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Abstract 

Aust. J. Phys., 1987,40,687-703 

Tn the axisymmetric pulsar magnetosphere model of Mestel et al. (1985), electrons, following 
injection with non-negligible speeds from the stellar surface, flow with moderate acceleration, 
and with poloidal motion that is closely tied to poloidal magnetic field lines, before reaching a 
limiting surface, near which rapid acceleration occurs. The present paper continues an analysis 
of flows which either encounter the limiting surface beyond the light cylinder (between the cones 
of zero axial magnetic field), or do not meet it at all. The formalism introduced by Mestel et aL 
for the description of the outflow is applied in an extended version which fully incorporates Yo, 
the emission Lorentz factor of the particles. This treatment removes the singularity of Yo at the 
stellar poles that occurred in the earlier work: because of a nonuniformity in taking the limit of 
nonrelativistic injection, full incorporation of Yo acts to keep it finite. 

1. Introduction 

Mestel, Robertson, Wang and Westfold (1985; referred to here as MRW2) 
introduced an axisymmetric pulsar magnetosphere model in which electrons leave 
the star with non-negligible speeds and flow with moderate acceleration, and with 
poloidal motion that is closely tied to poloidal magnetic field lines, before reaching 
SJ, a limiting surface near which rapid acceleration occurs. The formalism they 
introduced to describe these flows can be interpreted in terms of a plasma drift across 
the magnetic field, following injection along it (Burman 1985 a). An analysis of such 
moderately-accelerated outflows (Burman 1984) showed that there is a second class 
of flows-ones which do not encounter a region of rapid acceleration. 

I have extended the basic MR W2 formalism, and my earlier analysis, so as to 
incorporate fully 'Yo, the emission Lorentz factor of the particles (Burman 1986). The 
possible need for this extension was suggested by a study (Burman 1985 b; referred 
to as Part I) of the solutions of the original formalism which represent flows that 
encounter SJ either beyond the light cylinder or not at all: the outflow from tiny 
inner cores of the polar caps is either not of this kind or, if it is, then some extended 
formalism is needed in order to treat it. It is found here that full incorporation of 'Yo 
overcomes the difficulty: it removes the singularity of 'Yo that occurred at the stellar 
poles in the earlier work. 

* Part I, Aust. J. Phys., 1985, 38, 749. 
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2.MRW2 Formalism 

The notation and terminology of Part I will be used, largely without further 
comment; but, for convenience, a few key points are repeated in the next paragraph. 
In the remainder of this section, the relevant aspects of the extended MR W2 formalism 
will be summarised. 

Charge separation is assumed, so that jp = Pe V p' The poloidal part of Ampere's 
law reduces to B<j> = - S/ X. It follows from Gauss's law and the toroidal part of 
Ampere's law that (Mestel et al. 1979, eq. 2.8) 

\124>+2Bz = -(I-XV<j»Pe' (1) 

The steady rotation constraint implies the existence. of an integral of the motion 
(Endean 1972) which (for electrons) has the dimensionless form (MRW2) 

G = y(l- X V<j» - 4>/e; (2) 

the parameter e lies roughly in the range 10-6 to 10- 11 for different pulsars. With 
the outflow emanating from a small polar cap, Va(P) may be identified as the 
speed at which the electrons, travelling along the lines of constant P, leave the 
star. The Endean integral G is approximated very closely by yo(P), the Lorentz 
factor corresponding to Va( P). When the emission speed is nonrelativistic, G has a 
constant value, namely one, across the flow. Goldreich-Julian (GJ) flow is defined 
as flow satisfying the fundamental equations of the MR W2 formalism, subject to the 
additional restriction. that the term \12 4> in the Gauss-toroidal Ampere law (1) be 
negligible. 

It follows from axisymmetry and neglect of inertial drift that the flow velocity is 
related to the magnetic field by 

V = KB+K(P)Xt, (3) 

where K is a scalar and K denotes l+eG'(P), with G' representing dG/dP; this 
is equation (2.27) of Mestel et al. (1979), with inertial drift neglected and with 
dimensionless variables. MRW2 wrote dS/dP as -2 Va(P); hence, it follows from 
V p = KBp and jp = Pe V p' together with the expressions for Bp and jp in terms of 
their Stokes stream functions P and S, that Pe K = -2 Va. 

The equations PeK = -2 Va, V<j>-KX = -KS/X and Pe = -2Bz/(1-XV<j» 
for GJ flow yield (Burman 1986), on eliminating Pe' V<j> and K in pairs, 

KS = (1-KX2)/(Bz -l), 
- 2 Pe = -2VaS(Bz -l)/(1-KX), (4a,b) 

2 -f4, = KX -(I-KX )/X(Bz -l), (4c) 

where B z denotes Bz/ Va S. 
When G' =F 0, the light cylinder plays no special part in the mathematical 

description of GJ flows: rather, it is the surfaces W: I K I X = 1 and, for K > 0, 
V: K1I2 X = 1 that do so, particularly the latter. 
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The GJ flows can be divided into Class I, for which the Lorentz factor becomes 
infinite at some point on a flow line, and Class II, which reach the equatorial 
plane without encountering such a singularity. The following subdivision of Class I, 
according to where the GJ flow terminates in the singularity of its Lorentz factor, 
is convenient in distinguishing flows having different mathematical descriptions: IA 
and IC flows are those for which the infinity occurs at some point where jj z > 1 and 
jj z < 1 respectively; IB and IB' flows are those with the infinity on the surfaces V 
and W respectively. Class IC flows terminate outside V. 

It is only flows with jj z = 1 on V that have the possibility of reaching values of 
jj z below one (Classes IC and II flows), and therefore the possibility of continuing to 
the Bz = 0 cones and beyond to the equatorial plane. 

