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Abstract 

In the 1960s the Fourier and variance methods superseded the use of the FWHM and integral 
breadth in detailed studies of microcrystalline properties. Provided that due allowance is made 
in the analysis for systematic errors, particularly the effects of truncation of diffraction line 
profiles at a finite range, these remain the best methods for characterising crystallite size and 
shape, microstrains and other imperfections in cases where accuracy is important. However, the 
application of the Fourier, variance and related methods in general requires that the diffraction 
lines are well resolved and it is thus restricted to materials with high symmetry or which exhibit 
a high degree of preferred orientation. Most materials, on the other hand, including many 
of technological importance, have complex patterns with severe overlapping of peaks. The 
introduction of pattern-decomposition methods, whereby a suitable model is fitted to the total 
diffraction pattern to give profile parameters for individual lines, means that microcrystalline 
properties can now be studied for any crystalline material or mixture of substances. The use of 
the FWHM and integral breadth has been given a new lease of life; though the information is less 
detailed than is given by the Fourier and variance methods and systematic errors are in general 
greater, self-consistent estimates of crystallite size and microstrains are obtained. 

At present the most promising technique for analysing the breadths obtained from pattern 
decomposition is the Voigt method applied to all lines of a diffraction pattern. When reliable 
data for two or more orders of reflections are available, a multiple-line analysis can be used to 
separate the contributions to line breadths from crystallite size and strain. For other reflections 
a single-line approach is used, though this can introduce an angle-dependent systematic error. 

1. Introduction: A Historical Overview 

The use of diffraction line profiles to study microcrystalline properties is almost 
as old as powder diffraction itself. As long ago as 1918 Scherrer noted that the line 
breadth varied inversely as the size E of crystallites in the sample, leading to the 
Scherrer equation 

/3 = AlE cos 8 for breadths on a 28 scale (la) 

or 
/3 = liE for breadths in reciprocal units, (lb) 

where A is the wavelength, 8 is the Bragg angle and /3 is some measure of line 

• Paper presented at the International Symposium on X-ray Powder Diffractometry, held at 
Fremantle, Australia, 20-23 August 1981. 
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breadth. In (1) E is an apparent size which depends on the measure of breadth used, 
the shape of the crystallites and the direction of the hkl planes, and it is related 
to the true size through the Scherrer constant. From (1) it is evident that size 
broadening is independent of the order of a reflection. The broadening which arises 
from microstrains was reported by Van Arkel in 1925, but its cause was the subject 
of controversy for many years and the description of line-profile shape for a specimen 
containing a distribution of microstrains is still a matter of debate (Delhez et al. 1982; 
Delhez et al. 1988, present issue p. 213). Various early workers deduced the angular 
dependence of strain broadening and the forms normally used are as follows: 

(i) The microstrain e is conceived by considering two extreme values of the 
lattice spacing d, namely d+ll.d and d-Il.d, with e = Il.d/d. By equating the 
integral breadth {3 with the angular range corresponding to d + Il. d and d -Il. d, 
and by assuming that Bragg's law holds over this range (implying that parts of the 
specimen with spacings d-Il.d and d+ll.d diffract independently, i.e; incoherently), 
we have 

{3 = 4 e tan () for a 2(} scale (2a) 

or 
{3 = 4e/2d in reciprocal units (1/ d scale). (2b) 

(ii) The component of strain e(n) denotes the average strain between two unit 
cells, n cells apart, in a column of cells perpendicular to the diffracting planes. For a 
Gaussian distribution of e(n), independent of the separation of cells n [implying that 
(e2(n» = (e2 ), the mean-square strain], a Gaussian strain profile is obtained. The 
region which includes the variation in lattice spacing is now considered as diffracting 
coherently and (Stokes and Wilson 1944) 

I! ! 
{3 = 2(217)i( e2)2 tan () = 5( e2 )2 tan () for a 2(} scale (2c) 

or 1 1 1 

(3 = 2(217)i(e2)i/2d = 5(e2)i/2d in reciprocal units. (2d) 

Equations (2) indicate that strain broadening depends on the order of a reflection. 
In 1949 Hall proposed a method for separating size and strain effects by plotting 

the breadths of reciprocal lattice points against their distance from the origin. The 
intercept is then 1/ E and the slope is proportional to the strain. He further developed 
this approach with Williamson to form the basis of the Williamson-Hall (1953) plot. 

