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Abstract 

Relationships are given in which the 'screening defect' is expressed in terms of the quantum 
numbers n and I for both the ground and excited states of neutral atoms for which the electron 
configuration can be considered as one electron and a core of completed shells. It is further 
shown that the same functions determine the ground-state energies for any series of neutral atoms 
with the same outer shell configuration. An explanation is offered in terms of wavefunctions with 
fewer nodes than the corresponding hydrogen wavefunctions. 

1. Introduction 

An energy level E of the single electron in a hydrogen-like atom is given by 

E = Z 2Eoln2, (1) 

where Eo is the energy for the ground state of hydrogen and Z is the nuclear charge. 
The valence electrons of atoms heavier than helium are generally assumed to occupy 
orbitals corresponding to the excited states of hydrogen. For the valence electron 
of such a neutral atom, if the remaining electrons exactly screen their equivalent 
nuclear charge, then the energy levels would be given by (1), with Z = 1. Instead, 
the electrons in the ground states and lower excited states (with 'lower' defined as 
having fewer nodes added to the wavefunction through excitation rather, than the 
actual energy level itself) are' generally, but not always, significantly more tightly 
bound than would be predicted by (1). These levels can be expressed in one of two 
forms (E<l1en 1964) 

E = Z*2 Eoln2 or E = Eoln*2. (2,3) 

Thus we have n* 55 nl Z* where n* (termed a defective quantum number) or Z* 
(termed a screening constant) is used to reflect the higher potential required to obtain 
the required binding energy. There are assumed to be various contributing terms to 
n* or Z*; for the present their sum will be termed screening defects. Screening defects 
are generally considered to arise through polarisation or penetration of the inner core 
by the valence electron. Waller (1926) derived a term which gave good estimates for 
the absolute values of such polarisation for nearly hydrogen-like states. Calculations 
gave energies in good agreement with experiment when n and I were large, either 
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through semiclassical calculations (Jaffe and Rheinhardt 1977), or wave mechanical 
calculations (Freeman and Kleppner 1976). The semi-empirical estimation of an 
effective field has allowed calculations of the screening terms in good accord with 
experiment for a number of atoms (Jastrow 1948), and generally it is understood that 
the theory that the inner electrons imperfectly screen the nuclear charge, through the 
polarisation or penetration of the core by the outer electron, is basically correct, even 
if accurate calculations are somewhat intractible for nand 1 small. This theory has 
been reviewed recently (Metcalfe 1980). 

The only alternative to this hypothesis is that the deviations from hydrogen-like 
behaviour arise through a quantum effect. In this context Sternheimer (1979) noted 
that energies of excited states appear to be grouped according to a quantum number 
k, where 

k = n+l. (4) 

The position for ground states is similar. Expressions have been found for the 
screening in isoelectronic series (Layzer 1959), and the required orbital exponents 
have been expressed in terms of quantum numbers (Clementi and Raimondi 1963) 
for series of atoms. It is not simple, however, to relate one series to another. 

While the calculations of the energies of the electrons has proved extremely difficult, 
attention has been paid to their relative energies to obtain the order of the filling of 
electron shells. In a simple Coulomb field we have E = f(n); in practice we have 
E = f( n, I). This is conventionally described as arising from differential screening, 
but as early as 1926, Madelung noted that the levels were grouped according to 
n+ I, i.e. Sternheimer's ordering. Further, Neubert (1970) has offered an explanation 
in terms of a new (but otherwise unexplained) quantum number c = ±~, and a 
constant X defined by 

'A = 2x(n'+I+l), (5) 

where n' is the radial quantum number, 1 the angular quantum number, and when 
X = ~, 'A = n is the principal quantum number. Neubert noted that when X = 1 
(which required n' even) and by using c, the order of filling the levels could be 
obtained, since with n' even the equivalence between radial and angular motion 
required by the Coulomb field was broken. The quantum defect was represented in 
terms of a wave number k n* by 

kn* = xko/'A = k/n*. (6) 

An alternative method of ordering energy levels was then devised (Novaro and 
Berrondo 1972; Berrondo and Novaro 1973). From considerations of group theory, 
it was argued that E = f( l) arises through the direct product of two hydrogen-like 
levels; this product generated non-hydrogen-like terms and allowed the ordering of 
the filling of the periodic table to be obtained. While two empirical· constants were 
required, it was claimed that the 'autbau' principle could be obtained 'from geometric 
considerations alone'. 

Armstrong (1982) has provided an alternative qualitative explanation for ordering 
which commences by invoking wavefunctions with fewer nodes. The observed order 
of the energy levels in spectra could be explained if the lowest state is (0,0), which 
has zero nodes, while the next level (~, ~), and at one-quarter the energy of the 
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(0,0) state, has one node. A problem with the explanation given is that the apparent 
ground state, from energy considerations, appears arbitrary: for example, RbI (i, i); 
CsI (1, 1); Call (i, i); Srll (1, 1); Pbll (i, i); SrI (i, i)· A second problem lies in 
demonstrating that the underlying wavefunctions are orthogonal to the outer shells. 

