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Abstract 
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We exhibit certain universal characteristics of limit cycles pertaining to one-dimensional maps in 
the 'chaotic' region beyond the point of accumulation connected with period doubling. Universal, 
Feigenbaum-type numbers emerge for different sequences, such as triplication. More significantly 
we have established the existence of different classes of universal functions which satisfy the same 
renormalization group equations, with the same parameters, as the appropriate accumulation point 
is reached. 

1. Introduction 

Considerable progress has been achieved during the last few years in our under­
standing of turbulent or chaotic behaviour in natural processes (Ruelle and Takens 
1971; Ott 1981; Eckmann 1981; Hu 1982). Much of the insight has come from a 
study of one-dimensional nonlinear mappings, both in qualitative and quantitative 
terms (May 1976; Collet and Eckmann 1980). Experimental evidence from diverse 
scientific fields ranging from physics through chemistry to biology has accumulated, 
which provides substantial support to the scenario based upon the period-doubling 
route to chaos, not only in the regime before the onset of chaos, but in the regime· 
beyond where turbulence has developed. However, in that chaotic domain there 
exist certain windows of stability connected with low period cycle structures and 
in their vicinity one may observe the phenomenon of intermittent periodicity 
(Manneville and Pomeau 1980; Hirsch et al. 1982; Hu and Rudnick 1982). 

Most of the theoretical studies (Feigenbaum 1983) have been focussed on the 
neighbourhood of the accumulation point of the first pitchfork bifurcation sequence 
and many of the characteristic universal properties have been thoroughly investigated 
there. In this paper we wish to highlight a number of universal properties that lie 
beyond this region and pertain to tangent bifurcations. These properties are partly 
implied in the paper by Derrida et al. (1979) which described the self-similarity of 
chaotic bands and cycles in that regime, but they are not widely known. We will 
exhibit what we believe are several new features associated with windows of stability 
to the right of the onset of chaos. Apart from demonstrating the occurrence of 
universal numbers connected with period multiplications in a 'forward' and reverse' 
sense (see Sections 2-4), we also show that the solution of the corresponding renor­
malization group equations near the accumulation points is by no means unique, 
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despite the scaling parameters being the same. This provides the necessary graphic 
support to McCarthy's (1983) mathematiCal analysis which also proposed a multi­
plicity of such solutions. 

We have attempted to make this paper self-contained by providing all the numerical 
and other evidence needed. Sometimes we have not been able to avoid covering 
familiar ground; still, we believe that the various tables and figures will be of real 
value to the expert and nonexpert alike by exposing, at a glance, all the numerical 
details* about the attainment of the various limits for two typical mappings. In 
Section 2 we summarize the well-known properties of pitchfork sequences, and in 
Section 3 we show that another 'reverse' period-doubling sequence in the chaotic 
region is governed by the same universal constants, subject to one important proviso: 
namely, the occurrence offamilies of solutions of the (duplication) functional equation. 
Sections 3 and 4 generalize the work to period triplings; again we demonstrate the 
existence of many solutions to the (triplication) functional equation by examining 
the reverse sequences of functions as one approaches the period-tripling accumulation 
point. We conclude in Section 5 with a number of comments about fractional uni­
versal functions by tracking other function sequences. 

2. Windows of Stability 

It has long been established (Metropolis et al. 1973) that for smooth maps of the 
real axis onto itself of the type 

x ~ F(A.,x); a ~ x ~ b, 

where F has a unique maximum x = X in the interval [a, b] and A is constrained to 
lie in some specified range, there is a universal sequence of limit cycles. This sequence 
is independent of the detailed form of the mapping F beyond the conditions stated. 
For example; it applies to the typical maps 

(A) 

(B) 

x ~ A.x(l-x), 0 < x < 1, 1 < A. < 4 

x ~ xe,,(l-X) , 0 < x < 00, 0 < A. < 00 

with X = 1; 

with X = 1/A.. 