Experimental h line profiles are the convolution of the specimen f and instrumental 
9 contributions, and the f profiles in tum can be the convolution of several functions 
which are grouped together as the order-independent ('size') and order-dependent 
('strain') contributions, or 

h(x) = fs(x)*fD(x)*g(x) , (3) 

where S and D denote 'size' and 'strain'. For ease of deconvolution of the various 
components, early work on line-broadening analysis was based on the assumption 
that the constituent line profiles are either Cauchy (Lorentzian) or Gaussian. It 
was evident that neither function accurately models experimental profiles and that a 
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more rigorous approach would be to use the multiplicative property of the Fourier 
transforms of convoluted functions, or 

H(t) = F(t) G(t), (4) 

where F, G, H are Fourier transforms of /, g, h. This milestone in the development 
of line-broadening analysis led to the Stokes (1948) correction for instrumental 
broadening and the Warren-Averbach (1949, 1950) method for the separation of 
size and strain effects by using the Fourier coefficients of the pure diffraction profile. 
An alternative procedure to overcome the problems associated with deconvolution, 
suggested by Tournarie (1956) and developed by Wilson (1962) and bngford (1965), 
is to use the additive property of the variances (second central moments) of convoluted 
functions. 

By the late 19608 the use of line breadths had largely been discarded in favour 
of the more powerful Fourier (Warren-Averbach), variance and related methods. 
Provided that the data are of high quality and due allowance is made for systematic 
errors (Section 2), these methods give a wealth of detailed and accurate information 
about microcrystalline properties. Size broadening gives the mean dimension of 
crystallites or domains in various directions and hence provides information about 
their shape, and the distribution of size can be obtained. The 'size' contribution 
can also be interpreted in terms of various types of mistake--deformation and twin 
faults in metals, arising from a misplacement of successive layers of atoms, mistakes 
due to the more or less random rotation of layers in turbostratic structures, and due 
to a change in the interlayer spacing at random intervals-and information on the 
nature and density of dislocations can be extracted. The variance method gives the 
r.m.s. strain (cf. equation 2) and details of the variation of strain within crystallites 
or domains can be found from the Fourier coefficients. A comprehensive survey of 
the procedures for applying both methods and the interpretation of the results has 
been carried out by Klug and Alexander (1974, ch. 9; see also Warren 1969). Of the 
two methods, the Fourier approach is the more rigorous, since no assumptions are 
made about the nature of the intensity distribution when correcting for instrumental 
effects. In practice the distinction may be unimportant, due to the presence of 
systematic errors (Section 2), and in any event the two methods can be regarded 
as complimentary. The application of the Fourier and variance methods in general 
requires that the diffraction lines are well resolved and is thus restricted to materials 
with high symmetry or which exhibit a high degree of preferred orientation. Most 
materials, on the other hand, including many of technological importance, such as 
ceramics, some catalysts and polymers, have complex patterns with severe overlapping 
of peaks. Significant advances during the last decade or so in pattern-decomposition 
methods, whereby a suitable model is fitted to the total diffraction pattern to give the 
characteristics of individual lines, means that a study of any crystalline material or 
mixture of substances is now feasible. Analyses are based on the FWHM and integral 
breadth of each line and, with modifications, the methods of early workers, based on 
assumed line shapes, have been given a new lease of life (Section 3). The Fourier and 
variance methods remain the best technique in cases where they are applicable, but 
otherwise line-broadening analysis by means of total pattern fitting can give valuable, 
if less accurate, information on crystal imperfections. 
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Fig. 1. Comparison between estimates of the apparent crystallite size 
determined by the Fourier (Warren-Averbach) analysis (D) and the 
variance method (Ek): circles, Langford (1965, 1968), Louer et al. 
(1972); triangles, Halder and Wagner (1966); crosses, Guillatt and 
Brett (1970, 1971); squares, Mignot and Rondot (1973); pluses, Niepce 
et al. (1978); and stars, Le Bail and Louer (1980). 

2. Sources of Error in Line Profile Analysis 

As noted above, the Fourier and variance methods for line-broadening analysis only 
give reliable and accurate information about structural imperfections if the effects of 
random and systematic errors are taken into account; either they must be minimised 
or a correction must be made. There is evidence to suggest that this has not always 
been done in the past. For example, in theory both methods give the same measure of 
size, namely the area-weighted mean thickness of crystallites or domains measured in 
a direction perpendicular to the diffracting planes (Wilson 1962), but Langford (1968) 
noted a significant discrepancy between the size E k given by the variance and that 
obtained from the Fourier cosine coefficients (D) for nickel powder. The difference 
can only arise in the analysis of the experimental data and Le Bail (1976) made a 
survey of values of E k and D reported in the literature by several authors and for 
a wide range of samples. His findings are summarised in Fig. 1, where it can be 
seen that the 'Fourier size' is always greater than the 'variance size', sometimes by 
a factor of two or more. It is now known that this discrepancy is largely due to 
truncation of line profiles at finite range and that it depends critically on the method 
used for determining the initial slope of the A( n) versus n curve (Delhez et af. 1986). 
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The effect of truncation is to reduce the estimate of E k' the fractional decrease being 
approximately equal to the fraction of intensity 'lost' by truncation, typically about 
5% (Langford 1982). The size D is increased by a somewhat greater amount and 
there may also be an appreciable error in the strain value (Delhez et af. 1988). 

