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Abstract 

The components of the elastic constant matrix of monoclinic caesium dihydrogen phosphate 
(CDP) have been determined using ultrasonic velocity measurements to be Cl1 = 28· 83 ± 0 '43, 
C22 = 26·67 ± O· 37, C33 = 65 ·45 ± 0'48, C44 = 8 .1O± 0,15, Css = 5 ·20± 0,24, C66 = 9·17 ± 0,22, 
C12 = 1l'4±3'6, C13 = 42·87±1·58, CIS = 5'13±0'67, C23 = 14·5±4·4, C 2S = 8'4±4'3, 
C3S = 7·50±0·81 and C46 = -2·25±0·31 GPa. Calculations of the velocity surfaces, ray 
directions, Young's modulus surfaces and linear compressibility show marked elastic anisotropy, 
which has been correlated with the chain and layer-like structure of CDP. 

1. Introduction 

The crystal structure of ferroelectric CsH2P04 (Tc = 154 K) was unambiguously 
determined to be monoclinic P21/m by Uesu and Kobayashi (1976) rather than the 
orthorhombic structure earlier reported by Fellner-Fe1degg (1952). On the basis 
of the oxygen-oxygen bond distances they suggested that the structure consists of 
P04 groups, hydrogen bonded approximately along the a and c axes as shown in 
Fig. l. The hydrogen bonds along the a axis link the P04 groups into chains running 
along the b axis. These chains are cross linked. by the hydrogen bond along the c 
axis. Thus (100) layers are formed which are bonded to each other by ionic forces 
involving the Cs+ ion (see also Fig. 6a). The relative weakness of the interlayer 
forces is evident from the perfect cleavage that occurs along the (100) plane. 

The structure was further refined by Matsunaga et al. (1980) who also determined 
the position of the hydrogen atoms. They found that the sites for the two hydrogen 
ions were inequivalent. The hydrogen ions associated with hydrogen bonding along 
the c axis were ordered at room temperature, whereas the ions along the a axis were 
disordered at room temperature. At Tc the ordering of this hydrogen linked the chains 
of P04 tetrahedra together along the ferroelectric b axis. Since one hydrogen is 
already ordered in the paraelectric state, the ferroelectric transition has been described 
as pseudo-one-dimensional, unlike the three-dimensional behaviour observed in the 
case of KH2P04 (KOP) (Frazer et al. 1979). This one-dimensionality has been the 
focus to date of many of the studies on CsH2P04 (COP) (see e.g. Youngblood et al. 
1980; Iwata et al. 1980; Yakushkin et al. 1981; Kanda et al. 1982, 1983). 
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Fig. 1. Crystal structure of 
CsH2 P04 • Disorder in the 
hydrogen bonds along the a axis 
involved in chain formation is 
indicated by the neighbouring 
solid and dotted circles used to 
represent the proton positions. 
Note that adjacent P04 groups 
in the b-axis chain are not in 
the same cell. [From Frazer et 
al. (1979).] 

The present paper does not specifically address the problem ofthe elastic behaviour 
in the vicinity of the transition but is restricted to a report of the room temperature 
elastic behaviour and its relationship to the crystal structure. As such, this worl 
represents a first step in the overall understanding of the lattice dynamics of CDP. 

The nature of the chain and layer like bonding can be expected to be reflected in 
the elastic properties of the crystal, as the elastic constants are given by the second 
derivative with respect to strain of the free energy. Here we report a complete deter­
mination of the elastic constant matrix of CDP, via measurements of the ultrasonic 
phase velocities along different crystallographic directions. There are 13 independent 
nonzero elastic constants Cll, C22 , C33 , C44, C55 , C66 , C12 , C13 , C15 , C23 , C25 , C35 

and C46 (Nye 1967) for monoclinic symmetry. Direct and simple relationships 
between measured velocities and elastic constants are only possible for C22 , C66 and 
C44• All the other constants occur coupled together in more complicated relation­
ships. Also, only measurements along the b axis yield pure elastic waves (i.e. purely 
transverse or purely longitudinal particle motion). Hence, the determination of all 
13 elastic constants of a monoclinic system is demanding both experimentally and 
computationally. 

The elastic constants are usually referred to an orthonormal set of axes x, y, z which 
have a standard orientation with respect to the crystallographic axes a, b, c (see 
'Standards on Piezoelectric Crystals' 1949). The conventional arrangement is shown 
in Fig. 2. In order to avoid confusion, the normal notation [IX, p, y] will refer to direc­
tions with respect to the monoclinic axes a, b, c, and the primed notation [I, m, n]' 
will refer to directions with respect to the orthonormal set. 
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Once the Cij matrix is known it is possible to calculate the Debye temperature, 
bulk modulus, linear compressibility and Young's modulus, as well as constant 
phase and group velocity surfaces. The dependence of the last four quantities on 
crystal orientation must be related to the crystal structure, although this relationship 
is very complex. 

z 

LJ-+--------:::~ b = y 

x~--!---

Fig. 2. Axes of monoclinic CsH2P04 

(P = 107· 742°): a and c are perpen­
dicular to b, but not to each other, 
while xyz form the cartesian axes to 
which the elastic constants are 
referred. 

Finally, as previously mentioned, the ferroelectric ordering in CDP is essentially 
of a one-dimensional nature. The elastic constants, particularly the off-diagonal 
elements, provide information about the cross compliance between the principal 
ferroelectric axis and directions at right angles to it. A knowledge of the cross com­
pliance is essential for the description of anomalies which appear in these off-principal­
axis directions. 