3. Preliminary Results 

As in Part I, the auxiliary variables fi, U and Q, denoting - P, X213 and p2/3, 
are used where convenient. It is also convenient to put T(P) == Va S/2P. It follows 
from Va == idS.ldP and S(O) = 0 that S(P)/2P = < Va)(P), the average value 
of Va between 0 and P (MRW2, §3). Hence T = Va< Va), so 0..; T < 1. Also, 
S/2P -- Va(O) as P -- o. If Va decreases with increasing P, then so does < Va) and 
hence S/2P and T; in this case, S increases less rapidly than linearly with P. If Va 
increases with increasing fi, then so does < Va) and hence S/2P and T; in this case, 
S increases more rapidly than linearly with P. 

Since G is closely equal to Yo, it follows that 

, . 3 - -
G (P) = -Yo Va d Va/dP = - Va d(yo Va)/dP. (Sa, b) 

The edge Q = G?e of zone of GJ outflow, defining the edge of a polar cap, occurs 
where Va = 0 with P =4= o. The function T(P) varies from V5(O) on Q = 0 to zero 
on Q = G?e. On Q = G?e, both G' and T vanish. Since K = 1 on Q = G?e, the 
surfaces Wand V both cross the light cylinder where the poloidal field line surface 
Q = G?e does. 

In a first approximation, the poloidal magnetic field in the domain of moderately 
accelerated outflow can be taken to be dipolar, so P = X2/ R3. As in Part I, it is 
X and P, rather than X and Z, that are regarded as the independent variables. The 
dipole magnetic field is described by (MRW2) 

Bp = (2P/ X2)(1-l Q U)! , Bz = (2P/X2)(1-~Qu). (6a, b) 

Its field lines, P = constant, have the equations PR = sin2e = Q U. Their 
dimensionless radius of curvature is given by 

3 ! 3 1. 1 4 Qp = U2(1-4QU)2/(1-"2 Q U). (6c) 

Use of Bef> = - S/ X and (6a) for Bp' with S/2P = < Va), gives 

3 ! - Bef>/ X Bp = < Va)(P)/(l- 4 Q U)2 . (7) 
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The definitions of I'm and Doo ' and hence of Foo and f± (Burman 1986, eqs 6, 10, 
11, 14), can be expressed in terms of B<t'! Bp: 

(a) V", at the Star 

1!'Y~ = 1 _K2 X2/(I +Bi/ B;), 

X2 D: == 1 +(1- K2 X2)B;/ Bi. 

(8a) 

(8b) 

The quantity K(P), or I+EG'(P), can be written as a(S)/il, which is the ratio 
of an angular speed associated with a poloidal streamline to that of the star. Near 
a polar cap B z :> 1 and, in the dipole approximation, Bz ::::: 21'/ X2; hence, since 
IKIX2 « 1, equations (4a) and (4c) for KS and V", show that KB",::::: -XT and 

, 3 -
V",/X::::: I+EG - T = 1 -E'YO Vod Vo/dP - T (9a, b) 

there; equation (Sa) has been used for G'. Near a polar cap, the KB", contribution to 
V", in (3) has, like the K X part, the form of a function of P multiplied by X; the 

angular speed of the flow there is a(S)- T(P)il or {K(P)- Vo< Vo)] il. Since G' 
and T vanish on Q = Q." equation (9a) shows that V", = X at the edge of a polar 
cap. 

The MRW2 choice a(S) = il, that is K = lor G'(P) = 0, corresponds to use of 
the original MRW2 formalism, with a non-varying Endean integral. As MRW2 (in 
their §3) pointed out, the outflow yields a significant departure of the toroidal part of 
the motion from corotation with the star right down to the star's surface: with G' = 0, 
equation (9a) gives f4,/ X ::::: 1- T near a polar cap, corresponding to an angular 
flow speed of (1- Va< Va»)il. Choosing a(S) = il with the MRW2 form I-! Q for 
T(P), corresponding to requiring B z = 1 on X = 1, gives f4,/ X = ! Q < 1 near a 
polar cap. 

If G'(P) < 0, so Va increases away from the axis, then (9a) shows that V",/ X < 
1- Va< Va) < 1 near a polar cap. If G'(P) > 0, so Va decreases away from the 
axis, then (9a) shows that V",/ X > 1- Va< Va) near a polar cap. The flow is 
subrotating there so long as K < 1 + Va< Va), corresponding to E G' < Va< Va) or 

3 -
- E'YO d Va/dP < < Va)· 

(b) B z and the Surface B z = 1 

I shall now examine the general form of the surface Bz = 1; this helps to pin 
down the behaviour of B z' In the dipole approximation we have 

- 3 2 B z = (1-"2 Q U)/ T X . (10) 

So, the surface B z = 1 satisfies a cubic equation in U, namely T U 3 = I-! Q U, 
which has positive discriminant and just one real solution U = R( Q), where 

1 1 1 2 1 1 1 1 2 1 1 1 
2:3 T2 R( Q) == {( T + "2 P )2 + T2 P - { ( T + "2 P );: - T2 P . (11) 

Equation (10) for B z itself can be written as 

U 3(B z-I) = (R- U)(TU2 + TRU +1!R). (10') 
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For small Q and not-so-small values of T -more precisely for P2/2 T < I-the 
definition (11) of R shows that the surface liz = 1 (Le. U = R) is given by 

1 1 2 
T3 U = 1 - Q/2 T"3 + P /24 T + .... (12) 

This demonstrates the asymptotic approach, as Z2 ---+ 00 (corresponding to 
intersections with poloidal field/flow lines having Q ---+ 0), of the surface liz = 1 to 
the cylinder X = 1/ Va(O). 

The surface liz = 1 crosses the light cylinder where it intersects the poloidal field 
line surface Q = ~ or P = Pc defined by 

~~ = 1- T(Pc); (13) 

that is, liz = 1 moves inside X = 1 provided ~ < ~. 
Since, for x :> 1, 

1 1 1 1 3 
f(1+X)2±1}3 = x 6(1 ±1/3x2 +1/18x+4/81x2 ... ), 

the definition (11) of R shows that for small T and not-so-small values of Q-more 
precisely for P2/2 T :> I-the surface liz = 1 is given by 

~ Q U = 1 - 8 T /27 p2 + .... (14) 

This demonstrates the approach of the surface liz = 1 to intersection with a Bz = 0 
cone (i.e. Q U = j) at the edge of a GJ outflow zone, where Va = 0 = T with 
P =f;: O. 