(a) Errors in the Fourier Method 

The principal sources of error in the FourierlWarren-Averbach analysis are: 
(a) counting statistics; 

(b) standard used to obtain 9 profiles; 

(c) background determination; 

(d) truncation of profiles at finite range; 

(e) sampling interval (step length); 

(t) choice of origin; and 

(g) limitations of approximations used in analysis. 

These affect the analysis in different ways and by differing amounts. Young et af. 
(1967) simulated the effects of (c), (d) and (e) and many authors have since discussed 
the treatment of errors in the Fourier method. For example, Delhez et af. (1980, 1982) 
have given corrections for (a), (b) and (t). Procedures for improving the reliability 
of line profile analysis by the Fourier method are presented by Zorn (1988, present 
issue p. 237) and Delhez et af. (1988, p. 213). 

(b) Errors in the Variance Method 

Many of the sources of error listed above apply equally to the variance approach, 
except that the origin is always taken as the centroid of the peak and any error in its 
position has negligible effect, and the choice of step length is less critical. The method 
is based on the assumption that the intensity falls to zero as the inverse square of 
the range in the profile tails. The variance W then varies linearly with the range of 
integration 0" (Wilson 1962), or 

W = Wo+kO". (5) 

The level and slope of the background subtracted from the peak are adjusted until an 
optimum fit of (5) is obtained (Langford and Wilson 1963). These parameters define 
what may be regarded as the 'true' background under the peak for the purposes of 
line-broadening analysis, and they can be used to advantage for making a truncation 
correction in the Fourier method. 

In order to correct for the unavoidable truncation of a profile at finite range, 
some function must be used to allow for the missing 'tails'. In practice the same 
inverse-square variation as leads to (5) is used and the corrections to be subtracted 
from Wo and k are then Wo k/O" max and k 2 /0" max respectively. Also, the total 
integrated intensity S«>, equivalent to the cosine coefficient A(O) multiplied by the 
range in the Fourier approach, is given by 

S«> Suma/(I-k/O"max), (6) 

where S(7" is the integrated intensity of the profile at maximum range. It should 
be noted that in theory the intensity never falls to zero, but is a minimum half-way 
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between successive reflections (Delhez et al. 1986). However, in practice the above 
assumption is adequate for the purpose of making a correction for truncation and in 
any event for a powder sample other peaks will occur between successive orders. An 
analogous assumption is made when correcting for truncation in the Fourier method 
(Delhez et al. 1986). A correction procedure is currently being developed and it 
remains to be seen how this will affect the detailed information on strain which can 
be extracted by this method. 

There are two other corrections, for non-additivity and curvature, which do not 
occur in the Fourier approach. While the additive property of variances holds if the 
constituent profiles extend to infinity, some instrumental functions fall to zero at a 
finite range and a small non-additivity correction is required. Also, there is a slight 
residual curvature of the variance-range function (5), for which a correction is again 
made. Systematic errors in the variance method have been summarised by Langford 
(1982). 

3. Line Profile Analysis from Total Pattern Fitting 

The resolution of a powder pattern into its constituent Bragg reflections is carried 
out in two stages. First a peak search is carried out to ascertain the positions of all 
lines of the pattern, eliminating 'false' peaks due to statistical noise (Huang 1988, 
present issue p. 201), and then the parameters for individual profiles are obtained 
and refined. Various models have been used for the latter. For example, the 
convolution of several Cauchy functions was preferred by Parrish et al. (1976), to give 
deconvoluted 1 profiles. Langford et al. (1986) used the pseudo-Voigt or Pearson VII 
functions, with allowance for asymmetry of the experimental profiles. A promising 
approach, intended for Rietveld refinement but equally applicable to line-broadening 
analysis, is the non-analytical 'learned peak-shape function' introduced by Hepp and 
Baerlocher (1988, present issue p. 229), in which an optimum fit is achieved. Langford 
(1987) has reviewed pattern-decomposition methods and other procedures for total 
pattern fitting. The aim of pattern decomposition in this context is to obtain reliable 
estimates of line-profile parameters, particularly the position, height, area and breadth 
(FWHM) of each peak, for use in an analy'sis of structural imperfections. There are 
currently two ways in which this can be carried out; in the first it is assumed that the 
line profiles approximate to Voigt curves, the convolution of Cauchy and Gaussian 
functions (Langford 1978) and in the second approach a direct analysis of the breadth 
parameters, given by pattern decomposition, is carried out (Keijser et al. 1983). 