(la) 

(lb) 

(In fact, for these two examples F possesses a quadratic maximum and we will largely 
be restricting our attention to this class of functions.) In the chaotic region, beyond 
some critical value of A. (see equations 2 below), there exist infinitely many parameter 
values characterized by stable limit cycles of finite order; 'windows of stability', as 
May (1976) has phrased the regions in their vicinity. The order in which these win­
dows succeed one another is independent of the map (even the character of the F 
maximum) within the constraints. This is the content of structural universality. 

As they appear in order, the low period cycles up to 8 are listed in Table 1 for 
the reader's convenience. There we specify the 'superstable' A.-parameter values for 
which x = X is one of the fixed points of the cycle for maps A and B. In what follows 
we shall denote by A.2 n that value of A. for whiCh the 2n cycle is superstable. As the cycle 
period increases, so does the multiplicity of cycle structures as has been fully docu­
mented by Metropolis et al. (1973). We have followed May (1976) in Table 1 by 

* All our computations were carried out on TRS-80 microcomputers to double precision. 
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appending a lower case letter to distinguish between different cycles of the same order, 
although this labelling is not of much value except for the low order cycles: already 
at period 9 there occur 28 different cycles and not enough letters in the alphabet to 
accommodate them. 

Table 1. Superstable parameter values (up to 8 cycles) for mappings A and B 

Cycle MapA MapB Cycle MapA MapB 

2 3·23606798 2·25643121 8h 3·94421350 3·48286345 
4a 3·49856170 2·59351893 7e 3·95103216 3·50943386 
8a 3·55464086 2·67100426 4b 3·96027013 3·59011302 
6a 3·62755753 2·77263994 8i 3·96093370 3·60907717 
8b 3·66219250 2·81656251 7f 3·96897686 3 ·70138725 
7a 3·70176915 2·85991838 8i 3·97372426 3·73428947 
5a 3·73891491 2·91759985 6d 3·97776642 3·77387587 
7b 3·77421419 2·98514113 8k 3·98140895 3·80592983 
8c 3·80077094 3·03277660 7g 3·98474762 3·82392739 

3 3·83187406 3 ·11670045 81 3·98774550 3·85101848 
6b 3·84456879 3·17360416 5c 3·99026705 3·92280940 
8d 3·87054098 3 ·25777911 8m 3·99251952 4·02352830 
7c 3·88604588 3·29362781 7h 3·99453781 4·07007407 
8e 3·89946895 3·33449413 8n 3·99621960 4·10314846 
5b 3·90570647 3·36398510 6e 3·99758312 4 ·18096812 
8f 3·91204662 3·39276769 80 3 ·99864115 4· 30421131 
7d 3·92219340 3·41870460 7i 3·99939706 4·39226269 
8g 3·93047300 3·43427458 8p 3·99984936 4·57119266 
6c 3·93753644 3·45595376 

The first truly chaotic place is the accumulation point of the 2n cycles 

,12'" = lim A2n = 3·569945671, mapA; (2a) 
n .... 00 

= 2·692368853, mapB; (2b) 

associated with 'pitchfork' or 'forward' bifurcations, and the passage to it from smaller 
parameter values A is known as the 'period-doubling route to chaos'. Feigenbaum 
(1978, 1979) noticed that when the chaotic point was approached from below, the 
ratios of the relative differences between successive A2n 

= (5, (3a) 

as well as the ratios of the relative spacings, 

= -IX, (3b) 

between the central fixed point X and the nearest fixed point 

"-1 xi" = [FJ2 (A2n, X), (4) 
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tended geometrically to two universal constants b and at: respectively, independently 
of mapping details (see Table 2). t This is termed metric universality. When the 
functions possess a quadratic maximum as in (la) or (lb) the universal constants turn 
out to be 

b = 4·6692 ... , at: = 2·5029 .... (5) 

To simplify the notation it proves useful to shift origin and rescale x by a factor a, 

x--.X+ax, 

whereupon 
F(x) --. f(x) , 

with an a-dependent normalization f(O). Often a is chosen so that f(O) = 1. For 
instance, with our two mappings, we have 

(A) f(x) = -1/2a +A(I/4a -ax2); 

(B) 

a = tA-t ensures f(O) = 1; 

f(x) = -l/Aa +(l/Aa +x)e).-l-a).\ 

a = (e).-1-1)/A fixes f(O) = 1. 