To summarise: the surface liz = 1 is asymptotic to the cylinder X = 1/ Va(O) for 
Q ---+ 0, crosses the light cylinder for Q = ~, provided ~ < ~, and intersects a 
Bz = 0 cone at the edge Q = ~ of the outflow zone. 

(c) Surfaces Vand W 

These surfaces arise naturally in the MR W2 formalism, as extended to incorporate 
a varying Endean integral, in a way that the light cylinder, which arises in a similar 
manner in the original formalism, does not; that surface appears merely as the 
common limit of V and W as G' ---+ O. 

The surface V is defined, for K > 0 (E G' > - 1), by K! X = 1. It may be 
characterised as the surface on which the functions F and F"" defined by equations 
(9) and (11) of my paper on the extended MRW2 formalism (Burman 1986), are 
equal to one, or as the surface on which, for K =f;: 1 (G' =f;: 0), the functions f+ and 
f-, defined by equation (14) of that paper, are both one; none of these functions can 
equal unity anywhere else. (When G' = 0, the functions F, F", and f+ equal one 
on X = 1, but f- = -1 there.) 

The surface W may be characterised as the surface on which one of the functions 
f± becomes infinite. For K> 0 (EG' > -1) but G' =f;: 0, it is f- that is singular 
there; for K < 0 (E G' < - 1), it is f+. For flows of practical interest, since E is such 
a small parameter, lEG' I < 1 so K is positive: it is f- that is singular, for G' =f;: 0, 
on W. 

For 0 < K < 1 (- 1 < E G' < 0), W lies beyond V, which is outside the light 
cylinder; the negative G' means that Va increases away from the pole. For K > 1 
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(E G' > 0), corresponding to 1'0 decreasing from the pole, W lies within V, which is 
within the light cylinder. 

If B z =1= 1 on V, then 1/1'2 = - E G' there (Burman 1986, §3). For 0 < K < 1 
(-1 < E G' < 0), the GJ Lorentz factor is real and finite on V if B z > 1 there, but 
it becomes infinite somewhere between V and W; if B z = 1 on V with I' real and 
finite there, then B z is below f+ infinitesimally beyond V; if it is still below f+ 
on W, then I' is real and finite inside and on W. For K > 1 (E G' > 0), if B z is 
still above f+ on W, then I' is real and finite inside and on W; B z = 1 on V is a 
necessary condition for I' to be finite on V. So, for all K > 0, B z = 1 on V is a 
necessary condition for the GJ outflow to penetrate both V and W. 

It follows from the fact that F = 1 on V that one of the fundamental equations 
of the MRW2 formalism (fundamental in the sense of not involving neglect of \12 CP), 
namely the MRW2 form of the Gauss-toroidal Ampere law obtained from (1) above 

2 - 2 (MRW , eq. 3.18; Burman 1986, eq. 8), shows that B z = 1 - \1 CP/21'O S on V. 
Thus, if \12 cP is still negligible on V -more precisely if \12 cP < 2 1'0 S on V-then 
Bz ~ 1 on V. 

4. Flows with B z = 1 on V 

(a) The Condition 

As mentioned above, the condition B z = 1 on V is a necessary one for the 
flow to cross both V and W with the GJ Lorentz factor still finite. In the dipole 
approximation Bz = (K - J~ Q)/ T on V, with J = K2/3, so this condition becomes 

K-J~Q = T. (15) 

This is the same as the cubic equation in U for the surface B z = 1 (as discussed in 
Section 3b), with U replaced by 1/1, where I == Kl/3: it is the condition for the two 
surfaces B z = 1 and V to coincide. The surface V now has the behaviour described 
for the surface Bz = 1 in Section 3b. For G' = 0, equation (15) gives the previously 
used form 1 - ~ Q for T( P). 

By continuity, 1'-2 cannot jump from a positive value inside V to a negative value 
on V: given that 1'-2 is positive inside V and is nonzero on V, it follows that 
1'-2 > 0 on V; the requirement that the GJ Lorentz factor be still finite on V ensures 
that it is also real there. 

As Q ~ 0, the J term in the condition (15) drops out, leaving K(O) = T(O) = 
V~(O), corresponding to - E G' (0) = 1- T(O) = 1- V~(O) == 1/1'6(0). [The form 
1- ~ Q for T(P), describing Ie/II flow when G' = 0, though giving T(O) = 1, leads 
(inconsistently) to G'(O) infinite.] Since G'(O) < 0, equation (Sa) for G'(P) shows 
that 1'O( P) initially increases from a nonzero value on the axis. 

Since T = 0 defines the edge, Q = Q." of a polar cap and since, from (5), G' 
must also vanish there, the condition (15) shows that Q., = j, exactly as found when 
the variation of the Endean integral is neglected (MRW2). Since, from its definition 
(13), Q., < j, it follows that V crosses the light cylinder. 

Putting K = 0 in the condition (15) gives T = 0; but G' = 0 and K = 1 
when T = 0; hence, K cannot vanish anywhere for these flows. It follows, since 
K(O) = V~(O) > 0, that K(P) > 0 and -EG/(P) < 1. Since J > 0 and T ;;;. 0, 
equation (15) shows that ~ Q ..; I, with equality holding on Q = j. 
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Since K(O) = V~(O), the surfaces V and Ware asymptotic to the cylinders 
X = 1/ Vo(O) and X = 1/ V~(O), respectively, as Z2 -+ 00. As Q increases from 
zero, initially G' < 0, 0 < K < I and Vo increases: V and W move in toward 
X = 1, with W remaining outside V until Vo reaches its maximum value at P = Pc, 
satisfying (13); there G' = 0 and V and W meet on the light cylinder. At this 
intersection, the condition (15) reduces to (13) defining Q" corresponding to the 
previously used form for T. For Q larger than this, G' > 0, K > 1 and Vo decreases 
as Q increases; Wand V lie inside the light cylinder, with W inside V, until Vo 
reaches zero, where G' again vanishes and Wand V again meet on X = 1, this 
time intersecting the surface Q = ~ and the Bz = 0 cone. 