(a) Voigt Analysis 01 Line Breadths 

After finding the breadths of individual lines, correction must be made for 
instrumental effects, if this is not included in the pattern decomposition, and 
the corrected breadths are then separated into order-independent ('size') and order­
dependent ('strain') components. There are thus two stages of deconvolution to be 
carried out. Now instrumental profiles have Cauchy-like (inverse-square) tails, if the 
data are obtained with a conventional angle-dispersive X-ray diffractometer, and the g 
profiles will tend to be Gaussian if obtained from synchrotron or continuous-neutron 
sources. The tails of the line profile due to small crystallites are dominated by an 
inverse-square term, though the precise nature of the profile depends on the shape of 
the crystallites and the distribution of size, and in general strain profiles tend to be 
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Gaussian. There is thus both theoretical and experimental evidence to support the 
use of the Voigt function for the purpose of deconvolution in line-profile analysis. 
In the following it is assumed that the equivalent Voigt function has the same peak 
height, area and FWHM as the experimental line profile. 

The Voigt function can be expressed as (Langford 1978, equation 22) 

I(x) = Re[.8c/dO)(r){1T!x/Po+ikl1, (7) 

where Pc and Po are the integral breadths of the Cauchy and Gaussian components, 
IdO) and 10(0) are their peak heights, k = PC/1Tl/2pO and (r){ zJ is the complex 
error function. If it is assumed that the experimental line profiles can be represented 
by a Voigt curve, then their constituent Cauchy and Gaussian components can be 
found and deconvoluted in the usual way (equations 16 and 17). In general the 
Voigt model fits experimental data well at intermediate and high angles and is usually 
adequate at low angles, provided that the lines are reasonably symmetrical (Langford 
1987). [The error introduced by asymmetry has been considered by Keijser et al. 
(1982).] 

Before embarking on a Voigt analysis of the data, the Voigt parameter <1>, the 
ratio of the FWHM to the integral breadth, is obtained for each line in the g and h 
patterns. (If Ka radiation is used, then the Ka2 component must be removed before 
obtaining the breadths.) The Voigtian can only be considered as a suitable model if 

I 
2/1T (=0·6366) .;; <1>.;; 2(ln 2/1T)~ (=0.9394). (8) 

(Cauchy limit) (Gaussian limit) 

Values of <1> slightly less than 2/1T can occur with high-resolution instrumental 
functions, which are usually assumed to be Cauchy. Data with <1> > 0·9394 are 
suspect. 

Cauchy and Gaussian Components: The Cauchy and Gaussian integral breadths 
are obtained from the experimental values of P and <1> for the g and h profiles. Fractional 
components Pc/P can be found by interpolation from Table 1 or graphically from 
Fig. 2. Alternatively, approximate values of the constituent breadths, accurate to 
within 1 %, are more conveniently given by (Keijser et al. 1982, equations 3-5) 

Pc = P(2.0207-0.4803<1>-1.7756<1>2), (9) 

Po = P{0.64420+ 1.4187(<1>-2/1T)! -2.2043<1>+ 1.8706<1>2J . (10) 

Voigt Parameters from Pc and Po: If Pc and Po are known, the corresponding 
Voigt function, aside from a scale factor which depends on the peak heights of the 
component functions, can be obtained from (7). The integral breadth is given by 
(Langford 1978, equation 25) 

P = Po exp(-~)/{l-erf(k)J (11) 
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Table 1. Fractional Cauchy and Gaussian components of the integral breadth of a Voigt 
function for values of the Voigt parameter ~ in the range 2/1r.;; ~.;; 2(1n2/1r)1!2 

~ f3c1f3 f301f3 ~ f3c1f3 f301f3 

0·6464 0·9698 0·1403 0·6709 0·8975 0·2665 
0·6469 0·9685 0·1438 0·6740 0·8888 0·2786 
0·6474 0·9667 0·1474 0·6774 0·8789 0·2917 
0·6480 0·9654 0·1513 0·6812 0·8678 0·3060 
0·6486 0·9634 0·1553 0·6854 0·8550 0·3216 
0·6492 0·9612 0·1595 0·6903 0·8405 0·3387 
0·6499 0·9593 0·1640 0·6961 0·8240 0·3576 
0·6507 0·9568 0·1687 0·7026 0·8050 0·3785 
0·6516 0·9544 0·1737 0·7099 0·7832 0·4017 
0·6525 0·9518 0·1790 0·7184 0·7579 0·4276 
0·6535 0·9489 0·1846 0·7282 0·7282 0·4565 
0·6546 0·9454 0·1905 0·7397 0·6935 0·4891 
0·6557 0·9423 0·1969 0·7530 0·6525 0·5259 
0·6570 0·9383 0·2036 0·7681 0·6038 0·5678 
0·6585 0·9341 0·2108 0·7866 0·5456 0·6157 
0·6600 0·9295 0·2185 0·8079 0·4756 0·6708 
0·6617 0·9242· 0·2267 0·8326 0·3906 0·7346 
0·6636 0·9187 0·2356 0·8628 0·2868 0·8090 
0·6658 0·9123 0·2451 0·8977 0·1589 0·8965 
0·6682 0·9054 0·2554 0·9395 0·0000 1·0000 

or by the approximation of Keijser et al. (equation 6): 

