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Abstract 

We review two criteria which have been used to predict the onset of large scale stochasticity 
in Hamiltonian systems. We show that one of them, due to Toda and based on a local 
stability analysis of the equations of motion, is inconclusive. An approach based on the local 
Riemannian curvature K of trajectories correctly predicts chaos if K < 0 everywhere, but· no 
further conclusions can be drawn. New (counter-)examples are provided. 

1. Introduction 

In recent years a clear picture of the qualitative behaviour of Hamiltonian systems 
has emerged and a hierarchy of statistical properties has been found (Ford 1973; Berry 
1978). The simplest property is ergodicity which applies, for example, to almost all 
initial conditions on the invariant manifold of integrable systems, so it does not imply 
chaos. Next, one has weak-mixing and mixing, the latter being required for statistical 
mechanics to apply. Kolmogorov systems (so-called K systems) and exponentially 
unstable systems (so-called C systems) differ only in their mathematical definitions 
(using measure theoretic and metric elements, respectively). The strongest chaotic 
property presently known is that of a Bernoulli shift which can be immersed in the 
flow (referred to as B systems). Further discussions can be found in Ford (1973) and 
Arnold and A vez (1968). 

Except for the rare cases in which the Hamiltonian system is integrable and others 
in which it is chaotic (i.e. K, Cor B systems), most systems show a divided phase space. 
There are regions (the so-called islands) inside of which the motion is quasi-periodic 
and others which are densely filled by a single trajectory (the so-called stochastic 
layers). The ratio of chaotic to quasi-periodic regions depends on the parameters of 
the system. If we take the energy E as the parameter [given by E = H(PiO' qiO)' 
where Pio and qiO denote the initial values], we typically have for small energies 
a situation where the KAM theorem (Moser 1967) applies and the phase space is 
dominated by quasi-periodic regions (outside integer resonances). With increasing 
energy the chaotic regions grow in size and within a rather small energy range around 
a critical energy E c the system turns to predominantly chaotic behaviour. In other 
words, the quantity E c defines the energy onset of substantial irregularity (Hamilton 
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and Brumer 1981). For simple but typical Hamiltonian systems the 'width' of the 
stochastic layers can be approximated by exp( - Eel E) (Chirikov 1979; Escande 
1982). This explains the dramatic change in the qualitative behaviour of the system. 

At present, the only two methods known to yield reliable estimates of the critical 
energy E c are the surface of section technique (Berry 1978) and the stability analysis 
of orbits (Benettin et al. 1977). The first method has the disadvantage of being 
numerically feasible in systems with two degrees of freedom only. In this method 
one follows the successive crossings of the trajectories through a surface intersecting 
the energy shell, for example, the (Pz, ~) plane at the point ql = o. If after a 
sufficient number of iterates, the resulting points form a closed curve, called an 
invariant curve, the trajectory corresponding to them lies on an invariant torus or 
KAM surface. If, instead, these points are dense in a two-dimensional area in the 
plane, then the trajectory corresponding to them is irregular. Thus for a fixed energy 
E we are normally forced to calculate these points for a sufficiently high number 
of different initial values. The second method requires time-consuming numerical 
calculations for many orbits. One has to find initial conditions in the chaotic region. 
Moreover, one has the difficulty of deciding between marginal stability (Casati et al. 
1980) for integrable systems and exponential growth perhaps with a small exponent. 
Consequently, an analytical estimate for the critical energy E c would be highly 
desirable. 

Three different approaches have been proposed: one based on the local curvature 
(Arnold 1978; Van Velsen 1978), one based on a stability analysis of the equation of 
motion (Toda 1974; Brumer and Duff 1976; Benettin et al. 1977; Tabor 1981; Steeb 
and Kunick 1985; Steeb et aI.1985), and one based on the Mori projector formalism 
(Mo 1972). The last method, although analytical in its origin, requires extensive 
numerics to compute phase space averages and will not be considered further. In 
addition, the arguments given by Mo (1972) are incomplete (compare Tabor 1981; 
Marchesoni, et al. 1982). The remaining two methods are local versions of valid 
global methods which study the stability of single orbits, i.e. they are evaluated along 
a reference orbit. This dependence on the reference orbit makes them intractable to 
analytical methods. Thus a natural approximation would be to disregard the reference 
orbit and study them for all points of the phase space. That this is more than just 
a 'dubious step', as noted by Tabor (1981), will become evident from discussions in 
Section 3. 

2. Questions 

From the discussion in the Introduction, one is led to investigate the following 
questions: 

(i) Does local instability everywhere imply global instability? 
(ii) Does local stability everywhere imply global stability? 