The condition (15) to have Bz = 1 on V can be regarded as a cubic equation for 
I(P). Except for T = 0, when there is also a double root of zero which, as seen 
above, can be excluded since G' = 0 and K = 1 on Q = Q." there is just one real 
root; thus, 

I(P) = A++A_+~Q, (16) 

where 
2A~ = T+ip2±{(T+ip2)2_(ip2)2J~. (17) 

The quantities A+ and A_ vary from V~I3(O) and 0 on Q = 0 to j for both on 
Q = Q.,; A+ never vanishes; A_ does so on Q = 0 only. It is readily seen that 
~ Q ,;;;; A+ ,;;;; (T + i p 2)113 and 0 ,;;;; A_ ,;;;; ~ Q. Since I ;;. ~ Q, equation (16) shows 
that A+ + A_ ;;. Q; the equality holds on Q = ~. 

The condition to have B z = 1 on V, with a dipolar poloidal magnetic field, now 
in the form (16), and with G'(P) expressed by (Sa), is a first-order integro-differential 
equation for Vo or a second-order quasilinear differential equation for S. The earlier 
neglect of G' gave (incompletely) the condition as T = 1- ~ Q, an integral equation 
for Vo or a first-order differential equation for S. 

(b) Implications 

By using the work of Part I as a guide, I shall now examine how far the formalism 
for GJ flows satisfying the condition B z = 1 on V, in a dipolar poloidal magnetic 
field, can be developed without solving their fundamental equation (16). 

For these flows, the poloidal motion is along lines of constant Q with Q bounded by 
zero and ~; these limits correspond to particles emitted from the poles and to particles 
which cross the surface V on the circles (X = 1, Z2 = ~), where V crosses both 
the light cylinder and the Bz = 0 cone. That is, the outflow comes from inner polar 
cap regions, bounded by colatitudes given by sinO! = (~)3/4sinOo, or O! = O· 7400' 
where 00 denotes the boundary of the GJ polar cap, and symmetrically in the other 
hemisphere. (The GJ polar cap is bounded by the feet of the dipole magnetic field 
lines which are tangential to the light cylinder, corresponding to P = 1 = Q.) 

On using (16) for I(P), equation (9a) shows that 

V<j>/X::::: (A++A_+~Q)3_ Vo<Vo> (18) 

near a polar cap. So the ratio V<j>/ X of the flow's angular speed to that of the star 
varies from zero at the pole to one at the edge of the polar cap, as was found for 
Class IC/II flow with G' = O. 
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For convenience and clarity in writing formulas to be derived below, the following 
quantities will be used: 

Q s: Q/I, fjs: IU, H( U) = 1/(1 + fj + fj2) . (19a, b, c) 

The surface V is expressed in terms of the renormalised cylindrical radial coordinate 
fj by fj = 1; the quantity 1- K X2 is (1- U)/ H. 

Using the condition (15) to substitute for Tin (10) for Bz gives 

- 3 ;".3 3 -B z = (1- 2QU)/u-(1- 2Q), (20) 

from which follows 

(B z-l)/(I-KX2) = (1-(I-H)~Q]/fj3(I-~Q). (21) 

The ratio on the left-hand side of (21) recurs throughout the extended MRW2 
formalism-cf. equations (4) for ~S, Pe !lnd J-4,. Equation (21) expresses th~ ratio 
as a function of the coordinates U and Q for the case of GJ flow satisfying B z = 1 
on V in a dipolar poloidal magnetic field. In particular, (21) shows that 

Jim {(B z -I)/(I-KX2)] = (I-Q)/(I-~Q). 
U--+l 

(22) 

Since ~ Q ..;; 1, with equality only for Q = 1, the necessary condition (15) for the GJ 
flow in a dipolar poloidal magnetic field to penetrate V at least ensures that the ratio 
(Bz -l)/(I-KX2) is finite and nonzero for 0..;; Q < 1 on V. 

On using (21) for (Bz -I)/(1-KX2), equations (4) can be written as 

KS = fj3(1_ ~ Q)/{ 1-(1-H)~ Q] , 

Pe = -(4P/X2){l-(I-H)~Q] 

= -2Bz { 1-(1- H)~ Q]/(I- ~ Q U), 

3 - 3 -V",/X = KH2Q/{l-(I-H)2 Q]; 

(23a) 

(23b) 

(23b') 

(23c) 

the definition Va S/2P of T and the condition (15) have been used in obtaining (23b); 
equation (6b) for Bz has been used in getting (23b'). Substituting (23a) for KS and 
(6a) for Bp into v;, = KBp gives 

3.!. 3 -Vp/Va = (I- 4 QU)2/{l-(I-H)2 Q]; (24) 

the definition of T and the condition (15) have been used. 
Substituting (23c) and (24) for V", and Vp into the definition of the Lorentz factor 

shows that 

y = {l-(I-H)~Q]/d, (25) 

where 

2 3-2 3- 2 2 3 d s: {l-(1-H)2 Q] -(2QHKX) - V0(1-4QU). (26) 

The quantity d varies from 1/yo(O) on Q = 0 to H(1_X2)1I2 on Q = 1. 
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Equation (23c) for V", shows that 

3 3 -I-XV", = (1-2QU)/{l-(I-HhQ]. (27) 

Since ~ Q < 1 and H > 0, the denominator is always positive; 1-X J4, changes from 
positive to negative on the Bz = 0 cones beyond the light cylinder. Also, (23c) shows 
that X V", increases monotonically away from the star along the poloidal field/flow 
lines. 