13 = 13 0f{ -!'7Th+!('7Tk2+4)t-0.234k exp(-2.176k)]. (12) 

The FWHM 2w, given by (Langford 1978, equation 27) 

Re{ w('7Tt w/l3o +i k)] = 13 0 /213, (13) 

can be obtained from the approximation for 4> devised by Ahtee et al. (1984, 
equation 7): 

4> = 2(ln 2I'7T)t(1 +0· 9039645 k+O· 7699548k2)/(1 + 1· 346216k 

+1.t36195k2 ). (14) 

Correction for Instrumental Broadening: From (3), if f(x), g(x) and h(x) are 
assumed to be Voigtian, then 

h = he * ho = fe * fo * ge * go· (15) 

The Cauchy and Gaussian components of the integral breadths of g(x) and h(x) are 
obtained from 13!1' 4> g' 13 h' 4> h by means of Table 1, Fig. 2 or equations (9) and (to), 
and the corresponding breadths of f(x) are given by 

13 Ie = 13 hC -13 gC , 

13}0 = 13k -I3!o . 
(16) 

(17) 
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Fig. 2. Variation of the fractional Cauchy and Gaussian 
components of the integral breadth of a Voigt function (J3 cI /3 
and /3G//3) with the Voigt parameter <I> (=FWHM//3). 
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Fig. 3. Procedure for correcting the breadths of the broadened 
(h) profiles for instrumental effects by the Voigt method. 
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The breadths PfC and PfG can be combined to give the integral breadth Pf of f(x), 
from (11) or (12). If required </>f' and hence 2wf' is given by (14). This procedure is 
summarised in Fig. 3. 

Size-Strain Separation: Size-strain analysis, which amounts to a separation of 
the order-independent and order-dependent contributions to the f profiles followed 
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by the application of (1) and (2), is carried out in three stages: (a) Williamson-Hall 
plot; (b) multiple-line analysis; and (c) single-line analysis. 

(a) Williamson-Hall plot: The graph of /31 cosO versus sinO (breadths in units of 
20) or /31 versus 1/ d (breadths in reciprocal units) gives a useful visual indication 
of the nature of any imperfections present in the sample, since the slope depends 
on strain and the intercept varies as the reciprocal of the size of the crystallites or 
domains. [It should be noted that Williamson and Hall (1953) also used a plot of 
/3} versus 1/ d2.] It is possible to tell at a glance if strain is significant, whether the 
crystallite shape is anisotropic, or the nature of any mistakes present (Langford 1968; 
Langford et al. 1986). However, since Cauchy functions are implied for both size 
and strain contributions, the plot should not be used quantitatively. 

/3s (1) Size <:\'!.") /3sc 

/3 jC (8) 

/3DC 

~
\'l") /3SG 

/3jO 
(9) 

/3DG 

/3D (2) Strain 

Fig. 4. Procedure for multiple-line size-strain analysis by the 
Voigt method. 

(b) Multiple-line analysis: If reliable data are available for two or more orders of 
a reflection and the order-independent ('size') and order-independent ('strain') profiles 
are assumed to be Voigtian, then the Cauchy contributions /3 sc and /3 DC are obtained 
from 

/3lc cosO = /3 sc +/3DC sinO (/3/c in 20) (18a) 

or 
/3lc = /3 sc +/3Ix/d (/3 IC in reciprocal units), (18b) 

and the Gaussian contributions /3 SG and /3 DO from 

/3}G cos2 0 = /3~G + /3k sin2 0 (/3 IG in 20) (19a) 

or 
/3}G = /3~G + /3k/ d2 (/3 IG in reciprocal units). (19b) 

The contributions /3 sc and /3SG are combined by means of (11) or (12) to give 
/3 s' the order-independent part of /31' and this can be interpreted in terms of 
crystallite/domain size by means of (1). Similarly, /3 DC and /3 DO are combined to 
give /3 D' the order-dependent part of /31' and the corresponding estimate of strain is 
given by (2). The procedure is summarised in Fig. 4. 
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(c) Single-line analysis: When a multiple-line analysis cannot be applied, because 
higher orders of a reflection are absent or the breadths are inaccurate, size and strain 
can be separated for a single line if it is assumed that the size profile is Cauchy 
(f3 D = f3 fd and that the strain distribution is pure Gaussian ({3 D = f3 fG)' Estimates 
of size and strain are then given directly by (1) and (2). 