(6a) 

(6b) 

In this way the spacing between the centremost fixed points may be reinterpreted as 

n-I 

DX2n = [fJ2 (j"2n, 0). 

As noted, there exist windows of stability to the right of A2 <Xl and it is on these 
windows that we wish to exclusively focus attention. In any given window of period 
k, it is well known (Feigenbaum 1978, 1979) that if one studies harmonics of period 
k·2n which arise by pitchfork bifurcation, the sequences of 

n-I 

DXk.2n = xt2n-X = [Jy.2 (Ak.2n, 0), 

are again characterized by the same universal constants at: and b (see Table 3): 

(7a) 

(7b) 

(8a, b) 

In (7a) the integer c is determined by the precise details of the k-cycle structure. For 
the 3-cycle we have c = 2. 

The most noticeable window in the chaotic region, because it is the widest, is 
connected with the 3-cycle; that cycle is born (May 1976; Collet and Eckmann (1980) 

t A few notational points: Feigenbaum (1978, 1979) used dn in place of our DX2n, and An instead 
of our A2 •• Our more explicit formulae are necessary later. Also, N-iterates of F, as in (4), will be 
written as [F]N rather than as FN to avoid subsequent confusion when a host of universal functions 
are introduced. 
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Cycle 

2 
4a 
8a 

16a 
32a 
64a 

128a 
256a 
512a 

Cycle 

3 
6b 

12b 
24b 
48b 
96b 

192b 
384b 
768b 

Table 2a. Forward bifurcations 1 ·2" for mappings A and B 

MapA MapB 
1 Dx 1 Dx 

3·236067978 - 0·310016994 2·256431209 -1 . 113644594 
3·498561699 0·116401770 2·593518933 0·200505017 
3·554640863 -0'045975211 2·671004264 -0 ·107148265 
3·566667380 0·018326176 2·687782643 0·037739867 
3·569243532 -0,007318431 2·691386189 -0,015822652 
3·569795294 0·002923675 2·692158376 0·006197856 
3·569913465 -0'001168087 2·692323776 - O· 002495613 
3·569938774 0·000466690 2·692359200 0·000993953 
3·569944195 -0,000186459 2·692366787 -0,000397622 

Table 2b. Ratios of successive Dl and Dx for mappings A and B 

Cycle MapA MapB 
Rl Rx Rl Rx 

4a 4·681 -2,663 4·350 -5,554 
8a 4·663 -2'532 4·618 -1,871 

16a 4·668 -2,509 4·656 -2,839 
32a 4·669 -2,504 4·667 -2,385 
64a 4·669 -2,503 4·669 -2,553 

128a 4·669 -2'503 4·669 -2'484 
256a 4·669 -2,503 4·669 -2,511 
512a -2,503 -2'500 

Table 3a. Forward bifurcations 3·2" for mappings A and B 

MapA MapB 
1 Dx 1 Dx 

3·831874055 -0'457968514 3·116700451 -2'343057612 
3·844568792 0·027235706 3 ·173604163 0·081983089 
3·848344657 -0,011051342 3 ·190739426 -0,037885476 
3·849198054 0·004430880 3 ·194602580 0·014375982 
3·849383110 -0'001771810 3 ·195440367 -0,005874092 
3·849422845 0·000708039 3 ·195620245 0·002326936 
3·849431360 - 0 . 000282899 3 ·195658791 -0,000932966 
3·849433184 0·000113019 3 ·195667047 0·000372242 
3·849433575 -0,000045159 3 ·195668815 -0,000148815 