(c) Inertial Effects 

The MR W2 treatment of GJ flow does not involve complete neglect of the 
noncorotational electric potential, merely neglect of the \12 tP term in the combined 
Gauss-toroidal Ampere law (1). The Endean integral (2) can be used to calculate tP 
in GJ flow, so long as the result is consistent with neglect of the \12 tP term in (1). 

Inserting (25) and (27) for 'Y and 1- X V", into the Endean integral (2) with G 
replaced by 'Yo yields . 

tP/E = (1-~QU)ld-'Yo. (28) 

This gives tP = 0 on the sy~metry axis: the noncorotational electric field component 
along the axis vanishes and the particles are unaccelerated: J4, vanishes, ~ remains 
equal to Vo(O) and 'Y to 'Yo(O). At the edge Q = j of the outflow zone, where Vp = 0 
and V", = X, equations (25) and (28) reduce, as they must, to the forms appropriate 
to purely corotational flow: 'Y = 1/(I_X2)1/2 and tP/E = (l_X2)1I2_1. 

So long as the flow is only moderately accelerated, appropriate dimensionless 
length scales for variation of 'Y V p and 'Y J4, t, in the sense of forming the quantities 
\1 X ('Y V p) and \1 X ('Y V", t), are p and R. Thus, the ratio of inertial to magnetic terms 
in the toroidal and poloidal parts of the magnetoidal field B* may be estimated by the 
'magnetic Rossby numbers' Et and Ett, defined as E'Y ~/( - B", p) and E'Y J4,1 Bp R 
(cf. Wright 1978). 

Using (25) for 'Y with (24) and (23c) for Vp and V", gives 

3 ! 'Y ~ = (1-"4 Q U)2 Void, 'Y V", = KXH3QI2d. (29a, b) 

Using - B", = 2fi< Vo)1 X-a form of B", = - SIX-and (6c) for p shows that 

! 3 1 1 -B",p = (8Q2/3 U)< Vo)(I-"4 QU) 2/(l-2 QU). 

The relations Ii = X2 I R3 and (6a) for Bp give 

Bp R = (2QIU2)(l-lQU)L 

Equations (29) yield 

Et/E = (3/8d)R( VoI< Vo»(I- t Q U)/(l-l Q U), 

EttiE = (3/4d)XI(1 + 1/ ti + 1/ ii2)(1 ~ l Q U)! ; 

(29c) 

(29d) 

(30a) 

(30b) 
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in (30a), the relation U 1 Q1I2 = R-a form of ji = X 21 R3-has been used. On the 
axis Q = 0 = U, where d = 1/yo(O), equations (30) show that Et/E = 3Yo(0)Z/8 
and Ett = O. On Q = j, where d = H(1- X2)1I2, equations (30) show that Et = 0 
and EttiE = f X U2 1(1- X2)1I2(1_ ! U)1I2. 

5. On V, W and Beyond 

In this section, the behaviour of GJ outflow satisfying B z = 1 on V is demonstrated 
by evaluating quantities on certain surfaces, namely V, W, the Bz = 0 cones (beyond 
the light cylinder) and the equatorial plane. The condition (15) for B z to equal 1 on 
V can be written as 

3 -1- zQ= TIK. (15 /) 

A discussion of inertial effects is included at the end of the section. 

(a) On v.. KtX= 1 

This surface satisfies U = 1/1 or fj = 1. From ji = X 21 R3 and the definition 
(19c) of H, it follows that 

QU = Q = 1/(KZ2+1), H=~ on V. 

Equations (8) give, after substituting 1 + E G' for K, 

Equation (7) gives 

Y~ = (1 + B~I Bi)/(l -EG' B~I Bi), 

D~/K = 1-EG'B~/Bi on V. 

! 3 - ! - B~/ Bp = < Vo>1 K2(1- 4 Q)2 

(31) 

(32a) 

(32b) 

= I(KZ2+1)/(KZ2+i)Jt<Vo)lK~ on V. (33) 

Since K(O) = V5(0), it follows that - Bq/ Bp approaches 1 at large Z2 on V. On the 
circles (X = 1, Z2 = !) where V, Wand the Bz = 0 cones meet the light cylinder, 
-Bq/ Bp = 11'2< Vo>e' with < Vo>e den<?ting Vo(P) averaged right across the outflow. 
For GJ flows satisfying the condition B z = 1 on V, in a dipolar poloidal magnetic 
field, the toroidal magnetic field, which is vanishingly small near the star, varies on 
V from 100% of the poloidal field as Z2 ~ 00 to (141< Vo>e)% at Z2 = !. 

Equation (22) states that 

Jim W - K X2)/(B z-l) J = (1- ~ Q)/(1- Q) = 1 -1/2K Z2 ; (22/) 
U---+1 

the ratio (1-KX2)/(Bz-1) is finite on V, varying from 1 as Z2 ~ 00 to 0 on the 
circles (X = 1, Z2 = !). 

Equation (4a) gives, because of (22/), 

KS = (l-~Q)/(l-Q) = 1-1/2KZ2 on V; (34a) 
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SO I<. S on V varies from one as Z2 ~ 00 to zero at Z2 i. Equations (23b) and 
(23b') give 

Pe = -4K P(l- Q) = -4/ Z3(1 + 1/ K Z2)~ on 

Pe/( - 2Bz) = (1- Q)/(1- ~ Q) = 1/(1 -1/2K Z2)~ on 

V, 

V; 

(34b) 

(34b') 

so Pe on V approaches the fiducial (GJ) value -2Bz as Z2 ~ 00, but remains nonzero 
(equal to - ~ v' ~ or - 0·726) as Q ~ l Equation (23c) gives 

V",/X = iKQ/(l-Q) = 1/2Z2 on V; (34c) 

the angular speed of the flow, normalised to that of the star, varies on V from 0 to 
1 as Z2 goes from 00 to i. 