Errors in the Voigt Analysis: It should be remembered that in general the errors 
in any estimate of size and strain from a Voigt analysis of line breadths will be large. 
This is partly due to counting statistics (Langford 1980; Keijser et al. 1982). It is 
usually impracticable to spend as long counting at each step for the total pattern as 
it is for individual lines with the Fourier and variance methods, and random errors 
will in general be greater. Errors due to residual sample broadening ·of the 9 pattern 
can be avoided by careful preparation of the standard. Within the limitations of the 
assumptions made in the Voigt approach, truncation of lines is not a serious problem, 
since areas are calculated from analytical functions and, provided that about 8 to 10 
points are recorded across the range of the half-width 2 w for each line, errors due 
to sampling interval should be inappreciable. Systematic errors will be introduced by 
the use of approximations (9), (10) and (12) and, for Ka radiation, by the removal of 
the Ka2 component, if this is done analytically (Keijser et al. 1982). Inadequacy of 
the Voigt model gives rise to a systematic error which cannot readily be quantified. 
While this will affect the absolute accuracy of any derived parameters, experience 
has shown that self-consistent relative values are given by the method. The use of 
the single-line approach rather than a multiple-line analysis can introduce a further 
systematic error, as is shown below. 

(b) Direct Approach to the Analysis of Line Breadths 

We assume a shape function h(h1' ~, ... ) for the measured profiles of the specimen 
investigated and a shape function g(g1' rh, ... ) for the instrumental profile, where 
h1' ~, ... and g1' rh' .,. are parameters. In this approach there are no mathematical 
limitations concerning hand g; e.g. asymmetric functions are allowed. Within 
the scheme of the shape functions adopted, a mathematical relation between the 
parameters h1'~' ... and g1' rh' ... and the area-weighted crystallite size D and the 
r.m.s. strain < e2)l!2 is obtained by the following procedure: 

(i) determine analytically the Fourier coefficients H(n, h1' ~, ... ) and G(n, g1' rh, ... ) 
of hand 9 normalised so that H( n = 0) = G( n = 0) = 1, n being the harmonic 
number; 

(ii) obtain the Fourier coefficient F of the pure structurally broadened profile in 
terms of n, h1' ~, ... , g1' rh' ... by application of Stokes' procedure (1948), 

F(n, h1' ~, ... , {h, rh' ... ) = £" +i Bf = H(n, h1' ~, ... ) . 
G(n, g1' rh, ... ) , 

(20) 

(iii) express in terms of h1' ~, ... and g1' rh' ... 

D = _ d { I dd~ I )-1 , 
n_O 

(21) 

I d2Af I 
dn2 n_O 

I d2As I 
dn2 

-4172 P< e2), (22) 
n_O 
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where AS is the Fourier coefficient of the size-broadened profile, d is the interplanar 
spacing and I is the order of the reflection. 

According to (21), D can be determined from a single line, whereas, from (22), 
(t?)112 [and d2 AS(n)/dn2] can be determined from two orders ofa reflection. Because 
the profile fits are different for different orders, the reliability of a multiple-line method 
on the basis of (21) and (22) is very limited and results may be misleading. However, 
if the size estimates, from separate orders, according to (21), coincide, a reliable strain 
value might be obtained. 

In view of the above a single-line analysis will be appropriate in many cases and is 
unavoidable if mUltiple orders are absent. In the single-line approach an additional 
assumption is required about the term Id2 AS /dr? In ..... 0 in (22) (for details see Keijser 
et al. 1983). Some profile-shape functions are unsuitable for use with this direct 
approach, as their mathematical properties are incompatible with (21) and/or (22). 
Gaussian and generally Pearson VII functions do not conform to (21) because the 
derivative of the Fourier transform for n -+ 0 is always zero, implying that D is 
infinite. The use of this approach with Voigt and pseudo-Voigt shape functions has 
been described by Keijser et al. (1983). 
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Fig. 5. Estimates for Zno of (a) the strain and (b) the size against 11 d 
obtained by the single-line method (from Sonneveld et al. 1986). 

