
Enhancement of Parity Violation 
for Overlapping Nuclear Resonances 

A. M. Awin 

Department of Mathematics, College of Sciences, 
Al-Fateh University, Tripoli, Libya. 

Aust. J. Phys., 1986,39,217-24 

Department of Mathematics, College of Basic Sciences at Misurata, 
University of Al-Fateh, Tripoli, Libya (S.P.L.A.J.). 

Abstract 

Proton scattering from a medium weight nucleus and the possibility of finding tWQ resonances, 
with the same spin but opposite parity, overlapping is studied. As a guide to the experimental 
study of this possibility we have constructed a simple separable potential model involving 
spin ~-spin 0 scattering that contains the required resonances for adjacent I values in the absence 
of a parity-violating (PV) interaction. A phenomenological PV interaction is then introduced and 
the magnitude of the longitudinal asymmetry is studied as a function of the model parameters. 
It is found that the magnitude of the asymmetry is greatest at zero separation for the case of 
narrow resonance levels. 

1. General Remarks 

Although the form of the parity-violating (PV) interaction between nucleons is 
of fundamental importance, the effect is very small. Recent attempts (Balzer et aZ. 
1980) to study this effect by measuring the longitudinal asymmetry of protons in p-p 
scattering led to a longitudinal analysing power equal to almost twice that reported 
previously (Potter et aZ. 1974). However, if instead we study proton scattering from 
a medium weight nucleus, it is possible that the spectrum may have two resonances 
with the same spin but opposite parity overlapping. The amount of mixing should 
be inversely proportional to the energy separation, so that there may be considerable 
enhancement of the longitudinal asymmetry in the energy region of the resonances if 
their separation is small. 

Stodolsky and Forte (1980) reported the first observations of neutron weak 
spin rotation. An effect was found which is much greater than that anticipated 
by conventional weak interaction theory. If the resonance-dominated-amplitude 
explanation is adopted, then the role of resonances might be important when they are 
very close together. 

In this respect, Karl and Tadic (1977) suggested the possibility of exploring 
situations in which enhancement might occur in relation to the measurement of the 
spin rotation of a beam of polarized thermal neutrons. The prediction of a rotation 
angle <I> (= 10-5 rad m -1) in 209Bi, using several theoretical and semi-empirical PV 
potentials, was given and discussed in detail by Tadic and Barroso (1978). However, 
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as pointed out by Barroso and Margaca (1980), several approximations not always 
valid were used to predict the behaviour of cf> near a resonance. Barroso and Margaca 
(1980) proved that, for a target with a p-wave resonance in the eV region, the rotation 
angle corresponding to neutrons with energy in the meV region is enhanced by quite 
a large factor; this was in good agreement with the calculation made by Tadic and 
Barroso (1978). 

The present wotk, supporting previous results and offering an experimental guide to 
detect parity violation, introduces a somewhat detailed study of the case where cross 
sections, asymmetry, and maximum asymmetry are calculated for various overlapping 
resonances. For simplicity, we study the observable enhancement of polarization, 
which signals parity violation, by using a potential model involving overlapping 
resonances. The model involves spin ~-spin 0 scattering and is constructed so that, 
in the absence of parity violation, two overlapping resonances are present with the 
same spin but opposite parity. A phenomenological PV interaction is then introduced 
that mixes the levels, and the resulting longitudinal asymmetry of the spin ~ particle 
is studied as a function of the resonance separation and widths. Only relative effects 
are studied and no attempt is made to relate the strength of the PV potential to the 
magnitude of the weak N-N interaction. Possible experiments to detect PV effects 
in proton elastic scattering from medium weight nuclei are discussed, and the most 
general form in the case of elastic scattering is considered. 