2. Theory: Elastic Waves in Crystals 

The equation of motion for particles in a crystal with displacements Ui from their 
mean positions is given in the index-summation convention used throughout this 
paper by (Brown 1967) 

(1) 

where p is the density and Cijk/ is the elastic constant tensor. 
Representing a travelling wave in a crystal by the form 

(2) 

where OJ is the frequency, k is the wave vector and A is the polarization vector, and 
substituting this into equation (1) yields 

(3) 
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As dispersion effects are negligible in the long wavelength region of the ultrasonic 
measurements, the ultrasonic velocity V is ill 1 k 1- \ where 1 k 1 = (ki + k~ + k~}~·. 
Equation (3) may then be written as 

(4) 

where A is a real symmetric matrix whose components are quadratic functions of 
the direction cosines I, m, n of the propagation vector k. Specifically, if 

Cll C66 Css CS6 C15 C16 r I' 
C66 C22 C44 C24 C46 C26 m2 

Css C44 C33 C34 C3S C4S n2 

Q= L= 
CS6 C24 C34 t(C23 +C44) t(C36 + C4S ) t(C46 +C2S) 2mn 

C1S C46 C3S t(C36 +C4S ) t(C13 +Css) t(C14 +CS6) lin J 
C16 C26 C4S t(C46 +C2S ) t(C14 +CS6) t(C12 +C66 ) 21m 

then 

All = Q1jLj , ..122 = Q2jLj' ..133 = Q3jL;, 

..123 = Q4jLj' ..113 = QSjLj, ..112 = Q6jLj' 

where the Voigt notation has been used (Nye 1967) andj = 1-6. 
Equation (4) indicates that p V 2 are the eigenvalues of the matrix A, whilst A 

(the polarizations) are the corresponding eigenvectors. For (4) to have non-trivial 
solutions it is required that 

(5) 

Hence, measurements of the three velocities (two transverse and one longitudinal) 
for a given propagation direction I, m, n were used to establish relationships between 
the elastic constants. To obtain sufficient relationships to determine all 13 elastic 
constants for a monoclinic material, measurements of all three velocities were 
required in at least six different directions (i.e. [100]', [010]', [001]', [IOn]" [110]' and 
[011]'). Some of the relationships were redundant and were used as internal consistency 
checks on the data. The procedure adopted is outlined in Section 4. 

The direction of energy flow R in a crystal is, in general, not parallel to the 
propagation vector. Often called the ray vector, R is given by the tensor product of 
stress and particle velocity (Musgrave 1970) and, by assuming Hooke's law that 
strain is linearly proportional to stress (Nye 1967), it has been shown that its com­
ponents are given by 

(6) 

By assuming a wave solution of the form (2) exists, equation (6) can be written as 

(7) 



Elastic Behaviour of CsH2 P04 67 

where Rj is the time average over one period (271:/w) of the energy vector. As only 
the direction of R j is of interest, (7) may be rewritten as 

rj = 2Rjlkl-1W-1 = CijklAjAkPI' (8) 

where PI = k/l k 1-1 are the direction cosines of the propagation vector. Then, 
expanding (8) and using the Voigt notation we get 

r1 = lQ1jSj +mQ6j Sj +nQsjSj , 

r2 = lQ6j Sj +mQ2j Sj +nQ4j Sj' 

r~ = IQsjSj +mQ4j Sj +nQ3j Sj' 

where j = 1-6, and S is the column matrix 

Ai 
A~ 

S= 
A~ 

2A2 A 3 

2A3A1 

2A1A2 

(9) 

Hence for a given propagation direction [lmn]' the A. matrix was calculated and equa­
tion (4) was solved to obtain the eigenvalues (i.e. the values of pV2) and the eigen­
vectors (i.e. the polarization vector A). 

Since A. is real and symmetric it has three real positive eigenvalues and three 
independent eigenvectors which are mutually perpendicular. In general the eigen­
vectors do not constitute purely transverse or purely longitudinal particle motion. 
In the special case that the longitudinal mode is pure, the two transverse modes are 
also pure. However, if only one transverse mode is pure, the remaining transverse 
and the longitudinal eigenvectors are not pure but are constrained to lie in a plane 
perpendicular to the pure transverse mode and are therefore referred to as semi-pure 
modes of vibration. 

Once the polarization vector A was determined the matrix S could be calculated 
and using equation (9) the components of the ray direction r calculated. 

3. Experimental 

Sample Preparation 

The CDP crystals used in this investigation were produced by the solvent evapora­
tion method. The saturated solution was produced by reacting stoichiometric quan­
tities of CsOH and H 3P04 which gave a saturated solution with a pH of approxi­
mately 4. The resulting crystals sometimes showed evidence of mixed growth habits 
which were revealed by examining the samples between crossed polarizers. In these 
cases, the offending section of crystal was removed before measurements were per­
formed. It was found that lowering the pH to 2-2·5 by addition of excess H 3P04 
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eliminated this problem and gave crystals of excellent quality. Frazer et al. (1979) 
have also reported that in order to obtain good crystal growth, it was necessary to 
add a slight excess of H 3P04 to produce a starting solution with a pH of about 2·5. 
The crystals used for the elastic measurements varied in size and quality, but in all 
cases were at least 3 mm thick and the faces to which the transducers were bonded 
had diameters of at least 3·2 mm. 

The crystals were aligned using Laue back reflection photographs with the aid of 
a computer program that produced simulations of Laue patterns for any given 
orientation (Cornelius 1981). These simulations enabled the Laue spots to be indexed, 
and using the actual indexed spot positions from the photograph, an estimate of the 
error in alignment could be calculated. This was found to be a maximum of one 
degree, but along the main symmetry directions the error was closer to ± 0.5°. 

The ultrasonic measurements require two opposite faces to be polished flat and 
parallel to each other and perpendicular to a given crystallographic direction. CDP 
is brittle, heat sensitive and extremely water soluble making polishing a difficult 
task. However, samples were polished with faces parallel to within a tolerance of 
10' of arc, with each surface flat to within 10 interference fringes per cm, and surface 
scratches less than 5 pm deep. 

Velocity Measurements 

The ultrasonic velocity was measured by the pulse echo overlap technique 
described by Papadakis (1967). A 3·18 mm (0 ·125 in.) diameter quartz trans­
ducer was bonded to one face of the specimen, and was excited by a 50-100 V 
peak-to-peak 10 MHz r.f. pulse. The returning echoes were picked up by this same 
transducer and displayed on a CRO. The pulse echo overlap technique involves 
triggering the CRO with a signal, the period of which is equal to the round trip travel 
time between the echoes of interest and hence overlapping the two echoes r.f. cycle 
for r.f. cycle on the oscilloscope screen. This enables the round trip travel time T 
to be determined accurately from the triggering frequency and hence, from the path­
length of the specimen between the parallel faces, the velocity V of the particular 
mode may be calculated. 