If neither is the case, one would like to ask: 
(iii) Does the existence of regions of local instability imply the occurrence of a 

divided phase space? 
In the next section we discuss each of these questions for the two criteria mentioned 

in the Introduction, i.e. local curvature and stability analysis of the equation of 
motion. 
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3. Examples and Counter-examples 

(a) Local Curvature 

For the curvature criterion we write the Hamiltonian function as 

n 

H(q, q) = ~.~ ai/q) iIi iIj + U(q). 
I,j=l 

(1) 

The solutions q;( t) are not only extremes of Hamilton's variational principle but also 
of the Maupertuis-Euler-Lagrange-Jacobi principle (Synge 1926) 

JM 1 ( n )~ [) 21 E - U(q)J .~ ai/q) dqi dqj = 0, 
1% l,j=l 

(2) 

where Mo and Ml are the endpoints of the trajectory. This, however, may be 
interpreted as the variational equation for geodesics in a space with the metric element 

and the coefficients 

n 

ds2 = ~ 9ijdqi d qj 
i,j= 1 

9ij = 21 E - U(q)J aij(q). 

(3) 

(4) 

Now the behaviour of nearby geodesics is a question well studied in differential 
geometry (Synge 1926). The evolution of the difference TJ is given by the solutions to 
the Jacobi equation 

D 2TJ/dP = - K( q(t» TJ, (5) 

where D/dt denotes the covariant derivative. Now the case of interest deals with 
initial conditions perpendicular to an orbit. Then the covariant derivative becomes 
an ordinary one and we can write 

d2TJ/dt2 = -K(q(t»TJ, (6) 

where K( q( t» is the Riemannian curvature calculated along the orbit. Assuming that 
K varies slowly with time t we have (at least locally and for short times) exponential 
instability for K < 0 and oscillatory behaviour for K > O. The local approach now 
disregards the dependence on the orbits and defines stability (at a particular point) as 
K > 0 and instability as K < O. With these preparations we can answer the questions 
in Section 2: 

(i) It is known that a local curvature bounded from above by a negative number 
implies strong stochastic properties such as K, C, or even B systems (Anosov 1967). 
Thus the answer to question (i) is affirmative. 

(ii) That local stability does not imply global stability is most easily seen by 
considering the problem of the billiard table. The discontinuities along the boundaries 
can be smoothed out by regarding it as the limit of motion on the surface of a 
three-dimensional body with one cross section equal to the billiard and a very small 
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extension perpendicular to it (Arnold and Avez 1968). Bunimovich (1979) proved 
that two-dimensional billiards in domains bounded by straight lines and arcs of a 
circle are B systems if they satisfy certain geometrical conditions. A famous example 
of this class is the stadium, formed by two semicircles with equal radii, connected by 
straight line segments. The curvature of the semicircles is, of course, positive, that of 
the straight line segments being zero, i.e. K ;;. 0, thus providing a counter-example to 
question (ii). An analytical counter-example is provided by the quartic Hamiltonian 

H( ) 1 (2 2) 1 2 2 p, q = "2 PI + P2 +"2 q1 q2· (7) 

A simple computation yields 

2 2 E+ U 
K(q) = (q1 + q2) (E _ U)3 ' (8) 

where U( q) = ! qi q~ and consequently K > 0 except for q1 = m = O. In a careful 
numerical analysis, Carnegie and Percival (1984) have shown that the system is not 
integrable; as a matter of fact no islands could be located. The equations of motion 
scale invariantly under t -+ a-I t, qi -+ a qi' Pi -+ a 2 Pi. Corresponding to any motion 
of energy E, there is a similar motion for all other energies. The properties of the 
motion for any energy can be determined by simple scaling from the properties of 
the motion on the energy shell E = 1. A detailed analysis (singular point analysis, 
Toda-Brumer criterion, quantum chaos) of this system has been given by Steeb et af. 
(1985). 

(iii) Counter-examples to the expectation expressed in question (iii) are easily found. 
One may take, for example, the billiard ball in an annulus (angular momentum is 
conserved) or radially symmetric potentials with a sufficiently strong inflection point. 

In summary, only in the case K .;;;; - a2 < 0 everywhere can we expect the local 
property (namely instability) to carryover into global behaviour. 

(b) Stability Analysis of the Equation of Motion 

We consider now the Toda (1974) criterion for a Hamiltonian with two degrees of 
freedom. More specifically, let us consider 

2 2 

H(p, q) = 2P1 + 2P2 + U(q) , 
m1 ~ 

(9) 

with equations of motion 

Pi = -aU;aqi' qi = p/mi · (10) 

Linearizing around a solution ! q( t), p( t) I we obtain the variational equations 

6q1 0 0 lIm1 0 6q1 

6ib 0 0 0 1I~ 6m 

6P1 -U - Uq,q, 0 0 
I. (11) 

q,q, 6P1 

6~ - Uq,q, -Uq,q, 0 0 6Pl 
{ p( t), q( t)l 
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where indices on U indicate partial derivatives, e.g. Uql'h. = 'i U/oq,o'h' We let M 
be the matrix on the right-hand side of (11). Again, dropping the dependence on the 
orbit, we compute the eigenvalues of the 4x4 matrix M and define local stability as all 
eigenvalues having a negative real part, and local instability as at least one eigenvalue 
having a positive real part. We obtain the secular equation 

A4 +( Utnq/m, + U'h.'h./11'2)A2+(1Im, 11'2)( Utnql U'h.'h. - U~'h.) = 0, (12) 

which is a quadratic equation in p, = A 2• The condition for local stability now 
becomes 

Uq1q/m, + U'h.'h./11'2 > 0, 

U'MI U'h.'h. - U;I'h. > O. 