Table 3b. Ratios of successive Dl and Dx for mappings A and B 

Cycle MapA MapB 
Rl Rx Rl Rx 

6b 3·362 -16,815 3·321 -28,580 
12b 4·419 -2'464 4·436 -2'164 
24b 4·617 -2,494 4·611 -2,635 
48b 4·657 -2'501 4'658 -2,447 
96b 4·667 -2,502 4·667 -2·524 

192b 4·669 -2,503 4·669 -2·494 
384b 4·669 -2,503 4·669 -2·506 
768b -2'503 -2,501 

5 
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(b) 

Fig. 1. Sequence of functions tending to 
(a) go(x), 
(b) gl(x), 
(c) g(x), 
with the integers denoting the orders 
of iteration. 

';\:. 
'.. ,"" 
' '"_/ 

(b) 

Fig. 2. Forward sequence of functions 
tending to (scaled) 
(a) go(x), 
(b) gl(x), 
(c) g(x), 
for iterations 3.2 n . 
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Fig. 3. The iterate 
(a) [FJ3, 
(b) [FJ6, 
(c) [FJ12, 
evaluated at A3' A2. 3 and 
A22.3 respectively. 

7 

Fig. 4. Iterate (a) [F]\ (b) [F]8, (c) [F]S and (d) [FPO evaluated at A4, A2.4, As. and A2.Sa respectively. 
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by 'tangent bifurcation' in the region to the right of A2 oo. [Just below this window 
there is an almost stable triplication pattern giving rise to the 'intermittency' pheno­
menon (see Manneville and Pomeau 1980; Hirsch et al. 1982; Hu and Rudnick 
1982).] For this particular case we shall term the tangent bifurcation a 'trifurcation', 
recognizing it as a mathematical misdemeanour-thus period tripling N -+ 3N does 
not happen as A varies continuously. Likewise, there are possibilities of fourfold, 
fivefold period multiplications as we keep on increasing A. 

Our investigations are primarily concerned with the sequences k· 2" and k· 3" in 
the forward and backward sense (see Section 3), and we have discovered that for such 
period doublings and triplings properties analogous to Feigenbaum's metric univer­
sality prevail. Specifically we have studied these sequences for the two popular maps 
A and B. It should be clear that any conclusions we draw from both mappings 
almost certainly apply to other maps with the same general characteristics; namely, 
one-dimensional non-invertible maps with a unique quadratic maximum. 

By comparing the shapes of iterated maps [f]2" in the central region, using 
computer techniques, Feigenbaum (1978, 1979) was able to demonstrate the existence 
of a universal function 

gl(X) = lim (-a)"[J]2n(A2n+l,x/(-a)"). 
n--+oo 

He also showed that one could define a whole sequence of functions 

g/x) = lim (_a)"[Jyn (A2n+r,X/( -a)"), (9) 
"--+ 00 

satisfying 

(10) 

Feigenbaum then conjectured that this sequence of functions converged to a unique 
limit 

g(x) = lim gr(x) = lim (_a)"[Jyn ()'2 00 , x/( _a)"), (11) 
r-+ 00 n-+ 00 

which satisfied the fixed point Feigenbaum-Cvitanovic relation 

g(x) = - ag(g( - x/e>:) ). (12) 

[The existence of g in certain cases was in fact proved by Collet et al. (1980) and 
Lanford (1982), who also proved existence and uniqueness for the mappings x -+ 

1- /lXl +', with e small.] The scale of g is arbitrary and is set through the normaliza­
tion condition g(O) = 1. In an effort to make the present paper self-contained, as 
well as for later comparison with other universal functions, we give go, gl and g 
in Fig. 1. 