Equation (24) shows that 

Vp/Vo = (l-~Q)~/(1-Q) = (1 +5/4KZ2 +1/4K2Z4)~ on V. (35) 

This ratio, expressing the acceleration received by the poloidal flow between the star 
and the surface V, varies from 1 for particles emitted from the poles to 3/v'2 or 
2·12 for those emitted from the edge of a polar cap. 

Equations (25) and (26) for I' and d show that 

- -21 rJ. 2 3- 1 I' = (1- Q)/[ (1- Q) -"3,K'>t - Vo(1-"3, Q)lz on V (36a) 

= 1/[l-1/4KZ4 - V6(1 +1/KZ2)(1 +1/4KZ2)l~ on V. (36b) 

Equation (28) for the noncorotational potential gives 

3- -21 rJ. 2 3- 1 
(j>/€ = (1-"2 Q)/[ (1- Q) -"3,K '>t - Vo(1-"3, Q) P -1'0 on V (37a) 

= (1-1/2KZ2)/[l-1/4KZ4 

'-V6(1+1/KZ2)(1+1/4KZ2)l~-I'0 on V. (37b) 

As Z2 goes from 00 to i, I' varies from 1'0(0) to 00, while (j> varies from 0 to -€; 
this is true for any surface stretching from Z2 = 00 to a circle (X = 1, Z2 = i). 
[The right-hand sides of (37) are indeterminate when Q = ~ or Z2 = i, but the fact 
that (j> takes the form appropriate to purely corotational motion on Q = ~ shows 
that (j> = - € on the circles (X = 1, Z2 = i).] 

(b) On W.·IKIX= 1 

This surface satisfies U = 1/ J or (; = 1/1. From P = X 2/ R3 and the definition 
(19c) of H, it follows that 

QU = Q/J = 1/(K2Z 2+1), H = J/(J+I+1) on W. (38) 
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Equations (8) give 

12 = 1 + B2/B2 
m p <j>' 

D2 K2 on W 
00 • (39a, b) 

For the flows under consideration, K > O. 
Equation (7) shows that 

1 

-B<j>/ Bp = < "o>/K(I-3 Q/4J)2 

= !(K2Z2+1)/(K2z2+i)l~<"o>/K on W. (40) 

The ratio - B<j>/ Bp on W approaches 1/ "0(0) at large Z2, corresponding to Q -+ 0; 
on the circles where V, Wand the Bz _= 0 cones meet the light cylinder, - B<j>/ Bp = 

y2 < "o>e. For GJ flows satisfying B z = 1 on V, in a dipolar poloidal magnetic 
field, the toroidal magnetic field varies on W from (100/ "0(0»% of the poloidal field 
as Z2 -+ 00 to (141< "o>e)% at Z2 = !. 

Equation (20) shows that 

jjz = K(1 -3Q/2J)/(I-~Q) on W; (41) 

so jj z on W varies from V6(0) as Z2 -+ 00 to 1 at Z2 = !. It follows from (21) that 

(jjz-l)/(I-KX2) = KP-(I-H)~Ql/(1-~Q) on W; (42) 

the ratio (1- K X2)/( jj z - 1) on W varies from 1/ V6(0) as Z2 -+ 00 to 0 on the 
circles (X = 1, Z2 = !). 

Equation (4a) gives, because of (42), 

3 - 3 -KS = (1- 2 Q)/KP-(1-H)2 Ql on W; (43 a) 

so KS on W varies from 1/ V6(0) as Z2 -+ 00 to 0 at Z2 = !. Equations (23b) and 
(23b') show that 

2 - 3 -Pe = -4K PP-(I-H)2Ql on W 

Pe/(-2Bz) = P-(I-H)~Q}I(1-3Q/2J) on W; 

(43b) 

(43b') 

so Peon W approaches the fiducial value - 2Bz as Z2 -+ 00, but remains nonzero 
(equal to - ~ y 1 or - 0 . 726) as Q -+ 1. Equation (23c) shows that 

3 - 3 -V<j> = 2QH/P-(I-H)2Ql on W; (43c) 

the angular speed of the flow, normalised to that of the star, varies on W from 0 to 
1 as Z2 goes from 00 to !. 

Equation (24) shows that 

Vp/"o = (1-3Q/4J)~/P-(I-H)~Ql on W. (44) 

This ratio, expressing the acceleration received by the poloidal flow between the star 
and the surface W, varies from one for particles emitted from the poles to 3/y2 or 
2·12 for those emitted from the edge of a polar cap. 
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On W, as for any surface stretching from Z2 = 00 to a circle (X = 1, Z2 = !), 
1 varies from 10(0) to 00 as Z2 goes from 00 to !, while tP varies from 0 to -E. 

(c) On the Bz = 0 Cones 

Equation (6b) for the dipolar Bz, the condition (IS') for Bz to equal 1 on V and 
the definition (l9c) of H show that 

QU =~, T/K = l-1IU, l-(1-H)~Q = U2H on B z = o. (45a,b,c) 

Equation (7) shows that 

3 -
-B~/Bp = 1I2X<Vo) = 4(Vo)/3'iP on Bz = O. (46) 

The ratio - Bq/ Bp on Bz = 0 varies from 112 < Vo) e to 00 as X goes from 1 to 00. 

Equation (21) shows that 

2 - -3 (I-KX)/(Bz-1) = U-1 on Bz=O, (47) 

which varies from 0 to 00 as X goes from 1 to 00. 

Equation (4a) now shows that 

KS = U3 -1 on Bz = 0; (48a) 

so KS on Bz = 0 varies from 0 to 00 as X goes from 1 to 00. Equation (23b) shows 
that 

5 -Pe = -6J(2/3U)'iH(U) on Bz = 0; (48b) 

so -Pe on the Bz = 0 cones varies from ~11~ or 0·726 on X = 1 to 0 as X - 00. 