We note that the gaussian curvature of the potential U is given by 

U U2 
UI/tql 'h.'h. - 'h'h. , 

Kg(q) = {1 +( UqY +( U'h.)2 J 

(13) 

(14) 

(15) 

thus relating local stability to the convexity of the potential surface. Toda (1974) 
applied this criterion successfully to the Henon Heiles system. He found that at 
energy E .;;;; Ec = 1112 no inflection point appears inside the region in configuration 
space accessible to a trajectory. However, it also hints that the argument is incorrect, 
because at energies below Ec stochastic layers already exist, although exponentially 
small. This is shown dramatically by the unequal mass Toda lattice 

2 2 

H(p, q) = ~ + P2 + exp(q,) + exp{ -(q, - 'h) J + exp( - 'h)' (16) 
2m, 211'2 

Both conditions for local stability are satisfied, yet the system shows large stochastic 
regions. How this comes about is best illustrated by the example given in Appendix A 
in Tabor (1981). There the exponential instability is linked to resonance phenomena, 
where the discontinuities are not crucial, but make the calculation easier. A continuous 
model is given by 

H(p,q) = ip2+{i(w,+w2)+i(W2-W,)COS tJi, (17) 

where (w, +w2) > (w2 -wI) > O. This leads to Mathieu's equation, but the result 
remains the same. Whenever w, and w2 are adjusted such that the coefficients in 
equation (17) lie in an unstable band of Mathieu's equation, the motion is unstable 
and exponentially separating. The basic ingredient in the discrete model is that the 
product of two matrices with purely imaginary eigenvalues may have real and positive 
eigenValues. 

This suggests that the converse might be possible too, Le. a product of two matrices 
with real eigenvalues may yield a matrix with imaginary eigenvalues. Thus we are led 
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to the following counter-example to question (ii). Let us consider the Hamiltonian 

H(p, q) = i(p- aq)2 - i w2 l. (18) 

The equations of motion are 

[!] ~ [w,-_aa' :] [:] (19) 

and the general solution is given by 

[
q(t)] [COSh(wt)-(a/W)Sinh(wt) (1/w)sinh(wt) ] [lkJ] 
p(t) (w2 - a2)( 1/ w )sinh( w t) cosh( w t) + (a/ w )sinh( w t) Po' (20) 

If we let M( a, t) be the matrix on the right-hand side of (20), then det M( a, t) = 1. 
Also, if we let a = 0 for a period T1 and let a > 0 for a period Tz, then the time 
evolution of an initial point (Po, lkJ) after a time T:, = Ti + Tz is given by the product 
M3 = M2 M 1, where M1 = M(a=O, t= Ti) and M2 = M(a>O, t= Tz). Since 
det M1 = det M2 = det M3 = 1, the eigenvalues of M3 are determined by tr M3, 
namely real eigenvalues for I tr M3 I > 2 and complex eigenvalues for I tr M3 I < 2. 
From the condition I tr M3 I < 2 it follows that 

1(1- A2)cosh [ w( T1 + Tz) 1+ A2cosh [w( Ti - Tz) II < 1, (21) 

where A = a/2w. If we let Ti Tz = T and A2 = 1 +8, then the condition for 
complex eigenvalues becomes 

I - 0 cosh(2w T) + 1 + 0 I < 1 (22) 

or 

o < 0 < 2I[ cosh(2w T)-11 . (23) 

To obtain the behaviour for long times, we may write t = n T:, + r for some 
positive integer nand 0 .;;; r < T:,. The asymptotic behaviour is governed by the 
one-dimensional Lyapunov exponent (Eckmann and Ruelle 1985) 

A = lim sup ~ In IM(T)xl 
T .... oo 1-"1=1 T Ixl 

(24) 

Now M( T:,) acts like a rotation and M(r) is finite, so asymptotically A ---+ 0 and the 
motion is stable. Consequently, for suitable a, wand T the motion becomes stable 
although it is locally exponentially separating. 

There are ample counter-examples to the question (iii), for example, all radially 
symmetric potentials have an inflection point, thus rendering the Toda (1974) criterion 
inconclusive in all three cases, We note that both criteria may lead to contradictory 
predictions. For the Hamiltonian system with the potential U( q) = i qi q~ we 
found K > 0, i.e. local stability, whereas the Toda criterion yields local instability 
everywhere (Steeb and Kunick 1985; Steeb et al. 1985). 
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4. Conclusions 

In conclusion we can say that, except in the case of negative Riemannian curvature, 
there is, in general, no connection between local and global properties. As noted in 
Section 1 the local criteria were derived from valid global methods so that the above 
counter-examples emphasize the importance of the reference orbit. 
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