The major source of error in this technique is the choice of the correct r.f. cycle 
for overlap. We have used, with some success, the criterion suggested by McSkimin 
(1961) for the determination of the correct overlap condition. However, whereas he 
applied the technique to homogeneous samples such as fused silica, which gave 
excellent quality echo trains, not only did the present samples contain defects which 
resulted in poor echo train quality, but the inherent monoclinic symmetry of the 
system also gave rise to mixed modes which produced an echo train composed of a 
superposition of separate modes, each with a different velocity. In these cases deter­
mination of the correct echo for overlap was difficult and in some cases there was an 
ambiguity of ± 1 r.f. cycle in the overlap which gave rise to errors of the order of 
± 1 % in the determined velocity. 

The echo train quality, and hence the ability to determine the correct echo for 
overlap, is also very dependent on the quality of the bond between transducer and 
sample. In general, the thinner the bond the better the echo train quality. We found 
that Dow Corning 276-V9 resin (a thick and very viscous alpha methyl styrene fluid) 
was a satisfactory bonding agent for both longitudinal and transverse waves. Less 
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viscous bonding agents, such as silicone greases, whilst satisfactory for longitudinal 
waves, lacked sufficient acoustic coupling for the transverse waves. The Dow Corning 
276-V9 resin has the important advantage over solid bonds (such as salol) that the 
crystal may be rotated in situ with respect to the transverse transducer to excite each 
one of the two transverse modes separately. This is essential in the case of a mono­
clinic system, because for some propagation directions the polarization of the trans­
verse mode with respect to the crystal axes is a function of the elastic constants which 
are yet to be determined. 

No. 

V1 
V2 
V3 
V4 
Vs 
V6 
V7 
Vd 
V9 
V10 
Vll 
V12 
V13 
V14 
V1S 
V16 
V17 
V18 
V19 
V20 
V21 
V22 
V23 
V24 
V25 
V26 
V27 

Table 1. Ultrasonic sound velocities in CsH2P04 

PT, pure transverse; PL, pure longitudinal; SPT, semi-pure transverse; 
SPL, semi-pure longitudinal; QT, quasi-transverse; QL, quasi-longitudinal 

Direction of Approximate wave Velocity 
wave propagationA displacement direction (l03 ms-') 

100 100 3'047±0'005 
100 010 1·688±0·02 
100 001 1·133±0·01 
010 010 2·878±0·02 
010 100 1·788±0·02 
010 001 1·416±0·002 
001 001 4·540±0·01 
001 010 1·586±0·015 
001 100 1·153±0·003 

0'520,0, -0,854 0'520,0, -0,854 3·847±0·006 
0'520,0, -0,854 010 1·796±0·004 
0·520,0, -0,854 0·854,0,0·520 0·7605±O·006 

110 110 2'982±0'006 
110 001 1·683 ±0·003 
110 l10 1·307±0·013 
011 011 3 '622±0'08 
011 oIl 1'980±0'008 
011 100 1·409±0·007 

0'252,0'588, -0·769 0,252,0'588, -0,769 3 ·686±0·08 
0,252,0,588, -0,769 Trans 1 2'014±0'01 
0'252,0'588, -0,769 Trans 2 1·219±0·009 

0'698,0, -0'716 0'698,0, -0'716 3·217±0·13 
0'698,0, -0,716 010 1·796±0·004 
0'698,0, -0'716 0'716,0,0·698 Unknown 
0'925,0,0·395 0'925,0,0'395 3'151±0'004 
0'925,0,0'395 010 1·520±0·004 
0'925,0,0'395 0'395,0, -0·925 0·83±0·03 

A Direction is with respect to xyz axes. 

4. Results 

Type 

SPL 
PT 
SPT 
PL 
PT 
PT 
SPL 
PT 
SPT 
SPL 
PT 
SPT 
QL 
QT 
QT 
QL 
QT 
QT 
QL 
QT 
QT 
SPL 
PT 
SPT 
SPL 
PT 
SPT 

The measured veiocities are shown in Table 1. The wave displacement directions 
are approximate only, because in most instances the waves are not pure and their 
true displacement vectors can only be determined by calculation from the determined 
elastic constants. Nevertheless, experience has shown that most waves are either 
predominantly longitudinal or transverse in character and hence one may assume 
that the polarization of the exciting transducer (which is the basis for the approximate 
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wave displacement directions given in Table 1) is a reasonable first approximation 
to the actual eigenvector. 

The measurement of the velocity was repeated at least twice for each mode using 
different specimens. An exception to this was for propagation along [011]' for which 
the measurement was repeated by repolishing the sample to reduce its pathlength and 
examining a different section of the crystal. In general the consistency in the velocity 
between the different measurements was within ± 1 r.f. cycle ('" 1-2 %). However, 
in some cases, particularly for semi-pure modes, the velocity data between measure­
ments were consistent to between O' 2-0,6 %. 

The density used in the calculation was obtained by hydrostatic weighing in 
chloroform at 20°C and found to be p = 3·22 ± 0·04 g cm - 3, which corresponds well 
to the value given by Rashkovich et al. (1977) of 3·24±0·01 gcm- 3 . The X-ray 
density, computed from the unit cell data given by Uesu and Kobayashi (1976), is 
3·27 g cm - 3 which also agrees well with our results. 

It is possible to find C2Z , C66 and C44 directly using pure modes. The necessary 
relationships are 

C22 = pV~ = 26·67±0·37 GPa, 

C66 = pV~ = 9·17±0·22GPa, 

C44 = pV~ = 8·1O±0·15GPa. 

(10) 

(11) 

(12) 

The velocities corresponding to the remaining pure modes with propagation vector 
along the b axis are related to the above constants by the relationship 

(13) 

On substituting the numerical values the left- and right-hand sides of (13) agree to 
3 %, which is well within experimental error. 