All such hypotheses have to address one further problem, namely that the spectral 
levels are ordered oppositely from the energies of the ground-state shells, even though 
the order of filling is the spectral order. For example, the observed spectral order 
for Rb is 5s < 5p < 5d, and the first ground-state electron occurs in that order. 
The ground-state energies, as obtained from ionisation potentials [which required 
Koopmans' (1933) theorem to apply], are -4·2, -5·8 and -7 eV respectively for 
Rb, In and Hf (Weast 1977-8). It seems unlikely that deviations from Koopmans' 
theorem could account for such a significant difference. Such an order can be 
explained in terms of screening defects; the difficulty with this explanation is that 
it cannot give quantitative estimates, and even at the qualitative level, there is no 
uniform approach. 

There are two basic classes of approach in the above work. The standard approach 
assumes that the screening constant could only be calculated from a full quantum 
mechanical solution, although to make progress approximations are generally made. 
The second and distinctly minority approach proposes that the screening constant is 
largely determined through the properties of a wave associated with the motion being 
different to that assumed in the first approach. 

This second approach requires certain assumptions to hold. The motion of a single 
electron is described in terms of a single valued wavefunction. There are a number of 
characteristics of this wavefunction; it has a number of zeros (Le. nodes) and maxima; 
it is describable in terms of an analytical function (at least in principle); and from the 
wavefunction the expectation values of certain mechanical properties can be derived. 
These characteristics are termed here the wave structure. From these wavefunctions, 
orbitals can be obtained which describe the spatial distribution of electron charge. 
This description does not imply that the electrons actually reside in such orbitals, 
but merely that such orbital descriptions contain certain information of value. Thus, 
when an electron is removed from the atom, certain energy and angular momentum 
are also removed. The wavefunction itself is designed to be consistent with this 
information. Such an orbital description has been of considerable value, particularly 
for chemical calculations where it has been particularly profitable to consider each 
valence electron in isolation. 

For the reason that such orbital descriptions are of considerable interest for 
chemical calculations, this study investigates the possibility that a fresh set of one 
electron wavefunctions may describe the energy levels of free atoms better than the 
one electron wavefunctions currently used. 

2. General Approach 

The first step is to find a convenient model in which to represent the mechanical 
properties in terms of the wave structure, and in terms of a reference wave structure. 
The corresponding states of the hydrogen spectrum (i.e. states with the same values 
of nand /) will be taken as reference states; the associated mechanical variables will 
be termed hydrogen-like and denoted by the sUbscript zero. Wavefunctions with a 
different wave structure and their associated variables will be termed non-hydrogen-
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like. Examination of (1) shows that changes in Z can be expressed in terms of 
momentum p, defined as p = (2mE)1I2, with m the electron mass; as such, these 
changes in momentum which arise from non-hydrogen-like effects will be expressed 
through a term defined by 

JI = p/Po, (7) 

i.e. the term expresses the momentum which would arise from the use of non­
hydrogen-like orbitals in units of the momentum of the corresponding hydrogen-like 
state. 

Either hydrogen-like or non-hydrogen-like orbitals may be subject to screening 
defects through the well-known correlation effects. In particular, if there are nj 
electrons with the same value of nand 1, then defective screening from this cause is 
expected when nj > 1. Defective screening alters the field as seen by the electron, and 
introduces an additional term. This term will clearly be dependent on the electron 
configuration of the atom, and empirically this group term C N (an approximate 
expression for which is given below in terms of electron configuration) is considered 
as additive to JI, i.e. it is expressed also in units of Po. Thus, we have 

Z· = JI + CN +8, (8) 

where 8 measures the deviation between the observed value of Z· and the sum of JI 
and C N' and ideally is equal to zero. If 8 has a significant magnitude or trend, then 
this indicates incompleteness of the model. 

The model to be used incorporates action as an important function. The mechanical 
variables can be related to action through a diagrammatic method first outlined by 
Planck (1915, 1916). Here the motion is represented as cells in phase space; boundaries 
to the cells are the expectation values of the momentum p and a distance r which 
defines the expectation value of the potential energy in the Coulomb field. The area of 
these cells defines the action S; the requirement that the corresponding wavefunction 
be single-valued (Keller 1958) is 

S = pr = nh. (9) 

While Planck's original work considered electron trajectories, such trajectories are not 
part of quantum mechanical considerations nor of this treatment. Nevertheless, the 
phase-space representation has attractive features for a model, particularly when the 
concept of trajectories is dispensed with and the cell shape is used merely as a relative 
accounting tool. In this case, the cell shape is determined from the expectation values 
of p and r. Of particular interest to the argument is the fact that the phase-space 
cell is divisible into two sheets; the sheets do not have to be equivalent, nor do they 
have to pass continuously from one to the other (Percival 1977). Thus, the possibility 
exists that a proposed effect could take place on one or both sheets. The value of 
this will be seen below. There is clear evidence (e.g. spectral analysis) that if there 
are non-hydrogen-like orbitals, the total action, and its distribution between angular 
and radial motion, is given by the appropriate quantum numbers of the hydrogen-like 
orbitals. This is also required for the periodic table. The quantum numbers are 
used here, and they are considered to define the quanta of action associated with the 
orbital, but they do not characterise the nodal structure of the wavefunction. 
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As a working hypothesis, it is assumed here that the wave structures differ from the 
hydrogen-like ones, and the screening constant is the observable parameter associated 
with this effect. The tenability of the hypothesis is tested by whether relationships 
for the screening constant can be obtained from the hypothesis. 