4. Example of Line Profile Analysis from Total Pattern Fitting 

As an example of estimating crystallite size and strain by total pattern fitting, data 
obtained from a sample of ZnO (ZnO-B of Langford et al. 1986) will be considered. 
The Pearson VII function, with allowance for asymmetry, was used to model the 
individual peaks of the pattern. The results of applying a single-line Voigt analysis are 
shown in Fig. 5 (see also Table 1 of Sonneveld et al. 1986). For reflections of which 
mUltiple orders are present, single-line and multiple-line analyses may be compared 
iii Table 2 and Fig. 6. Clearly the largest size and smallest strain values are observed 
for the (002) and (004) reflections [see below for (006)]. For the other reflections no 
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Table 2. Comparison of size and strain values for ZnO obtained from single-line 
and multiple-line analyses (Sonneveld et al. 1986) 

hkl Size D (A.) Strain ex 103 

Multiple Single Multiple Single 

(100) 392 3·8 
(hOO) (200) 318 352 2·9 2·7 

(300) 186 1·9 
(101) 327 3·3 

(hOh) 305 3·2 
(202) 238 2·5 
(002) 484 2·3 

(001) 417 2·0 
(004) 391 1·7 

(a) 

_(0) 

(b) 
.., 
r:-~ 8 

3 _____ 

X 001 hOh ,. 

'" -~ 
I 

0·' 1·0 

lid (,&.-1) 

Fig. 6. Comparison between (a) size and (b) strain for ZnO 
estimated by single-line (solid) and multiple-line (dashed) 
methods. 
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distinct anisotropy with respect to size and strain is apparent (Fig. 5). These results 
are similar to those obtained for a ZnO powder which only exhibited size broadening 
(ZnO-A of Langford et af. 1986), where the more accurate Fourier and variance 
methods were applied. 

As regards the accuracy of the results obtained, the quality of fit in this example 
for the Pearson VII function, can be assessed from the factors Rp and Rwp (Young et 
al. 1982). From the values of these factors for the ZnO sample (Langford et af. 1986, 
Table 3), it is evident that the accuracy is lowest at high angles, where the intensity of 
lines tends to be low and, in this case, there is more peak overlap. This suggests that, 
for size-strain analysis in conjunction with pattern fitting, in many cases size and 
strain data can be obtained by performing a single-line analysis on lines considered to 
be fitted best. This is corroborated by the fact that, in this example, a combination of 
(002), (004) and (006) in a multiple-line analysis gives physically unrealistic results. 
[However, it should be noted that the (006) has a very low intensity.] 
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In the particular case of size and strain broadening being Voigtian in character, 
and if (1) and (2) hold for their Cauchy and Gaussian components, then the following 
trends are to be expected if a single-line analysis is applied to different orders of a 
reflection: 

(a) Since it is assumed that fJ s = fJ fe' a Gaussian order-independent component 
is ignored and a Cauchy order-dependent part is included. The estimate of fJ s thus 
increases with 1/ d (or angle) and the estimated size decreases (Table 2). 

(b) By assuming that fJ D = fJ fG' a Cauchy order-dependent component is ignored 
and an order-independent Gaussian contribution is included. The estimate of fJ D' 

and hence the estimated strain, then decreases with 1/ d (Table 2). 

The effect of these tendencies is strikingly apparent from Fig. 6 and in this particular 
example the size and strain values given by the two methods differ by up to 30%. 
The trend is also evident for both size and strain values in Fig. 5. However, the sign 
and magnitude of systematic errors introduced by applying the single-line approach 
cannot readily be assessed; for size estimated from the Cauchy component of the total 
profile, an unknown strain contribution is included, but the unknown size contribution 
to the Gaussian component is ignored. 

Further, in a multiple-line analysis, the error in values for size and strain is in 
general governed by that order of a reflection for which the quality of the breadth 
parameters is lowest. Also, no information is normally available about the precise 
shape of the size and strain component profiles, i.e. whether or not the Voigtian is 
in fact a close approximation. No general statement can therefore be made 'regarding 
the accuracy of size-strain data obtained from a single-line analysis, compared with 
that from a multiple-line approach based on assumed profile shapes. 

References 

Ahtee, M., Unonius, L., Nurmela, M., and Suortti, P. (1984). J. Appl. Cryst. 17, 352-7. 
Averbach, B. L., and Warren, B. E. (1949). J. Appl. Phys. 20, 885-6. 
Delhez, R., Keijser, Th.H. de, and Mittemeijer, E. J. (1980). In 'Accuracy in Powder 

Diffraction', NBS Spec. Pub. No. 567 (Eds S. Block and C. R. Hubbard), pp. 213-53 (NBS: 
Washington, DC). 