The value of C46 may be determined from the velocity of the last remaining pure 
mode propagating along the [IOn]' direction in the xz plane. Here, the relationship is 

A consistency check may be obtained by using the relationship 

(15) 

Here, the numerical agreement of the left- and right-hand sides is within 24 %, which 
is still within experimental error. The error is large because the small value of C46 

corresponds to subtracting nearly equal terms on the right-hand side of (15). 
The relationships necessary for the determination of the remaining diagonal 

elastic constants and CIS and C3S are 

Cll+CSS = p(Vi+v~) = 34·03±0·19GPa, 

Cll Css -Cis = pvipv~ = 123·6±2·7 (GPa)2, 

(16) 

(17) 

(18) 
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(19) 

= 49·5l±0·18 GPa, (20) 

where 12 +n2 = 1. 
Whilst it is possible (but tedious) to solve (16)-(20) analytically it is more conven­

ient to solve these equations numerically using a generalized Newton-Raphson 
algorithm (Carnahan et al. 1969). The system converges to two separate solutions, 
depending on the starting values of the variables. One solution may be rejected as 
unphysical as, on substituting this set of elastic constants back into equation (4), it 
is found that the eigenvector corresponding to the fastest mode (i.e. the quasi­
longitudinal wave) is polarized close to 90° to the propagation direction. 

The errors in Cll , Css , C33 , CIS and C3S were calculated by varying the right-hand 
sides of (16)-(20) by plus or minus the quoted error for all possible permutations and 
noting the maximum and minimum values of the constants which emerge when the 
equations are solved. This is considered to be a more realistic estimate of the error 
than would be obtained by solving (16)-(20) analytically and summing all possible 
maximum errors. In the latter case the errors calculated are unreasonably large, as 
no account is taken of the self-consistency requirements which do not allow worst 
case errors to occur independently of one another. 

The value of C13 may then be obtained from the calculated constants above by the 
equation 

{12C1s +n2C3S +In(C13 + CsS)}2 

-WCll +n2Css +2nlCls)WCs5 +n2C33 +2nlC3s) 

-pviopvi2 = 88·75±0·84 (GPa)2. (21) 

There will be two solutions for Cl3 depending on whether the positive or negative 
square root is taken in (21). Once again one solution has been rejected as unphysical 
on the criterion that the quasi-longitudinal wave travels faster than the quasi-transverse 
wave and is polarized closer to the propagation direction. 

To obtain C12' C2S and C23' the velocities in the [110]' and [011]' directions were 
measured. The solution to the eigenvalue equation requires for the [110]' direction 

Cll +C66 -2pV2 C12 +C66 C15 + C46 

C12 +C66 C22+C66-2pV2 C2S +C46 = 0, (22) 

C15 + C46 C2S +C46 CSS+C44-2pV2 

and for the [011]' direction 

C66+Css-2pV2 C46 +C2S C46 +C3S 

C46 +C2S C22+C44-2pV2 C44 +C23 = O. (23) 

C46 +C3S C44 +C23 C44+C33-2pV2 
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The properties of the roots of the cubic equations (22) and (23) give us relations 
that may be used as consistency checks on the measured velocities. These relations 
are for the [110]' direction 

2p(vi3+ Vi4+ Vis) = Cll +C22+2C66+CSS+C44, 

and for the [011]' direction 

2p(Vi6+ vi7+ vis) = C66+Css+2C44+C22+C33· 

(24) 

(25) 

On substituting the values of the constants so far determined the left- and right-hand 
sides of (24) and (25) agree to within 0·7 % and 0·2 % respectively, which is well 
within experimental error. The properties of the cube roots of (22) and (23) also 
yield, for the [110]' direction, 

(C12 + C66)2 +(C2S + C46)2 

= (Cll +C66)(C22 + C66)+(Cl1 +C66)(CSS + C44)+ (C22 + C66)(CSS + C44) 

-(C1S +C46)2_(2p)2(Vi3 Vi4 + Vi4 Vis + vL Vis), (26) 

(Css + C44)(C12 + C66)2+(Cll + C66)(C2S + C46)2 

-2(C12 + C66)(C1S + C46)(C25 + C46) 

= (Cll + C66)(C22 + C66)(CSS + C44) -(2p Vi3)(2p Vi4)(2p Vis) 

-(C22+C66)(ClS+C46)2. (27) 

For the [011]' direction the corresponding relationships are 

(C23 +C44)2+(C2S + C46)2 

= (C66 + CSS )(C22 + C44)+(C66 + CSS )(C44 + C33)+(C22 + C44)(C44 +C33) 

-(C46 +C3S)2_(2p)2(vi6 Vi7 + vi7 Vis + Vi6 Vis), (28) 

(C66 + CSS )(C23 + C44)2 + (C44 +C33)(C46 + C2S)2 

-2(C46 + C2S)(C46 +C3S)(C44 +C23) 

= (C66 + CSS )(C22 + C44)(C44 + C33)-(2pvi6)(2pvi7)(2pvis) 

-(C22+C44)(C3S+C46)2. (29) 

Equations (26), (27) and (28) were solved for the unknowns C12 + C66' C2S + C46 
and C23 + C44 simultaneously by a generalized Newton-Raphson algorithm. The 
solutions were checked by substitution into equation (29) which yielded consistency 
between right- and left-hand sides of better than 0·7 %. The solution to (26)-(28) 
involves the intersection between two circles (26) and (28), and an ellipse or hyperbola 
(27). As such there are two sets of distinct solutions: 

(C12, C2S, C23) = ±(11·4±3·6, 8·4±4·3, 14·5±4·4) GPa 

= ±(12·2±2·9, 0·95±4·2, lS·3±4·0) GPa. 

An attempt to calculate the errors in C12, C2S and C23 by solving the equations for 
all the possible permutations of plus or minus the quoted errors in Cu , C22' C33' C44' 
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Css, C66 , C13 , C1S , C3S , C46 and the measured velocities V 13 , ••• , V 18 was unsuccess­
ful. For most permutations of the errors the system of equations (26)-(28) no longer 
converged, as the internal consistency requirements of (24) and (25) were no longer 
satisfied. The uncertainties in C12, C2S and C23 quoted above were calculated by 
restricting the errors in the velocities so that the left- and right-hand sides of (24) and 
(25) agreed to within I % for all permutations ofthe errors in the velocities. In this case 
the system of equations (26)-(28) converged for most error permutations, except 
those extreme cases for which all the errors were either added or subtracted. 

Two of the above solutions (the negative of each pair) may be rejected as unphysical 
by a consideration of the eigenvectors as described above. This still leaves two distinct 
solutions,and although the eigenvectors corresponding to each solution are different, 
both are physically quite reasonable. Clearly, the choice of solution has little effect 
on the value of C12 and C23 , but the value of C2S is radically changed. In order to 
differentiate between these solutions the velocity in a further general direction 
[0·252, 0·588, - 0·769]' was measured. The criterion 

21 

R19- 21 = L (Veale;- V;)2jV/, 
;=19 

where Veale; are the velocities calculated for the [0·252, 0·588, - 0·769]' direction 
from the elastic constants, was used as a measure of the goodness of fit of the data. 
The first solution gives an R value three times smaller than for the second solution 
and has therefore been adopted. 