The postulate is, therefore, that some special effects may increase the magnitude 
of p, with a corresponding decrease in r, while holding S constant. This postulate is 
not compatible with motion in a Coulomb field, as in such a field S a: r1l2. Thus, an 
additional variable is required if the proposition is to be consistent with other general 
physics. The obvious additional variable is the field; the potential field is assumed to 
adopt a value at the inner spatial regions of the wave which permits a contraction of 
the overall value of r. The model therefore postulates that: 

The values for the screening constant Z* > 1 permitted for orbitals 
of heavy atoms arise from the properties of the wavefunction of the 
electron being screened, and are not a primary property of the orbitals 
of the remaining electrons. 

Thus it is proposed that the defective screening constant is a property of the electron 
being screened. The orbital being screened may in fact have a number of potential 
solutions, and the inner core will determine which one is adopted because the possible 
magnitude of the defective screening constant will be limited by the structure of the 
inner core. 

Before developing this model further, however, it will be useful to consider how 
this model applies to the one-electron wavefunctions of the hydrogen atom. 

3. Hydrogen-like Wave Properties 

The motion in a central field can be separated for the purposes of calculation into 
radial and angular components, i.e. in terms of the action 

S = Sr+Se' (10) 

and following Schiller (1962) (keeping radial and angular terms separately bracketed) 

n = (nr + ~)+(l +~), (11) 

where nr and I count the number of radial and angular nodes respectively. Each 
component is required, by the uncertainty principle, to have flI2 of action. Thus, when 
I = 0, there is flI2 of angular momentum; this has been confirmed experimentally 
for s orbitals (Kuhn 1962). 

Comparison of equations (1), (2) and (11) leads to the requirement 

n* = nl Z* = (nr + ~) + (l + ~) . (12) 

Clearly, a reduced number of nodes in the wavefunction is possible if 

Z* nix, (13) 

where x is an integer and 0 < x < n, but such a wavefunction would be indistinguishable 
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from an underlying wavefunction because 

nr+1 < n-l. (14) 

Since n r and I must be integers, if there were fewer nodes present for any value of 
n than for the hydrogen-like case, the inequality (14) requires that at least one pair 
of waves would be identical apart from differences in arbitrary labelling. This would 
violate the Pauli principle. This issue was not discussed by Armstrong (1982) when 
he proposed wavefunctions with fewer nodes. One conclusion from this is that, if the 
above analysis is correct, the hydrogen-like wavefunctions are the only ones based on 
one fundamental vibration and which are consistent with the Pauli principle. 

4. Non-hydrogen-like Wave Properties 

The use of two sheets as proposed above allows for a model to be constructed 
that contains more than one fundamental vibration. For the model to be useful, 
however, a separation into component vibrations must be made in a non-arbitrary 
fashion, and once the separation is carried out, a method must be found by which 
proposed non-hydrogen-like effects can lead to a lowering of the overall energy, and 
the effect(s) can be made to quantitatively account for Ji. 

The wavefunction can only be altered by reducing the number of nodes on one or 
both sheets; if the total action remains constant then the action per phase-space cell 
is proportionately increased. Since S is constant, and since p is required to increase 
(to account for observation) and r to correspondingly decrease to account for these 
changes, it is proposed that: 

Proposition 1. The values of Ji which arise through the nodal 
structure of a wave being altered to permit defective screening is 
proportional to the total action available to the component divided by 
the number of phase-space cells into which the action is distributed. 

Proposition 1 gives the fundamental route by which non-hydrogen-like effects are 
postulated to arise. 

The reduction in the total number of nodes clearly affects the action enclosed by 
the nodal surfaces, but examination of (12) shows that for each of the two degrees of 
freedom, fzl2 of action is independent of these nodal surfaces. 

Thus, when I =0, fz/2 of action is associated with the uncertainty of orientation 
of any radial axis with respect to an external frame of reference, and since these 
requirements arise from the uncertainty principle, and not from the nodal structure, 
these requirements should remain unaltered through variations in the nodal structure. 
As each sheet contributes half of each effect, we expect that: 

Proposition 2. For each non-hydrogen-like sheet, at least fzl2 of the 
action is unavailable to affect Ji as outlined in Proposition 1. 