Associated with the cycles k born by tangent bifurcation is a cascade of harmonics 
k·2" emerging by subsequent period doubling (forward bifurcation). One may again 
abstract the same universal function gl(x)-and indeed the entire sequence gr(x) 
culminating in g(x)-by approaching the accumulation point Ak .2 CXl. This is shown 
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Cycle 

3 
6a 

12a 
24a 
48a 
96a 

192a 
384a 
768a 

Table 4a. Backward bifurcations 2n • 3 for mappings A and B 

MapA MapB 
Dx Dx 

3·831874056 
3·627557530 
3·582229836 
3 . 572577293 
3·570509238 
3·570066370 
3·569971522 
3·569951208 
3·569946858 

o . 34571 0203 
-0·140860795 

0·056600411 
- 0 . 022642507 

0·009049220 
-0·003615723 

0·001444641 
-0·000577183 

0·000230607 

3 ·116700451 
2·772639937 
2·709628054 
2·696053119 
2·693157769 
2·692537798 
2·692405037 
2·692376604 
2·692370514 

- 2·343057611 
0·266331112 

-0·189584964 
0·061965036 

- 0·026946032 
0·010418610 

-0·004218240 
0·001676493 

-0·000671228 

Table 4b. Ratios of successive D)' and Dx for mappings A and B 

Cycle 

6a 
12a 
24a 
48a 
96a 

192a 
384a 
768a 

Cycle 

4 
8b 

16b 
32b 
64b 

5a 
10 
20 
40 
80 

5b 
10 
20 
40 
80 

5e 
10 
20 
40 
80 

MapA MapB 
R)' Rx R)' Rx 

4·508 
4·696 
4·667 
4·700 
4·669 
4·669 
4·669 

-2·454 
-2·498 
-2·500 
-2·502 
-2·503 
-2·503 
-2·503 
-2·503 

5·460 
4·642 
4·689 
4·670 
4·670 
4·669 
4·669 

-8·798 
-1·405 
-3·060 
-2·300 
-2·586 
-2·470 
-2·516 
-2·498 

Table 5. Backward bifurcations for mapping A 

3·960270127 
3·662192504 
3·589399844 
3·574118089 
3·570839054 

3·738914930 
3·605385838 
3·577549811 
3·571573647 
3·570294339 

3·905706470 
3·647048802 
3·586281315 
3·573447578 
3·570695539 

3·990267047 
3·673008246 
3·591544528 
3·574581219 
3·570938128 

Dx 

(a) 2n ·4 
0·351775477 

-0·146589904 
0·059085959 

- 0 . 023662325 
0·009458540 

(b) 2n ·5a 
- 0 . 158342067 

0·064326385 
-0·025819307 

0·010325161 
-0·004126144 

(c) 2n ·5b 
0·180442003 

-0·076515812 
0·030775652 

-0·012325970 
0·004926708 

(d) 2n ·5e 
0·353121938 

-0·148321143 
0·059811996 

-0·023962174 
0·009578873 

4·095 
4·763 
4·660 

4·797 
4·658 
4·671 

4·257 
4·735 
4·663 

3·894 
4·802 
4·656 

Rx 

-2·400 
-2·481 
-2·497 
-2·502 

-2·462 
-2·491 
-2·501 
-2·502 

-2·358 
-2·486 
-2·497 
-2·502 

-2·381 
-2·480 
-2·496 
-2·502 

9 
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in Fig. 2 for the particular case of 3·2" cycles and is fairly well understood; thus 
(the existence of g for 8 = 1 has been proved by Campanino and Epstein 1981) 

g 1 (JlX) = Jl lim ( -1X)"U]k'2" (Ak •2"+ " X/( _1X)n ), 
n .... oo 

with the magnification Jl being the only k-dependent ingredient. An appreciation of 
the scale Jl may be gained by comparing Figs 1 and 2. 

3. Reverse Bifurcations 

In this paper we wish to draw attention to quite distinct limiting sequences in 
which 2n multiples of the k cycle occur to the left of the basic k cycle, i.e. they are 
not harmonics of that cycle but are instead born by tangent bifurcation. For any 
k > 2 these sequences also approach A2 "" but in the reverse order 

2°O'k +- ... +- 4·k +- 2·k +- k. 