The criterion 
18 

Rl - 18 = L (Vealel- V;)2jV/ 
;=1 

has been calculated and a value of 1· 8 x 10- 3 obtained. This compares very favourably 
with the value of R obtained by Krupnyi et al. (1972) in their calculations for some 
monoclinic organic crystals. However, they found it necessary to employ a least 
squares error function to refine the elastic constants in order to reduce their value of R 
to less than 10- 2 • This procedure resulted in their final value for C22 being lower 
than the directly measured value. No physical justification was offered by them for 
modifying a directly measured quantity as a result of numerical calculation. 

Table 2. Elastic constants of CsH2P04 

The CIj were calculated using a density of 3 ·22 g cm - 3 at 20°C 

~i Cij (GPa) SIj (GPa)-l ii CIJ (GPa) SI) (GPa)-l 

11 28·83±0·43 1-82 12 11·4 ±3·6 -0-219 
22 26-67±0·37 0"103 13 42·87±1·58 -1·17 
33 65-45±0-48 0-772 15 5·13±0-67 0-249 
44 8·10±0·15 0·133 23 14·5±4·4 0·138 
55 5·20±0·24 0-450 25 8-4 ±4-3 -0·150 
66 9-17±0·22 0-117 35 7-50±0-81 -0-181 

46 -2-25±0·31 0-033 

The complete elastic constant matrix Cij is given in Table 2. The inverse of the 
elastic constant matrix was calculated to give the elastic compliance matrix Sij 
which is also listed in Table 2. Quantities discussed in the following section, such as 
bulk modulus and linear compressibility are calculated in terms of these Sij. 
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5. Discussion 

Velocity Surfaces 

S. Prawer et al. 

Using the values of the Cij matrix in Table 2, the wave velocity for any propagation 
direction can be calculated via equations (4) and (5). Figs 3a, 3b and 3c are polar 
plots of velocity versus propagation direction for propagation vectors in the xy, xz 
and yz planes respectively. 

y 

(a) 
(d) 50~------------------~ 

x 

(J (deg.) 

(e) 

Fig. 3. Polar plots of the calculated phase velocity for the (a) xy, (b) xz and (c) yz planes, together 
with the absolute value q> of the deviation angle between the ray and propagation vectors (d)-(f), 
where () is measured in the sense given in the corresponding polar plot. The solid circles show the 
measured velocities actually used in the calculations. The triangles represent the measured velocities 
for the two pure transverse (PT) waves travelling parallel to the b axis and are used as a cross·check. 
The open circles show other measured velocities in the xz plane. 
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It is immediately obvious that, for propagation directions in the xy and yz planes, 
the wave velocity is quite isotropic. This stands in very marked contrast to the 
plot for the xz plane (Fig. 3b), which displays very marked anisotropy, particularly 
for the semi-pure transverse (SPT) mode with the smallest velocity. The calculations 
predict a minimu~ in the velocity of this mode ofO'290x 103 ms- 1 for propagation 
directions making angles of 38° and 140° to the x axis. This is a remarkably low 
value. For comparison, Sil'vestrova et al. (1975) have reported a value of 0·347 X 103 

ms- 1 for the velocity of a transverse wave propagating in the yz plane in Calomel, 
which they claimed to be the 'lowest value' measured for crystals at that time. It 
should be pointed out, however, that Sil'vestrova et al. actually determined this value 
experimentally whilst our value is calculated from the determined elastic constants. 

In an effort to check the unusual predictions arrived at from the calculations we 
attempted to measure the velocity of each of the three modes for other propagation 
directions in the xz plane. For all propagation directions in this plane, one mode is 
pure transverse (PT) having a polarization vector parallel to [010]'. The other two 
modes are semi-pure having polarization vectors of the form [nO -I]' and [IOn]'. 
For propagation at 134° to the x axis the measured PT velocity agrees very well with 
the predicted value. The SPT mode, with a predicted velocity of 0·363 x 103 m s-1, 
could not be generated at all. It was found that, on rotating the crystal with respect 
to the transverse exciting transducer, the pure mode decreased in amplitude as ex­
pected, but that no other mode could be detected. Similar difficulties were encountered 
for the measurements of V12 (see Table 1), although in that case a weak mode could 
be detected. It was also noted that this SPT mode could be generated by a longitudinal 
transducer. 

The failure to observe the very low velocity mode is not unexpected as such a 
mode would be expected to be heavily damped compared with the faster modes. 
However, as can be seen from Fig. 3b, the measured velocity of the semi-pure longi­
tudinal (SPL) mode, which is strongly propagated, is significantly smaller than the 
predicted value in this direction. Similar results were obtained for propagation at 
23° to the x axis, in that the measured pure mode velocity is very close to the predicted 
value and that the SPL wave velocity was significantly less than the predicted value. 
In this case, the SPT wave could be detected, but it was very weakly propagated and 
only a rough estimate of its velocity could be obtained (V = O' 83 X 103 ms- 1). 

The discrepancy between the measured and calculated values of this SPL mode 
suggests that the severe damping of the SPT mode influences the longitudinal mode 
as well. The formulation of the equation of motion assumes an infinite lossless 
medium and therefore does not include any damping term. Normally, the introduction 
of such a term should have little or no influence on the velocities. However, if the 
damping is sufficiently severe so as to almost stop one mode from propagating at 
all, the nature of the eigenvalue equation can be expected to change, since the dimen­
sonality of the problem would effectively be reduced from 3 to 2. We are currently 
investigating the effect that a severe damping term for one mode will have on the 
other measured velocities. 

Ray Directions 

For each direction of propagation there are three associated wave modes, each 
with a different velocity, polarization and ray energy propagation direction. Figs 3d, 
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3e and 3 f show plots of the magnitude of the absolute angle between the ray direction 
and the propagation direction, calculated via equation (9), for the xy, xz and yz 
planes respectively. 