Equation (23c) shows that 

3 ~ V<j> = 1IX = (:2 Q)2 on Bz = 0; (48c) 

the angular speed of the flow, normalised to that of the star, varies on Bz = 0 from 
1 to 0 as X goes from 1 to 00. 

Equation (24) shows that 

v;,/Vo = (1 +1IU+1IU2)1112= {1+~Q+(~Q)2]/1I2 on Bz = O. (49) 

This ratio, expressing the acceleration received by the poloidal flow between the star 
and the Bz = 0 cones, varies from 11112 or 0·707 for particles emitted from the 
poles to 3/112 or 2·12 for those emitted from the edge of a polar cap. For U = 1, 
1 and 00, corresponding to Q = 1,! and 0, the ratio (49) is 2·12,1·64 and 0·707; 
it has fallen to 1 at U = 3· 17, corresponding to Q = 0·210; for smaller values of 
Q than this, there is net deceleration of the poloidal flow between the star and these 
cones. Co~parison of (49) wi!h (35) for Vp/ Vo on the surface V at corresponding 
values of Q shows that, for Q < 0·41, the poloidal flow receives net deceleration 
between V and the Bz = 0 cones; for 0·41 < Q < 1, it is very slightly accelerated, 
by no more than a few per cent. 
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Equations (48c) and (49) for V<I> and Vp on Bz = 0 give 

1I'i = 1 -11 U3 - ~ V6(l + 11 U + 11 (Pi on Bz = 0; (50) 

so "I on Bz = 0 varies from 00 to 11[1- ~ V6(0) } 112 as X goes from 1 to 00. 

Since X ~ = 1 on Bz = 0, the Endean integral (2), with G replaced by Yo, shows 
that <P is negative, equal to - EYo, on the Bz = 0 cones. Equations (30) show that 

EttiE = ~yRU(l<1'O»(l +1IU+1IU2), (51a) 

P 1 l EM/E = 3("2)2YX on Bz = O. (51b) 

(d) On the Equatorial Plane 

For a dipole poloidal magnetic field, the relation P = X 2/ R3 shows that PX = 1 
on this plane; it follows that 

QU = 1, 1-(l-H)~Q = (2-Q-Q2)/2(I+Q+Q2) on Z = O. (52a,b) 

In the work with G' neglected, it is the flow lines with Q < ~ that reach the 
equatorial plane. Near Q = ~, the quantity E G' must be very small, and K is 
correspondingly close to 1; so the maximum value of Q for which the GJ flow reaches 
the equatorial plane is very close to ~. I shall take Q = ~, corresponding to U = 2 
on Z = 0, as a convenient reference value at which to make illustrative numerical 
evaluations of some quantities of interest. 

Equation (7) shows that 

- B<I>/ Bp = 2< 1'0)/ P on Z = o. (53) 

In the calculations neglecting G', the ratio - B<I>/ Bp on Z = 0 was found to increase 
monotonically with X from the value 3·7 on U = 2. Since PX = sin3 e and 
Q U = sin2 e for a dipole field, (7) shows that - Bq/ Bp cc < 1'0)/ P on any cone of 
constant e, including the limiting case Z = 0; since Pct< 1'O)/dP = Vo -< Vo), it is 
clear that - B<I>/ Bp on any of these cones increases with distance from the star so 
long as Vo < 2< Vo). 

Equation (21) gives 

(.B z-l)/(I-KX2 ) = Q3(2-Q-Q2)/(2-3Q)(l+Q+Q2) on Z = 0; (54) 

this varies from 5/28 to 0 as U goes from 2 to 00. 

Equation (4a) now shows that 

KS=(2-3Q)(I+Q+Q2)1Q\2-Q-Q2) on Z=O; (55a) 

this varies from 28/5 to 00 as U goes from 2 to 00. Equations (23b) and (23b') give 

Pe = -(2/ X 3)(2- Q- (2)/(l + Q+ (2) on Z = 0, 

Pe/2Bz = (2- Q- (2)/(1 + Q+ (2) on Z = O. 

(55b) 

(55b') 
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So Pe on Z = 0 is negative and of the order of the fiducial value 2Bz; more precisely, 
Pe/2Bz varies from 517 to 2 as [; goes from 2 to 00. Equation (23c) shows that 

~/X = 3Q3/(2_Q_Q2) on Z = 0; (SSe) 

the angular speed of the flow, normalised to that of the star, varies on the equatorial 
plane from approximately 3/10 to 0 as [; goes from 2 to 00. 

Equation (24) shows that 

Vpl Va = (I + Q+ (2)/(2- Q- (2) on Z = o. (56) 

Thus, on the equatorial plane, Vpl Va is 715 for [; = 2 and tends to i as X ~ 00 • 

Equations (35), (49) and (56) for Vpl Va on the surfaces V, Bz = 0 and Z = 0 show 
that the poloidal flow suffers net deceleration both between V and the equatorial 
plane and between the Bz = 0 cones and the equatorial plane. 

Equations (SSe) and (56) for ~ and Vp on Z = 0 give 

y = (2_Q_Q2)/[(2_Q_Q2)2_9Q3_ V6(l+Q+Q2)2J~ on Z = 0; (57) 

the Lorentz factor on Z = 0 varies between 00, for a value of [; very close to 2 (cf. 
Part I), and 1/[1 - i V6(0) J 112 as X ~ 00.· 

Equation (SSe) for ~ on Z = 0 shows that 1- X Vcf> < 0 there; hence, the Endean 
integral (2), with G replaced by Yo, implies that C/J/E < 0; more precisely, 

C/J/E = _(I+Q+Q2)/[(2_Q_Q2)2_9Q3 

2 - A2 2 1 
-Vo(l+Q+~) )2-yo on Z=O. (58) 

Equations (30) show that 

Ei/E = hX(VaI<Va»(l+Q+Q2)/(2-Q-Q2) on Z = 0, (59a) 

E~/E = 3yXI(2- Q- (2) on Z = O. (59b) 