A primary non-hydrogen-like effect is thus argued to arise from the reduction in the 
number of nodes on one or both sheets; whichever eventuates will depend on the 
ability of the atom to provide the necessary screening defect. The reduction in the 
number of nodes should not be arbitrary, and it is proposed that for a ground state, 
each sheet should be either hydrogen-like or have zero nodes; excited states should 
have an appropriate increase in the number of nodes on both ground-state sheets. 
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Furthermore, if the ground state has one non-hydrogen-like sheet, the effect on J{, 
apart from the question of available action, should be half that of when both sheets 
are involved. Furthermore, should all the action be available, and with no reduction 
in the number of nodes on either sheet, the formula should give the hydrogen-like 
formula of J( = 1. Consideration of these observations leads to: 

Proposition 3. The value of J( for the primary non-hydrogen-like 
effect is given by one of two equations: (a) if both sheets are 
non-hydrogen-like then 

J( Say. 
1 I + number nodes' 

(b) if one sheet only is non-hydrogen-like then 

// _ Say + 1 
.At'l- , 

2 + number nodes 

where Say is the available action, and the number of nodes refers to 
the number of nodes on the non-hydrogen-like sheet(s}. 

(15) 

(16) 

In the arguments above, there has been no explicit dependence of any variable 
on I, but it is known that E = f(n, I). Hence, with I =F 0, a second term J( 2 is 
required to account for this dependence on I. 

The non-equivalence of excited states can be seen immediately from (15) and (16). 
If, for example, an s level is to be converted to a p (or d) level, an angular node(s) 
must be added to each sheet; for the hydrogen-like sheet, a corresponding reduction 
can occur in the number of radial nodes, and energy equivalence is maintained. For 
the proposed non-hydrogen-like sheet, however, there are no radial nodes to remove, 
and hence I half-nodes must be imposed on each non-hydrogen-like sheet, which will 
raise the energy. Thus, the transition Na 3s -+ 3p involves raising the energy of the 
electron, and 3p is an excited state of sodium. 

For ground states, however, the position is reversed. For energy equivalence, on the 
non-hydrogen-like sheet all nodes should be removed. However, for the hydrogen-like 
sheet, assuming only one sheet is non-hydrogen-like, all nodes, including the angular 
nodes, are present and these impose angular distributions on the electron charge in 
real space. However, the charge associated with the (n' + !)Ii associated with radial 
motion should have the same angular distribution on each sheet, and hence the angular 
distribution of the hydrogen-like sheet is effectively imposed on the non-hydrogen-like 
sheet. The reduction of the spatial range of the (n' + ! )/i/2 associated with radial 
motion is reduced to that imposed by the I half-nodes; a reduction in positional 
uncertainty leads to a corresponding increase in momentum through the uncertainty 
principle. The spatial conditions leading to such a reduction in positional uncertainty 
are termed a constraint. 

The reduction in positional uncertainty arising from such a constraint, however, 
can be partly offset by the degeneracy of the orbitals. For example, if to the spherical 
distribution of the primary non-hydrogen-like effect is added the formal constraint of 
I nodes, the electron has 21 + 1 constrained orbitals to choose from, or interchange 
between. As it is not known which orbital the electron is in, positional uncertainty 
is increased, partly offsetting the magnitude of the effect of the imposition of the I 
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nodes. Thus it is proposed that: 

Proposition 4. Further terms in .A1 arise for each independent 
constraint to a non-hydrogen-like orbital; the value of jl for each 
term is proportional to the number of nodes required to impose the 
constraint, the action per phase-space cell affected by the constraint, 
and is inversely proportional to the degeneracy resulting from the 
constraint. 

These propositions allow the calculation of ground and excited state values of .A1, 

and hence energy levels. By Propositions 2 and 3 we have 

Say = (/+n'+hs)fz/2, (17) 

where hs is the number of hydrogen-like sheets. For the case of one hydrogen-like 
sheet, if I =I=- 0, the secondary term from Proposition 4 is 

jl2 = (n' + ~)l!2(21 + 1). (18) 

By inserting (17) into (16), adding (18), imd rearranging we get 

jl = ~p +1+(n'+~)(1+/)/(2/+1)J, (19) 

which in the special case of I = 0 reduces to 

1 1 
.A1=3: n+4· (20) 

If both sheets are non-hydrogen-like, and when I = 0, we have 

.~ = n-l. (21) 

When ni = 0, the model is formally free of experimental constants. When ni =I=- 0, 
the term defined here as C N has been observed to be linear with n i' and a theoretical 
explanation (Condon and Odabasi 1980, pp. 526-7) has been offered for I = 0 and 
1. Rather than use these expressions, the following equation is proposed on purely 
empirical grounds, largely because it covers I where 0 .;;; I .;;; 3: 

CN ;:::; (CN)o +(ni-l)/(2+ 14 ), (22) 

and (C N)O is ideally equal to zero. Equations (19), (21) and (22) are proposed as 
sufficient to account for ground-state energies. 