Deviation angles of up to 70° are not unusual (see e.g. Neighbours 1973). The 
plots for the xy and yz planes show that there are no accidental pure modes of 
propagation, since the deviation angle only goes to zero for propagation along the b 
axis, which is demanded by symmetry. Once again the plot for the xz plane is very 
peculiar. The deviation angle for the SPT mode increases rapidly for propagation 
off the x axis, reaching a value of 73° at 30° from the x axis. With further displacement, 
the deviation angle decreases abruptly to a value of 14° at 38° from the x axis and 
then abruptly increases. Similar behaviour occurs for propagation directions about 
140° to the x axis.* Note that the minima in the calculated velocities of this mode 
occur for the same propagation directions. The sharpness of the dip is striking. 
In the region of the anomalies the deviation angle changes by about 38° for a 1 ° 
change in propagation direction. Calomel (Sil'vestrova et al. 1975) displays similar 
behaviour for the transverse mode, the velocity of which has a minimum value of 
O' 347 x 103 ms-1 for propagation at 45° to the x axis in the xy plane. 

The deviation angles for the measured velocities (VZZ-VZ7 ) in the xz plane can 
be read from Fig. 3e. It can be seen that the mode propagating at 134° to the x axis 
has a deviation angle of 76°. It is therefore not unexpected that this ray was unob­
served since it must reflect off the sides of the crystal many times during its round 
trip. The mode at 23° has a smaller deviation angle, namely 69°, and was weakly 
observed. The mode at 121· 3° (V12) has a deviation angle of 64° and was clearly 
observed·t 

In order to test these conclusions, measurements of the velocity for propagation 
at the angles in the xz plane at which the minima in velocity and deviation angle 
occur (namely 38° and 140°) would be desirable. However, such measurements 
would require the crystal to be aligned very precisely as even small errors in alignment 
wi111ead to large changes in the deviation angle. The crystal would also have to be 
of excellent quality as a mosaic spread of even 1 ° wi111ead to a gross divergence of 
the beam. Finally, even if the beam were propagated without a large divergence, 
the very low value of velocity for this mode will probably be accompanied by a high 
value of attenuation, making the mode difficult or impossible to observe experi­
mentally. 

Bulk Modulus, Linear Compressibility and Young's Modulus 

The bulk modulus of CsHzP04 was calculated via the relationship (Nye 1967) 
B= {Sll +SZZ+S33 +2(SlZ+S23+ S13)}-1. A value of 5·28GPa was obtained 
using the Sij matrix calculated by taking the inverse of the Cij matrix in Table 2. 
An attempt was made to calculate the error in the bulk modulus by adding all possible 
permutations of the errors to the values of Cij before inverting the matrix. However, 
for most permutations of the errors, especially those involving extreme cases where 

* The eigenvectors in the xz plane are well behaved and do not deviate from pure mode behaviour 
by more than 17°. 

t It should be recalled that the number of reflections off the side walls of the crystal will depend 
on the tangent of the deviation angle. Thus a deviation angle of 76° (tan 76° = 4·01) will result 
in about twice as many side wall reflections as a deviation of 64° (tan 64° = 2·05). 
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all the errors were either added or subtracted, the C ij matrix ceased to be positive 
definite. Positive definiteness is the mathematical consequence of demanding a positive 
strain energy for lattice stability. Thus a Cij matrix which is not positive definite 
cannot describe the elastic properties of any real material. Hence we may reject 
those error permutations for which the C ij matrix is not positive definite as unphysical. 

When the calculation was performed using only those error combinations for 
which the Cij matrix was positive definite, the bulk modulus was found to lie in the 
range O· 9-16' 5 GPa. This large uncertainty is due to ignoring the fact that constants 
are coupled in such complicated ways that the quoted errors cannot occur indepen­
dently. A more sophisticated error calculation system is required-possibly a Monte 
Carlo method of assigning the value of Cij to be used as a normally distributed 
variable with mean and standard deviation equal to the values and errors respectively 
given in Table 2. 

Table 3. Bulk moduli for selected crystals 

Crystal Class B (GPa) Reference 

CsH2P04 Monoclinic 5·28 This paper 
KH2P04 Tetragonal 27'3 Fritz (1976) 
Potassium tartrate Monoclinic 16·8 Aleksandrov (1958) 
NH4 H 2 P04 Tetragonal 20·1 Fritz (1976) 
CsSCN Orthorhombic 13·2 Irving et al. (1983) 
Calomel Tetragonal 18·0 Sil'vestrova et al. (1975) 

The value of B is remarkably small. For comparison, B for some other materials 
is shown in Table 3. These values have been calculated via the elastic constants given 
in the references listed. Note that Calomel, whilst displaying some similar anisotropic 
features to CDP in the behaviour of the velocity and ray directions, nevertheless 
has a value of bulk modulus comparable with the other crystals listed. 
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Fig. 4. Linear compressibility for directions in the xy, xz and yz 
planes, with (j measured as in Fig. 3. 
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Since CDP displays a chain-like structure it is of interest to calculate the linear 
compressibility K 1mn, which is the strain response of the crystal along a given 
direction [I, m, n]' to the application of hydrostatic pressure. For a monoclinic 
system the expression is (Nye 1967) 

A plot of linear compressibility versus direction in the xy, xz and yz planes is 
given in Fig. 4. Note how the compressibility along the x axis is twenty times larger 
than that along the y axis, and that the compressibility along the z axis is negative. 
Thus when hydrostatic pressure is applied to CsHZP04 the crystal responds by con­
tracting along the x axis and expanding along the z axis. By comparison the length 
change along the y axis is small. This further demonstrates the marked elastic 
anisotropy of CDP. 
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Fig. 5. Central sections of 
the Young's modulus surface 
for the (a) xy, (b) xz and 
(c) yz planes in CDP. 
The magnitude of the radius 
vector is proportional to the 
value of Young's modulus. 

x 

Finally, the central sections of the Young's modulus surface on the xy, xz and yz 
planes were calculated and are shown in Figs 5a, 5b and 5c respectively. In Fig. 5 
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the radius vector is proportional to the value of Young's modulus Y for that direction. 
The curves were calculated from the expression (Nye 1967) 

y-1 = 14S11 +2ZZm2S12 +212n2S13 +213nS15 

+m4Sn +2m2n2S23 +21m2nS25 

+n4S33 +21n3S35 +m2n2S44 +21m2nS46 

+12n2S55 +12m2S66' 

Young's modulus gives a measure of the 'stiffness' of the crystal to a uniaxial stress 
applied along the direction of interest. Once again the elastic behaviour is clearly 
very anisotropic. 