(e) Inertial Effects 

These manifest themselves in two ways: through the existence of the noncorotational 
electric potential and through the occurrence of inertial drift. For the flows under 
consideration, the former is given by 

3 3 -C/J/E = y(l-zQU)/[1-(I-H)zQJ -Yo, (60) 

while the latter effect is estimated by the magnetic Rossby numbers: 

Ei/E = ~yR(VaI<Va»(l-iQU)I[1-(1 - H)!QJ(I-~QU), (6Ia) 

E~/E = ~yXI[1-(I-H)!Qj(1 +1/[;+1/[;2)(l_~Qu)!. (6Ib) 

Far from the star, Ei/E - yR Val< Va) and E~/E - yX. 
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It is clear that cP in these flows is a very small quantity, of order E, except near 
the surface 51 on which the GJ Lorentz factor diverges. So, the noncorotational 
potential deduced from the MRW2 treatment of GJ flow (which neglects the "\12 cP 
contribution to the Gauss-toroidal Ampere law) is consistent with the assumptions 
underlying that approach. The magnetic Rossby numbers indicate that inertial drift 
becomes important near 51 and also at large distances, R - liE, from the star. 

6. Concluding Remarks 

Flows that cross the surface V without encountering the MR W2 limiting surface 51 
are emitted from an inner polar cap region, having about three-quarters of the radius 
of the standard GJ polar cap. The requirement that their GJ Lorentz factor be finite 
on V, together with the assumption of a dipolar form for the poloidal magnetic field, 
lead to a well-defined mathematical description of these flows. The higher-latitude 
(Class II) flows, emanating from the inner 80% by radius of the MRW2 polar cap, 
do not encounter 51. The flows (Class IC) emanating from the remaining ring of the 
MRW2 cap reach 51 beyond V. The surface 51 extends outwards from the circles 
where Bz = 0 on the light cylinder, crossing the equatorial plane at X ::::: 2312. 

It is inherent in this treatment of the outflow that it fails in the vicinity of 51, 
through buildup of cP and inertial drift. It appears that it also fails, because of inertial 
drift, far from the star, but only at such large distances--of order liE in units of 
the light cylinder radius-as to be probably a matter of little real concern; failure 
of the dipolar approximation for the poloidal magnetic field is likely to be of more 
significance. 

In the earlier work, with G' neglected, simple exact solutions for Vo(P) and 
S(P) were available (MRW2). In the present analysis, an approximate technique 
of solving for these quantities remains to be developed, proceeding from either 
a first-order integro-differential equation for Vo(P) or a second-order quasilinear 
differential equation for S(P). 

The techniques developed here have shown that allowing for variation of the Endean 
integral eliminates the singularity of the emission Lorentz factor that occurred at the 
stellar poles in the earlier treatment of these flows. There might be other ways of 
eliminating that singularity. It could simply be, as mentioned in the Introduction, 
that the flow from tiny inner cores of the polar caps cannot be of this (Class IC/II) 
kind: that is, there could be another branch of 51 which the flow along lines of tiny 
Q intersects inside the light cylinder, meaning that the flow is of Class IA. Setting 
aside this possibility, the occurrence of the singularity points to some missing element 
in the earlier work. The neglected quantities are G', dealt with here, "\12 CP, which 
must become significant before 51 is reached, and inertial drift. 

A referee has argued that, for poloidal field/flow lines emanating from very near 
a pole, "\12 cP is non-negligible in the immediate vicinity of the star, meaning that Vo 
cannot, for tiny Q, be identified with the emission speed. This has the consequences 
that it is non-negligible "\12 cP that is relevant to eliminating the singularity, and that 
G will remain close to unity. The techniques that I have developed incorporate G' 
fully, and show that the singularity is thus removed in a self-consistent way. Since 
I have no knowledge of work in which "\12 cP is incorporated, I am not in a position 
fully to assess the relative significance of "\12 cP and G'. 
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It has also been argued that my extended version of the MRW2 formalism (with G' 
incorporated) is relevant only if there is non-electric injection of particles; for example, 
by spallation caused by particles returning to the star. It is the case that the question 
of how the electrons are accelerated to their emission speeds has been left unanswered 
by the work presented here, as well as by the earlier work with G' neglected (MR W2 
and Part I). Treating the stellar surface as that of a perfect conductor means that 
any description of this process has been abandoned: the electrons are taken, in this 
approximation, as simply appearing at the surface of the star with the appropriate 
speeds. (Here, by 'surface', I refer to the geometrical surface of the star, as distinct 
from the physical surface layer of a neutron star.) 

More realistically, the finite conductivity of the surface layer will allow cP to 
. penetrate into the star. It is the corresponding component Ell of the electric field 

parallel to the magnetic field that accelerates the electrons before they reach the 
geometrical surface of the star. If the flow is to be of Class IC/II, then the near-surface 
regions of the magnetosphere must adjust, with the right latitude dependence, so as 
to match to the leakage Ell required to yield the appropriate emission speed as a 
function of latitude. 

There is an interesting non uniformity in taking the limit of nonrelativistic emission: 
ignoring G' by putting the emission Lorentz factor equal to one before determining 
the emission speed leads to Va(P) for Class IC/II flows which equals c at the stellar 
poles. But fully incorporating G'-leaving it to the mathematics to determine 'Yo 
through Va-leads to an emission speed that does not have this problem. Thus, 
fully incorporating 'Yo-allowing the emission to be arbitrarily relativistic-has the 
effect of showing that the emission speed required for Class IC/II flows is, in fact, 
more moderately relativistic than appeared to be the case when 'Yo was initially 
approximated by unity. This occurs because G' increases by one the order of the 
differential, or integro-differential, equation for Va( P). 

Thus, inclusion of G' is a matter of self-consistent determination of the function 
Va(P) required for Class IC/II flow. Description of the injection process, by which 
the particles might be accelerated to the required emission speed, is another problem. 
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