidence that they are 
not equally successful in fitting Bragg intensity data. However, it is too early to 

• Model calculations (Kuhs 1983, unpublished) have shown that in the case of strong librations 
some of the total multipole scattering contributions change by up to 5% if the deformations due 
to the hbrations are not included in the model. This corresponds to population differences of up 
to O·()()S, which is a significant change in a high quality electron density study. 
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make a choice in favour of one or the other. What is clearly needed is more 
comparative work and possibly even better data to discriminate amongst the different 
formalisms. Likewise, more effort should be devoted to transforming the results from 
probabilistic and potential-based formalisms into each other. As concerns the ease 
of programming, the Gram-Charlier formalism has certain advantages and indeed 
has been implemented in several crystallographic least-squares programs; for reasons 
discussed above it should be preferred over the widely used Edgeworth formalism. 
Programs using local cartesian coordinate systems are well suited to implement 
the generalised opp formalism, but probabilistic formalisms may be inserted too. 
Wherever possible, several formalisms should be tried. Since the mathematical form 
assumed by the different approaches is different, there is no reason to believe that 
ultimately one of them is in general more successful than the others when dealing 
with different sources of non-harmonicity. 
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