Using the elastic constants in Table 2, J. G. Collins (personal communication) 
has calculated the elastic Debye temperature to be 134·5 K for Avogadro's number 
of ions. This value is consistent with an estimate from thermal conductivity data 
of 140± 10 K (Sporl et al. 1984). 

Relationship to Crystal Structure 

Much of the elastic anisotropy in CDP originates from the extremely low velocity 
predicted for the SPT mode for propagation in the xz plane at 38° and 140° to the 
x axis. This anomaly results in the sharp dip for the deviation angle between ray 
and wave normals for these propagation directions. It also results in the very low 
value for the bulk modulus, and the large anisotropies in Young's modulus and the 
linear compressibility. We suggest the following qualitative explanation, in terms of 
the known crystal structure of CDP, as to why this mode should behave anomalously. 

As previously noted, CDP consists of (100) layers of hydrogen bonded P04 

groups, the layers being held together by electrostatic attraction to the Cs + ions. 
A projection of the structure onto the (010) plane is given in Fig. 6a based on the 
atomic positions given by Uesu and Kobayashi (1976) and Matsunaga et al. (1980). 
The H2 hydrogen links 03-03 and 04-04 groups to form the P04 chains along the 
b axis. The HI hydrogen cross links the chains to form the (100) layers. 

Uesu and Kobayashi (1976) pointed out that nearly linear chains of Cs and Pions 
are formed along the [101] direction with an interatomic distance of 4·03 A (== 4·03 X 

10-10 m). However, it is evident from Fig. 6a that this is an error and that the chains 
with close to this interatomic distance lie along the [101] direction. It is also seen 
in Fig. 6a that there are nearly linear chains of P-Ol, Cs+, P-Ol groups along the 
[101] direction where the CSC P1 separation is 5·46 A (with an oxygen intervening) 
and the CSC P2 separation is 5·01 A (with no intervening atoms). Uesu and 
Kobayashi (1976) also pointed out that these distances are considerably longer than 
the K-P distance of 3·49 A in KDP. 

If we consider a wave propagating in the xz plane at 38° to the x axis, the eigen­
vectors for this direction can be calculated by solving the eigenvalue equation (4). 
The eigenvectors lie in the xz plane and make angles of 39 . 9° (SPT) and 50· 1 ° (SPL) 
to the x axis as shown in Fig. 6b. The third mode is PT and has polarization parallel 
to [010]. The SPT polarization is approximately parallel to the .[101] direction and 
makes an angle of only 1· 4° with the direction joining CS1 and P 2' 

Since there are no intervening atoms between CS1 and P 2 and since the eigenvectors 
are constrained to lie in the xz plane, the force constants associated with this mode 
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Longitudinal polarization 

Transverse polarization 
. [101] 

a 

(b) 

Fig. 6. (a) Projection of the structure of CDP onto the ac plane. The disordered hydrogen H 2 
forms the chains of P04 tetrahedra up the b axis, whilst the ordered H 1 cross links the chains. The 
nearly linear chains of Cs and P atoms can be seen along the [IOI] and [101] directions. (b) Direction 
of transverse and longitudinal polarization for a mode propagating at 38° to the x axis in the ac 
plane. 

may be expected to be small due to the comparatively very large nearest neighbour 
separation. We also note that the particle vibration direction shown in Fig. 6b is 
roughly (to within 5°) parallel to the projection of the 03-H2-03 hydrogen bond 
onto the xz plane. This bond is expected to be quite compliant as this hydrogen is 



Elastic Behaviour of CsH2P04 81 

disordered in the room temperature phase. As a consequence of both these factors 
we may expect the velocity to be correspondingly small for this mode. 

Irrespective of the above explanation, the correspondence of the transverse 
polarization for the mode propagating at 38° to the x axis to the linear CS-P arrays 
and the 03-H2-03 hydrogen bond direction seems unlikely to be coincidental. It is 
unfortunate that this mode is not more easily observed experimentally, for the 
response of the velocity of this mode to temperature through the ferroelectric ordering 
would be very interesting. 

It has also been observed by Uesu and Kobayashi (1976) that nearly linear arrays 
of Cs and P atoms also occur along the [0, ± 1, 1] directions with a comparatively 
large Cs-P separation. However, we observed that in the yz plane the velocity of 
all modes is very isotropic, showing none of the peculiar effects of the xz plane. 
We may account for this difference by recalling that for propagation in the xz plane 
the eigenvectors are constrained by symmetry to lie in that plane, whereas for prop­
agation in the yz plane no such restriction applies and in fact the eigenvectors lie 
considerably out of the plane. Thus the force constants for this mode will not neces­
sarily be determined by the comparatively large Cs-P interatomic distance within 
the yz plane. 

The anisotropy of the linear compressibility and of Young's modulus is related 
to the layer and chain structure of CDP. The maximum in the value of the linear 
compressibility and the corresponding minimum in the value of Young's modulus 
for the x-axis direction correspond to the weak bonding between the (100) layers. 
Under hydrostatic pressure these layers are forced closer together. The corresponding 
expansion along the c axis may be explained by a small rotation of the P04 tetra­
hedron (possibly caused by repulsion between the 01 and 02 atoms of adjacent 
layers), which results in an elongation of the hydrogen bonded c-axis chain. Selenium 
and tellurium are examples of other chain-like materials which have negative linear 
compressibility parallel to the chain axis (Munn 1972). Under uniaxial stress, how­
ever, the bonding in the c-axis chain is only about as strong as the interlayer bonding 
(see Fig. 5b). 

It is surprising that the b-axis bonding is so much stronger than for the c axis (see 
Fig. 5c), especially in view of the disordered state of the hydrogen bonds linking this 
chain. This may be explained by noting that these hydrogen bonds lie nearly parallel 
to the a axis, so that compression of the b-axis chain would involve a bending of the 
bond, rather than a compression of the double well potential along its axis. The 
strength of the b-axis bonding is consistent with the findings of Frazer et al. (1979) 
that the correlation length along the b axis is much longer than those along the a and 
c axes. 