Ionisation Energies of Ground States 

A comparison with experimental observations is given in Table 1 for elements 
where n i = 1, and hence CN = O. As can be seen there is excellent agreement, apart 
from boron, and there is a clear implication that Z* = f( n, /) as given by equation 
(19). The remaining main-group elements are given in Table 2, where an empirical 
value of C N is used. That C N is constant seems adequate apart from groups VI-VIII, 
where agreement is improved by the addition of a further group constant when n :> 4. 
The comparison is shown in Table 2. 
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Table 1. Calculated values of Z* for group I and III elements 

Element vilA oB Element .II A oB 
Li 1·25 +0·009 B 1· 333 +0·229 
Na 1·75 +0·096 Al 2·000 -0·009 
K 2·25 +0·010 Ga 2·667 -0·010 
Rb 2·75 +0·022 In 3·333 -0·067 
Cs 3·25 -0·039 Tl 4·000 -0·019 

A Defined by equation (19). 
B This term must be added to jl to give Z* as derived from experimental values of the ionisation 
potential (Weast 1977-8) through equation (2). 

Table 2. Calculated values of Z* for main-group elements with more than one electron in 
the highest occupied level 

Element (,~+CN)A oB Element (..11 + CN)A oB 

Be 1· 735 -0·079 
Mg 2·235 +0·014 C 1·735 +0·084 
Ca 2·735 -0·054 Si 2·402 -0·080 
Sr 3·235 0 Ge 3·068 +0·023 
Ba 3·735 -0·021 Sn 3·735 -0·061 
Ra 4·235 +0·127 Pb 4·402 +0·028 

C N =0·485 eN = 0·401 
N 2·025 +0·043 0 1·976 +0·025 
P 2·692 -0·058 S 2·642 -0·025 
As 3·358 +0·039 Se* 3·394 -0·007 
Sb 4·025 -0·040 Te* 4·061 +0·008 
Bi 4·692 -0·300 Po* 4·727 -0·002 

C N =0·691 C N =0·642 (+0·085) 
F 2·266 -0·004 Ne 2·542 -0·023 
Cl 2·932 +0·003 A 3·209 +0·022 
Br* 3·748 -0·012 Kr* 3·058 +0·001 
1* 4·415 +0·0l1 Xe* 4·724 -0·002 

C N = 0·934 (+0·149) C N = 1·208 (+0·183) 

A Here JI is given by equation (19) and C N is given below the group. For the elements with 
asterisks the extra term in parentheses must be added to C N' 

B This term must be added to jl + C N to give Z* as derived from experimental values of 
ionisation potentials (Weast 1977-8). 

There are no marked trends in 8 apart from the sign of the difference from the 
median value; this sign is negative when n-l is even and positive when it is odd. 
Since there is no obvious dependence of 8 on n, this indicates that Z* is a function 
of n as required by equation (19). 

The significance of 8 is not immediately obvious. It has been recognised that the 
ionisation potentials in a group of elements fall onto one of two curves, depending on 
whether n+ I is odd or even. It has been stated (Condon and Odabasi 1980, pp. 522-5) 
that, from a dynamical group theory treatment, this can arise as follows: 'Because 
two representations of SO(3, 2) occur in the particular representation SO(4, 2), whose 
multiplicity pattern coincides with the structure of the periodic table, the neutral 
elements are sorted into two groups according to whether n+ I is even or odd.' 

In Table 3 the values of eN as found from Table 2 are listed, using values of eN 
when n;;;. 4 and assuming a new series commences with spin pairing (Condon and 
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Table 3. Comparison between the empirical C N and that calculated from (22) 
for main-group elements 

ni C N (empirical) C N (from equation 22) 
( C N)O assumed 

s electrons 
1 0·02 0 
2 0·49 0 

p electrons 
1 0.02B 0 
2 0·40 0 
3 0·69 0 

p electrons (n > 4) 
4A 0·73 0·73 
5 1·08 0·73 
6 1·39 0·73 

A This group is used to determine (CN)o for ni> 4 and n> 4. 
B Boron omitted. 

C N calculated 

0 
0·5 

0 
0·33 
0·66 

0·73 
1·06 
1·39 

Odabasi 1980). The agreement is sufficient to suggest that if the discontinuity in eN 
for groups V-VIII is real (and not that an incorrect function is masked by 8), then 
the light elements are anomalous. 

s. Elements where I = 2 and 3 

In the transition elements, the series proceeds by the addition of d electrons, but 
the first ionised state seldom has the configuration of the ground state less one d 
electron (Moore 1971). Nevertheless, if the ionisation potentials are used to derive 
values of Z*, these values can be plotted against the number of d electrons, as shown 
in Fig. 1 for the early d electrons. The dependency on n, as required by equation 
(19), is shown by the vertical bars, while the slopes of the lines show the dependency 
on the number of electrons required by equation (21). Fig. 2 shows a similar plot 
for elements where I = 3. As can be seen, the agreement is quite good for the early 
members of each series. 

Towards the end of the transition metal series, the ionisation invariably involves 
s electrons, but Z* does not parallel its behaviour for the Ia or IIa elements. In 
Table 4, however, a correlation is given with Z* from equation (21) which is fairly 
good. When n = 4, Z* is consistently too low, but it should be noted that if the sign 
of 8 follows the rule outlined above, 8 will be positive for n = 3 and 5, and negative 
for n = 4. Thus, 28 should be subtracted from the mean values for n = 3 and 5 to 
predict the value for n = 4. 