2. Spin ~-Spin 0 Scattering with Parity Violation 

In order to study spin ~-spin 0 scattering without parity conservation but with 
the retention of time reversal and rotational invariance, we adopt the description by 
Taylor (1972) and consider a nucleon incident along the z axis with momentum k 
and with the outgoing nucleon of momentum k' lying in the x-z plane. With parity 
violation, the scattering amplitude may be written as 

f(O) = a(O) +ib(O)0". n+ic(O)O". q, (1) 

where n = kX k' and q = k + k', 0" represents the Pauli matrices, a(O) and b(O) 
are the usual non-flip and flip amplitudes and the c(O) term is parity violating but 
maintains time reversal and rotational invariance. In the scattering of an unpolarized 
beam, the c(O) term gives rise to polarization in the scattering plane. Since the 
detection of such effects requires double scattering, we concentrate instead on the 
asymmetry in the scattering of longitudinally polarized nucleons. 

We describe the density matrix for the incident beam that is longitudinally polarized 
along the + z axis as 

(2) 

where· Pz is the degree of polarization of the beam. The outgoing density matrix is 
then 

(3) 

Substituting (1) and (2) into (3) and omitting traceless terms we obtain 
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We note that if the direction of the incident nucleon polarization is changed from 
+ z to - z, the algebraic sign of Pz changes. If we define 

(j' ±(O) = Tr!pout(±z)} , (5) 

then the asymmetry A(O) may be given by 

(6) 

Evaluating (6) we obtain 

1I 2!Im(ac*) cos i O +Im(bc*) sinO sin iO} 
AM= . 

laI 2 +lbI 2 +lcI 2 
(7) 

We note from this expression that asymmetry is linear in c and that it arises from 
interference with the parity conserving flip and non-flip amplitudes. 

We proceed to make a partial analysis of 1(0) according to 

<Szl/(O) I S;) = 417' ~ <lmiSzl J M)<l' m' is;1 J M) 
l,m,l',m' 

j • I" ,.. 

xiII' Y/' (k,)Y,!,(k) (8) 

and first concentrate on the parity conserving (PC) (l = l') part of 1(0). By letting 

(9) 

where the first subscript (+) implies that the incident nucleon is polarized along the 
positive direction and the second subscript (+ or -) refers to J = I ± i, we obtain 
the standard expressions 

I~\(O) = a(O) = ~ !(l+I)/~j)+II~/)}PI(cos 0), 
1=0 

(10) 

I~C_(O) = b(O) = sinO ~ (f~j)-/~/»PI(cosO). (11) 
1=0 

In the case of the PV contribution, two terms arise for a given I, one with l' = 1+1, 
J = 1 + i and one with I' = 1- I, J = 1- i. The PV contributions in (8) then 
emerge as the following spin non-flip and flip terms 

From (12), (13) and (1) we obtain the expression 

c(O) = 2i cos iO ~ !~jL P;+ 1 (cos 0)-1~/~1 PI_ 1(cosO)}. (14) 
1=0 ' , 
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This completes the analysis necessary to give the asymmetry in terms of the PC and 
PV scattering amplitudes. 

3. Potential Model 

In order to study the asymmetry as a function of resonance position, we use a 
potential model in which resonances may be formed and their positions adjusted in 
adjacent partial waves. This would be difficult with the usual optical potentials since 
the partial waves are correlated. We choose instead a set of separable potentials so 
that the resonance positions can be adjusted independently in each partial wave. For 
a given J we have a two-channel scattering problem to solve in order to obtain all 
necessary scattering amplitudes. We introduce the partial wave t-matrix according 
to (fz = 1) 

til' = (-21Tlm)!iI" (15) 

where m is the reduced mass. The necessary scattering amplitudes are obtained as 
solutions of the two-channel Lippmann-Schwinger equation 

The further advantage of choosing a separable form for V is that (16) then has an 
algebraic solution. We choose the potential to be of the form 

(17) 

thereby defining both the PC (l = /') and the PV (l =F /') parts of the interaction. 
We consider only the partial waves 1 and l' = 1 + 1 both coupled to J = 1 +i (we 
suppress J). By letting 

(18) 

we obtain the on-shell amplitudes 

(19) 

and a similar expression for T1+ 1,1+ l(k) with the replacements 1---+ 1+ 1 in (19). The" 
PV amplitude is 

(20) 

These solutions are dependent on the Fredholm determinant given, in this case, by 