The very strong anisotropy for Young's modulus in the xz plane (Fig. 5b) is 
correlated to the anomalous SPT mode discussed above. The maxima in Young's 
modulus (at 54° and 131° to the x axis) occur for directions which are almost parallel 
to the SPL polarization for wave propagation directions for which the SPT mode 
has its minimum velocity. Thus the crystal is stiffest at right angles to the [101] 
Cs-P chains (see Fig. 6). 

Finally, as mentioned in the Introduction, most of the studies on CDP to date 
have focussed on the comparison between the transition mechanism in pseudo-one­
dimensional CDP, and the more familiar three-dimensional KH2P04 . The plots 



82 s. Prawer et al. 

of Young's modulus for KH2P04 (calculated from the elastic constants quoted by 
Fritz 1976) for the xy and yz (=xz) planes (see Fig. 7) indicate clearly that the very 
anisotropic elastic behaviour in COP is absent in the case of KH2P04 • In particular, 
it is obvious that the elastic behaviour for the ferroelectric z axis in KH2P04 is not 
very different from that for the other axes,in contrast to COP for which the ferro­
electric b axis is much stiffer than the a or c axes. 

y 

z 

(a) 

~~------~----~~--+x --~------+-----4-~+Y 

Fig.7. Central sections of the Young's modulus surface for the (a) xy and (b) yz 
planes in KH2 P04 • The magnitude of the radius vector is proportional to the 
value of Young's modulus. 

6. Conclusions 

The elastic constant matrix of CsH2P04 has been determined via ultrasonic 
velocity measurements. Significant anisotropy in the elastic constants was found. 
In particular, calculations using the matrix determined predict a very low velocity of 
sound (0·290 x 103 ms- l ) for the semi-pure transverse mode propagating in the 
xz plane at 38° to the x axis. This could not be confirmed experimentally due to the 
failure to propagate the mode. As the polarization direction for this mode is almost 
parallel to the linear Cs-P chains with a large (5·01 A) nearest neighbour separation 
and to the direction of the disordered hydrogen bond, its low velocity is attributed 
to the relatively weak forces acting in this direction. 

The significant anisotropy found in Young's modulus and the linear compressi­
bility reflect the weak forces between the (100) layers and show clearly that even in 
the paraelectric state the bonding along the· b-axis chain is different to that along the 
c axis. Hence, the one-dimensional chain-like structure of COP reveals itself, not 
only in the critical phenomena, but also in the static elastic behaviour at room 
temperature. These observations of the elastic anisotropy must be added to the 
differences in the nature of the ferroelectric transition mechanism in setting COP 
apart from other members of the KH2P04 family. 

Acknowledgments 

The authors have benefited from discussions with Ors J. G. Collins and F. Ninio. 
Comments by the former, particularly on the theory section, and the calculation 
of the elastic Oebye temperature are specifically acknowledged. This work was under­
taken with the support of the Australian Research Grants Scheme and the Monash 



Blastic Behaviour of CsH2 P04 83 

University Special Research Grants Scheme. One of us (S.P.) gratefully acknowledges 
the award of the Vera Moore Junior Research Fellowship. 

References 
Aleksandrov, K. S. (1958). Sov. Phys. Crystallogr. 3, 630. 
Brown, F. C. (1967). 'The Physics of Solids' (Benjamin: New York). 
Carnahan, B., Luther, H. A., and Wilkes, J. O. (1969). 'Applied Numerical Methods' (Wiley: 

New York). 
Cornelius, C. A. (1981). Acta Crystal/ogr. A 37,430. 
Fellner-Feldegg, H. (1952). Tscherinaks Mineral. Petrogr. Mitt. 3, 37. 
Frazer, B. c., Semmingsen, D., Bllenson, W. D., and Shirane, G. (1979). Phys. Rev. B 20, 2745. 
Fritz, I. J. (1976). Phys. Rev. B 13, 705. 
Irving, M. A., Prawer, S., Smith, T. F., and Finlayson, T. R. (1983). Aust. J. Phys. 36, 85. 
Iwata, Y., Koyano, N., and Shibuya, I. (1980). J. Phys. Soc. Jpn 49,304. 
Kanda, B., Tamaki, A., Yamakami, T., and Fujimura, T. (1983). J. Phys. Soc. Jpn 52, 3085. 
Kanda, B., Yoshizawa, M., Yamakami, T., and Fujimura, T. (1982). J. Phys. CIS, 6823. 
Krupnyi, A. I., AI'chikov, V. V., and Aleksandrov, K. S. (1972). Sov. Phys. Crystal/ogr. 16, 692. 
McSkimin, H. J. (1961). J. Acoust. Soc. Am. 33, 12. 
Matsunaga, H., Itoh, K., and Nakamura, B. (1980). J. Phys. Soc. Jpn 48,2011. 
Munn, R. W. (1972). J. Phys. C 5, 535. 
Musgrave, M. J.P. (1970). 'Crystal Acoustics' (Holden-Day: San Francisco). 
Neighbours, J. R. (1973). J. Appl. Phys. 44, 4816. 
Nye, J. F. (1967). 'Physical Properties of Crystals' (Clarendon: Oxford). 
Papadakis, B. P. (1967). J. Acoust. Soc. Am. 42, 1045. 
Rashkovich, L. H., Meteva, K. B., Shevchik, Ya. B., Hoffman, V. G., and Mishchenko, A. V. (1977). 

Sov. Phys. Crystallogr. 22, 613. 
Sil'vestrova, I. M., Barta, Ch., Dobrzhanskii, G. F., Belyaer, L. M., and Pisarevskii, Yu. V. (1975). 

Sov. Phys. Crystallogr. 20, 221. 
SpOrl, G., Chat, D. D., and Hegenbarth, B. (1984). Phys. Status Solidi (a) 82, K27. 
'Standards on Piezolectric Crystals' (1949). Proc. Inst. Radio Eng. 37, 1378. 
Uesu, Y., and Kobayashi, J. (1976). Phys. Status Solidi (a) 34, 475. 
Yakushkin, B. D., Baranov, A. I., and Shuvalov, L. A. (1981). JETP Lett. 33, 24. 
Youngblood, R., Frazer, B. C., Bckert, J., and Shirane, G. (1980). Phys. Rev. B 22,228. 

Manuscript received 12 October, accepted 14 December 1984 