Therefore, it appears that the s electrons, in the presence of adjacent d electrons, 
adopt a different wavefunction from that of s electrons in the absence of filled d 
orbitals. Once an arbitrary screening defect explanation is abandoned, of course, this 
is required to explain why the chemistry of the s electrons of copper, silver and gold 
is so different from potassium, rubidium and caesium. That these elements can use d 
electrons is beside the point; the s electrons themselves behave so differently. As an 
example, the reactivity increases as n increases from K to es, but the reverse occurs 
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Fig. 1. Values of Z* derived from ionisation potentials against 
the number of d electrons for the early transition metals. The 
gradient of lines is defined by equation (22), with the vertical bar 
lengths as required by (19), both assuming I = 2. 
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Fig. 2. Values of Z* derived from ionisation potentials against the 
number of f electrons for the rare earths. The gradient of lines is defined 
by equation (22), with the vertical bar lengths as required by (19), both 
assuming 1= 3. Ionisation potentials are taken from Weast (1977-8) 
and Martin et al. (1974). 

339 

from eu to Au. For the main-group elements, covalent bonds are generally stronger 
the higher the ionisation potential of the atom, yet the transition metals with high 
ionisation potentials, such as Au and Hg, form weak bonds. A fundamental change 
in the nature of the wavefunction seems to accommodate these observations. 
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Table 4. Comparison between values of Z* as required by (2) and those calculated from (21) 

Element ,/(A Z*B Element vilA Z*B 

CoC 3 3 ·12 NiD 3 2·99 
RhC 4 3·83 PdD 4 3·72 
Irc 5 4·88 PtD 5 4·88 

10iavE = 0·085 10iavE = 0·133 
Cu 3 3·01 Zn 3 3·32 
Ag 4 3·73 Cd 4 4·07 
Au 5 4·94 Hg 5 5·25 

10 I av E = 0·13 I 0 I avE = O· 11 

A . /( calculated from equation (21). B Ionisation potentials from Weast (1977-8) or Martin 
et af. (1974). C d7s2 -+ d7s, and energy levels from Martin et af. (1974). D d9s -+ d9, and 
energy levels from Martin et af. (1974). E Mean magnitude of the deviation 0, assuming the 
same sign convention for 0 as observed for the main-group elements. 

6. Excited States 

If the proposed model is correct, an immediate prediction follows. The action 
associated with radial motion is (n - 1- ~ )fz. If this is to be distributed such that 
there is more than one quantum of action per phase-space cell, the required condition 
for a non-hydrogen-like orbital in the absence of radial nodes is 

n-l-~ > 1. (23) 

Thus, inequality (23) requires that if the lowest orbital in a series is 2p, 3d and 4f, the 
orbitals are hydrogen-like (provided they arise through excitation and are not ground 
states), i.e. j( = 1, while the 3p, 4d and 5f orbitals are not if the 2p, 3d and 4f levels 
are not available. 

In Table 5 empirical values of Z*, as required by equation (2), are listed for 
the excited states of elements where the excitation can be considered to involve one 
electron and leave an inert core. The selection chosen consists of the excited states 
of the alkali metals, those of the group III elements which can be assigned the S2 

closed subshell, and the excited states of the Cu subgroup of elements which can be 
assigned as having the d 10 closed subshell. Energy levels and their assignments for 
excited states have been taken from an NSRDS compilation (Moore 1971). 

For the alkali metals, when I = 1, the Li 2p level has Z* = 1·02, while the 
Na 3p level has Z* = 1·417. When I = 2, the Na 3d level and the K 3d level 
have Z* = 1·003 and 1·051 respectively, while the Rb 4d level has Z* = 1·446. 
All of the alkali metals have 4f levels available, but no non-hydrogen-like effect is 
predicted for I = 3. The observed values for K, Rb and Cs are 1·002, 1·003 and 
1·005 respectively. Thus, for a first order analysis, this is excellent agreement. 

For group 3 elements, no analysis is possible for I = 1 (ground states have an 
additional term), while for I = 2 again Z* = 1·4 when n = 4, although Z* = 1·14 
when n = 3. This would seem to be rather poor agreement, but it should be noted 
that the addition of a radial node actually increases the value of Z*. This is atypical 
and is suggestive of a large additional effect. When I = 3, Z* = 1·015 when n = 4, 
but 1·26 when n = 5. Thus, with the possible exception of the Al 3d state, the 
commencement of this non-hydrogen-like effect occurs exactly where it is required by 
inequality (23). 
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Table 5. Values of Z* derived from experimental energy levels by (2) 

NA indicates the level is not available and an asterisk that one radial node is present through 
excitation 