Delhez, R., Keijser, Th.H. de, and Mittemeijer, E. J. (1982). Fresenius Z. AnaL Chern. 312, 1-16. 
Delhez, R., Keijser, Th.H. de, Mittemeijer, E. J., and Langford, J. I. (1986). J. Appl. Cryst. 19, 

459-66. 
Delhez, R., Keijser, Th.H. de, Mittemeijer, E. J., and Langford, J. I. (1988). Aust. J. Phys. 41, 

213-27. 
Guillatt, I. F., and Brett, N. H. (1970). Phi/os. Mag. 21, 671-80. 
Guillatt, I. F., and Brett, N. H. (1971). Phi/os. Mag. 22, 647-53. 
Halder, N. C., and Wagner, C. N. J. (1966). Adv. X-ray Anal. 9, 91-102. 
Hall, W. H. (1949). Proc. Phys. Soc. London A 62, 741-3. 
Hepp, A., and Baerlocher, Ch. (1988). Aust. J. Phys. 41, 229-36. 
Huang, T. C. (1988). Aust. J. Phys. 41, 201-12. 
Keijser, Th.H. de, Langford, J. I., Mittemeijer, E. J., and Vogels, A. B. P. (1982). J. Appl. 

Cryst. 15,308-14. 
Keijser, Th.H. de, Mittemeijer, E. J., and Rozend8l11, H. C. F. (1983). J. Appl. Cryst. 16, 309-16. 
Klug, H. P., and Alexander, L. R. (1974). 'X-ray Diffraction Procedures for Polycrystalline and 

Amorphous Materials', 2nd edn (Wiley: New York). 
Langford, J. I. (1965). Nature 207, 966-7. 
Langford, J. I. (1968). J. Appl. Cryst. 1, 131-8. 
Langford, J. I. (1978). J. Appl. Cryst. 11, 10-14. 



Profile Analysis for Microcrystalline Properties 187 

Langford, 1.1. (1980). In 'Accuracy in Powder Diffraction', NBS Spec. Pub. No. 567 (Eds S. Block 
and C. R. Hubbard), pp. 255-69 (NBS: Washington, DC). 

Langford, 1. I. (1982). J. Appl. Cryst. 15,315-22. 
Langford, 1. I. (1987). Prog. Cryst. Growth Charact. 14, 185-211. 
Langford, 1. I., Louer, D., Sonneveld, E. 1., and Visser, 1. W. (1986). Powder Diffraction 1, 

211-21. 
Langford, 1. I., and Wilson, A 1. C. (1963). In 'Crystallography and Crystal Perfection' 

(Ed. G. N. Ramachandran), pp. 207-22 (Academic: London). 
Le Bail, A (1976). Thesis, University of Rennes. 
Le Bail, A, and Louer, D. (1980). Rev. Chimie Min. 17, 522-32. 
Louer, D., Weigel, D., and Langford, 1. I. (1972). J. Appl. Cryst. 5, 353-9. 
Mignot, 1., and Rondot, D. (1973). J. Appl. Cryst. 6,447-56. 
Niepce, I.-C., Watelle, G., and Brett, N. H. (1978). J. Chern. Soc. 74, 1530--7. 
Parrish, W., Huang, T. C., and Ayers, G. L. (1976). Trans. Am. Cryst. Soc. 12, 55-73. 
Scherrer, P. (1918). Nachr. Ges. Wiss. GOttingen, 26 Sept., 98-100. 
Sonneveld, E. 1., Delhez, R., Keijser, Th.H. de, Langford, 1. I., Mittemeijer, E. 1., Visser, 1. W., 

and Louer, D. (1986). Proc. 12th Conf. on Applied Crystallography, pp. 26-31 (Silesian 
University: Katowice). 

Stokes, A R. (1948). Proc. Phys. Soc. London 61, 382-91. 
Stokes, A R., and Wilson, A 1. C. (1944). Proc. Phys. Soc. London 56, 174-81. 
Tournarie, M. (1956). C. R. Acad. Sci. Paris 242,2016--18; 2161--4. 
Van Arkel, A E. (1925). Physica 5, 208-12. 
Warren, B. E. (1969). 'X-ray Diffraction' (Addison-Wesley: Reading, Mass.). 
Warren, B. E., and Averbach, B. L. (1950). J. Appl. Phys. 21, 595-9. 
Williamson, G. K., and Hall, W. H. (1953). Acta Metall. 1,22-31. 
Wilson, A 1. C. (1962). Nature 193, 568-9. 
Wilson, A 1. C. (1962). 'X-ray Optics', 2nd edn (Methuen: London). 
Young, R. A, Gerdes, R.I., and Wilson, A. 1. C. (1967). Acta Cryst. 22, 155-62. 
Young, R. A, Prince, E., and Sparks, R. A (1982). J. Appl. Cryst. 15, 357-8. 
Zorn, G. (1988). Aust. J. Phys. 41, 237--49. 

Manuscript received 7 Ianuary, accepted 15 February 1988 