.J = 1 -(A" I" +11.1+1,1+1/1+1,1+1) 

+ I" / /+1,/+1(11.,,11.1+1,1+1 -11.7,1+1)' (21) 
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Since we will be dealing with low energy resonances we can adjust the coupling 
constant in either of the partial waves relative to that necessary for a zero energy 
bound state. We take 

(22) 

where 11.0 is that value of coupling necessary for a zero energy bound state in the 
absence of parity violation and TJ is near unity. For the lth partial wave we choose 
the form factor to be 

(23) 

The resonance position is adjusted by varying TJ I in (22). For our form factor (23), 
11.0 is given by 

11.0 = -47T/m{3 (24) 

and for 0·9 < TJ I < 1 we obtain low energy resonances. In our subsequent calculation 
we choose {3 = 2 and fix the masses appropriate to nucleon scattering on amass four 
system. In some calculations we have also added a PC s-wave interaction to make 
the calculation more 'realistic'. 

4. Results 

The general features of the resonances produced with the separable potentials are 
shown in Fig. 1 where the total cross section against energy is plotted for typical 
I = 1,2,3 resonances with no PV interactions. Centrifugal barrier effects make 
the width strongly dependent on I and there is little freedom to vary the width by 
changing {3. Fig. 2 shows the total cross sections obtained by including a p-wave 
resonance together with a higher energy d-wave state for J = i and ~, I = 2 and 3. 
Again, no parity violation has been included here. 

With the magnitude of the PC interactions established we now turn to the PV 
interaction. A PC s-wave interaction has also been included to provide a more 
realistic background to the cross section. The resulting total cross sections against 
energy are shown in Fig. 3 for J = i and ~. The corresponding angular distributions 
of the longitudinal asymmetry are shown in Fig. 4. The energies chosen are close 
to the corresponding resonant peaks of the total cross section. In both cases the 
asymmetry is positive at the energy of the lower resonance but turns negative if the 
energy approaches or exceeds the higher level. Also, A(8) vanishes at certain angles, 
independent of the energy. This follows from the simple angular dependence of A(8) 
if only one PV resonant pair of amplitudes is present. Under these circumstances 
there are J + i nodes in A(8) and the PV amplitude c(8) has the simple structure 

c(8) z cosi8 [Pi+l(cos8)-Pi(cos8)J, (25) 

where I refers to the lower angular momentum of the pair. The positions of the 
nodes are easily obtained from (25) and appear at 8 = 70° and 180° for J = ~ and 
at 8 = 46°, 107° and 180° for J = ~. 

In order to detect parity violation in subsequent proton-nucleus scattering ex­
periments, it is of interest to study the magnitude of asymmetry as a function of 
resonance level separation. Such a study requires a definition of the resonance 
position. We use the pole position of the scattering amplitude as our definition since 
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Fig. 3. Total cross section against Eem for the PV cases (a) J = i and (b) J = ~. 
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for (a) J= 3/2 and (b) J= 5/2. 

the simple expression for the Fredholm determinant allows analytic continuation. We 
then define the resonance separation as the difference between the real parts of the 
pole positions. To simplify the results we first position one of the resonances and 
study A(O) as the second resonance is moved closer to the first. Fig. 5 shows the plot 
of maximum asymmetry appearing at any angle against the resonance separation for 
J = ~, ~ and t. We would expect I Amax I to be a maximum at AE = 0 and',fall to 
zero for large resonance separations. This is the case for J = ~ and i in which the 
resonances involved are quite narrow. For J = ~ we do not obtain a maximum and 
the magnitUde of I Amax I remains not peaked at zero. The behaviour is apparently 
related to the larger widths of the levels in the J = ~ case. 
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5. Discussion 
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AM. Awin 

We have shown by means of a simple potential model how the longitudinal 
asymmetry behaves in a situation with overlapping resonances together with parity 
violation. From the point of view of detecting parity violation in proton-micleus 
scattering we found that the magnitude of the asymmetry is greatest at zero separation 
for the case of narrow resonance levels. We also found that the asymmetry has a 
simple nodal structure for the case of only a single J involved in the parity mixing. 
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