Element n 1=0 1= 1 1=2 1=3 

Li 2 1·259 1·02 
Na 3 1·843 1·417 1·003 
K 3 NA NA 1·051 

4 2·259 1·792 1·052* 1·002 
Rb 4 NA NA 1·446 1·003 

5 2·77 2 ·19 1·349* 
Cs 4 NA NA NA 1·005 

5 NA NA 1·96 
6 3·21 2·58 1·701* 

B 3 1·485* 0·998 
Al 3 NA NA 1·14 

4 1·828* 1·495* 1· 167* 
Ga 4 NA NA 1·408 

5 2·318* 1·869* 1·314* 
In 4 NA NA NA 1·015 

5 NA NA 1·772 
6 2·705* 2·207* 1·581* 

TI 5 NA NA NA 1·258 
6 NA NA 2·076 1·207* 
7 3 ·190* 2·597* 1·796* 

Cu 4 NA 2·156 1·344 
5 2·090* 1·717* 1· 257* 

Ag 4 NA NA NA 1·003 
5 NA 2·681 1·676 
6 2·467* 2·050* 1·504* 

Au 5 NA NA NA 1·256 
6 NA 3·486 2·022 
7 2·983* 2·533* 1·761* 

The eu elements have their 3d levels filled, but for 1 = 3, the Ag 4f level has 
Z* = 1.003, while the Au 5f level has Z* = 1·256. Thus it seems that the observed 
deviations from hydrogen-like behaviour occur exactly where required by (23). 

Discontinuities in a series of screeening constants have been recognised and have 
been explained in terms of core penetration (Foley 1979). The argument is that 
there is a steep potential well within the core, the depth of which increases rapidly 
with nuclear charge. As the nuclear charge increases an antinode develops in the 
inner region giving a sudden phase increase of 7T. The development of this antinode 
is assisted by increasing nuclear charge, but this is offset by the centrifugal forces 
present with large I. It is required that this antinode develops quite suddenly at a 
certain nuclear charge, particularly when 1 = 2 or 3. 

The values of Z*, as empirically determined from equation (2), for the 5s and 
5p levels of Ga (2·32 and 1·87) are similar to those for the 4s and 4p levels of K 
(2·26 and 1· 79). Now, if this reflects that the depths of potential wells are roughly 
the same, then one might expect the Ga 4d (or 5d) levels to correspond to the K 3d 
(or 4d) levels. As can be seen from Table 5, they do not, exactly as required by 
(23). While this argument is stronger when the magnitudes of Z* are calculated, the 
probability that some unrelated factor could follow (23) by accident is exceedingly 
small. 
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Calculation of Excited State Energies 

This model requires that the value of J( for excited states be obtained from (15) 
and (16). The two equations can be generalised by defining a term x, equal to 2 if one 
sheet is non-hydrogen-like and 1 if both sheets are non-hydrogen-like, the number ne 
of additional quanta of action generated through excitation (this can be negative e.g. 
6s ~ 5t), and ns which is ng-i if x =2 and ng-2 if x = 1, with ng being the 
principal quantum number for the ground state: 

J( = (ns+ ne+ 1)/(x+ nr+ill'). (24) 

It should be noted that (24) is written such that il /' is the total change in the number 
of angular nodes. If angular nodes are removed through excitation, e.g. 3p ~ 4s, 
then il /' is negative. The excited state energy levels follow the form of (24) reasonably 
well, but a considerable improvement is made if minor modifications are made to its 
parameters. 

3 ·5 

J/ 
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~1=2 
• 1·5 ~ 

~.::::~ 

12345678 

o 2 345 6 7 8 
• 

012345678 

nr 

Fig. 3. Comparison between Z* from observation (squares) 
and the value of J/ required by equation (26) (curves) for 
non-hydrogen-like excited state levels for the alkali metals. 

If x = 2 (i.e. one non-hydrogen-like sheet) and for the ground state I = 0 (i.e. s 
state), the best agreement is found when 

ill' = ill/2. (25) 

The reason for this is not clear but is presumably a consequence of the requirement 
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to generate half a node from the non-hydrogen-like sheet. The 1/2 term could arise 
if there was a 50% probability that this could come from the hydrogen-like sheet. 

The second cause for modification is if minor changes can be made to the value of 
ns; i.e. increased amounts of action may be unavailable. In the following, it has been 
assumed that such shifts can take place in minimum amounts of 1;/4 (Keller 195~). 
Specific elements are now considered. 
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Fig. 4. Comparison between Z* from observation (squares) and 
the value of ..,/I required by equation (27) (curves) for non­
hydrogen-like excited state levels with s2 subshells for the group 
III elements. 

7. Alkali Metals 

A comparison between Z* as derived from equation (2) and calculated as detailed 
below is given in Fig. 3. As might be expected, the alkali metals follow the proposed 
theory most closely, fitting the equation 

vii = (ns+ne+l)/(2+~+tl), (26) 

with ~ = ng - t, sufficiently well that the energies of the excited states for Li and Na 
can be calculated to within about 4% (after applying inequality 22), and· frequently 
the results are better. For K, Rb and Cs the agreement is poorer, and systematic 
trends are observable. The systematic errors occur in the sand p series, but not in the 
d series and this may indicate an interaction with the vacant d orbitals. Much better 
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agreement is found for these three elements when nr =1= 0 by putting ns = ng - i, 
and the curves in Fig. 3 are calculated on this basis for the sand p series. 

Thus, while (26) can give quite an accurate account of the energy levels of the alkali 
metals, it should be noted that the errors are also of roughly the same magnitude as 
the deviations for J( = 1 for the 2p levels of Li and the 3d levels of K for which (23) 
requires J( = 1. These deviations may well accurately represent the polarisation of 
the underlying inert gas' electron core. 

8. Group III Metals 

This discussion is limited to those lines which are considered to arise from the 
excitation of the ground-state p electron, leaving an inner S2 shell which is assumed 
to be inert. Comparative data are found in Fig. 4. The group III elements follow an 
equation of the form 

J( = (ns+ ne+ 1)/(1 + n,.+ l). (27) 

The term ns' however, is not constant, being ng - ~. for the p series, ng - i for the d 
series and ng -1 for the f series. (For the f series of T1 ng is also reduced from 6 to 
5.) For the s series, however, ns is reduced to ng - i for the heavier elements, while 
for B, best results are obtained when ns = ng - 1. 

The significance of this result is not clear. That boron does not fit well is not 
unexpected, as it gave a poor fit when considering ionisation potentiais. The remaining 
elements appear to fit their series quite well, which is strong support for this proposed 
model, but it is clear that there is a minor systematic effect which has not been 
considered. Ga and Al have systematic deviations of similar magnitude to these 
deviations from Z = 1 for the Al 3d level, where it is required that J( = 1 by (23). 
The deviations may arise through the neglect of polarisation. 

For the group III elements we have x = 2, but the value of I in the ground state 
has been subtracted out in (27) for convenience. 

9. Group Ib Metals 

Our discussion is limited to those lines which are considered to arise from the 
excitation of a ground-state s electron, leaving an inner d lo shell which is assumed to 
be inert. Detailed data are shown in Fig. 5. The elements follow equation (27). For 
the p, d and f series we have ns = ng -1, while for the s series a tolerable fit is found 
with ns = ng - 2, and an improved fit with ns = ng - i. In general, the agreement 
between calculated and derived values of Z* is good, although some levels agree only 
poorly, such as the lowest p level for Au, which has an observed value of Z = 3·486 
and a calculated value of J( = 3·000. Since ns is constant for the p and d series, the 
same value is used to calculate the 5f level for Au and, after making the correction 
for the reduction of n from 6 to 5, the calculated value of J( is 1·250, in excellent 
agreement with the observed value of Z = 1·256. 

10. Conclusions 

The equations proposed here give a good, but not exact, means of calculating the 
energies for ground states and for any series of the excited states of these atoms where 
an inert core can be assumed. Clear relationships between the calculated and derived 
values of Z* are too extensive to be a series of accidental coincidences, and the 
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equations proposed here do not appear to be able to be derived from an alternative 
theory. This is considered as strong evidence supporting the proposition that the 
orbitals concerned are fundamentally different from the corresponding excited states 
of hydrogen. 
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Fig. 5. Comparison between Z* from observation (squares) and the value 
of JI required by equation (27) (curves) for non-hydrogen-like excited state 
levels with dID shells for the group Ib elements. 

The purpose of this paper has been to explore the consequences of assuming 
that the nodal properties of atomic orbitals differ from those of the excited states of 
hydrogen. The postulated requirements for such an hypothesis leads to two qualitative 
achievements: it has shown that the orbitals may be hydrogen-like or non-hydrogen­
like, and it accurately predicts where the transition occurs, and secondly it quite 
accurately predicts both the form of a given spectral series and the relationships 
between series and elements. Minor alterations to the value of some terms are 
required for quantitative agreement, but agreement is quite extensive following these 
corrections. These calculations have been carried out on the lower levels, and good 
agreement has been obtained for these levels, where conventional theory has not been 
particularly successful. Good agreement has been obtained for numerous levels in 
many series which hitherto have not been numerically related. 

For the ground states, good agreement is found for group I and group III elements, 
i.e. those for which an inert core can be expected. While an empirical correction is 
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required to make calculations on the remaining elements, the relationships between 
elements in the same group are the same as for the group I and III elements. Of 
particular significance for the ground-state elements is the term in I; the dependence 
on 1 is accurately given and it is of the opposite sign to all other theoretical predictions 
known to this author. Of further significance is the explanation for the different 
behaviour of the s electrons for transition metal elements, i.e. that they have a different 
wavefunction from the alkali metal case. Apart from being numerically accurate, a 
simple explanation is given of the fundamentally different chemistry between, say, Cs 
and Au, which is not readily given by the orthodox screening explanation. 

The agreements for the excited states are also very good once certain corrections are 
made. It could be argued that these corrections seem somewhat arbitrary; they are, 
however, consistent through series of elements. A limited number of elements give 
poor agreement; it is suggested that these differences are consequences of the fact that 
the treatment is only first order, and that significant factors, such as polarisation and 
magnetic interactions, have been omitted. The relationships between series, however, 
is encouraging, since when there are significant corrections to be made, these apply 
consistently to a large number of levels. 

The concept that the screening defect should depend on the orbital structure, and 
that orbitals with fewer nodes than those of the corresponding hydrogen orbitals 
could exist, should have further chemical ramifications. 
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