We call this the 'reverse' or 'backward' bifurcation sequence (Feigenbaum 1980; 
Kopylov and Sivac 1982). Tables 4 and 5 provide the superstable A values for various 
low order cycles, mainly for map A. If one examines the 2",3 order iterates of F 
(Fig. 3) one can pick out a copy, reduced in scale, of the basic 3 cycle in the vicinity 
of X. Fig. 4 shows that a similar pattern prevails for other cycles. Moreover one can 
establish numerically, beyond reasonable doubt (see Tables 4 and 5), that for this 
backward sequence the usual Feigenbaum constants arise: 

lim RA2"'k (= DA2n'k/DA2"+1.J = a = 4'6692 ... , (13a) 
"->00 

lim RX2".k (= DX2 "-"k/Dx2 '!k) = -IX = -2·5029.... (13b) 
n .... oo 

This suggests that a universal function of the type go or gl may exist for each of the 
'reverse bifurcation' sequences connected with a particular k cycle. Indeed, we see 
strong indications of this in Figs 3 and 4 by observing that a copy of the fundamental 
[flk occurs in the vicinity of the central fixed point for the various iterates as the 
period doubles up in the reverse order. 

By appropriate computational procedures (enlarging and inverting the central 
region at each stage) we have established that the limiting function 

g~(X) = lim (-IX)"UY"·k(A2"'k> xi( _IX)") 
n .... oo 

exists and is distinct for every cycle. This is a totally new phenomenon and is quite 
different from what happens when the pitchfork sequence is studied. * It is in fact 
possible to define a whole sequence of functions 

g~(X) = lim (-IX)"[!J2".k(A2"+r.k> xi( _IX)"), (14) 
' .... 00 

* We are careful to distinguish between the forward superstable values Ak.2" and the backward 
superstable values A2".k in what follows. Of course, as far as functional iterates are concerned, 
there is no difference between [f1 2"'k(A, x) and [f1k ' 2n(A, x) at the same A-parameter value. 
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\:::v... ..... 
(c) 

. Fig. 5. Reverse sequence of functions 
tending to 
(a) g6, 
(b) g~, 
(c) g3, 

11 

for 2 n • 3 iterates. In (a) the fixed points 
nearest the origin occur where the y = ±x 
lines intersect the extrema. 
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Fig. 6. Reverse sequence of functions tending to (a) g~, (b) gg., (c) ggb and (d) gg- for 2"'4, 2"'5a, 
2"' 5b and 2"' 5c iterates respectively. The fixed points are displayed similarly to Fig. 5a. 



12 R. Delbourgo and B. G. Kenny 

such that 

(15) 

Figs 5a and 5b evidently point to convergence toward a limit function 

gk(X) = lim g~(x), 
r-+oo 

and it is clear that g\x) obeys the standard fixed point equation 

(16) 

where again we have the freedom to set the scale through gk(O) = 1. 
Thus it appears that we have an infinite class of universal functions (McCarthy 

1983) satisfying the standard fixed point equation. In order to distinguish between 
these functions we may utilize the characteristic structures of the universal functions 
g~. It is obvious that even when k is specified, there is a variety of functions associated 
with the classification of Metropolis et al. (1973). This is illustrated by the four 
distinct universal functions corresponding to the 4, 5a, 5b and 5c cycles as shown in 
Figs 6a-6d. 

Fig. 7. Third iterate of the standard 
Feigenbaum universal function g(x). 
(Compare this with Fig. 5c.) 

Note, however, that from equation (14), if we go to the limit r ~ 00, then an 
alternative definition is 

gk(X) = lim (-ct)n[fyn'k(A2°O, x/( -ctt) , (17) 
n-+oo 

assuming as always that the orders of limits can be reliably interchanged. This 
indicates that the different function sequences for fixed k all converge to the Saine 
limit gk which depends only on the order k of the cycle and not on its structure! 
Further, since the standard universal function is defined by equation (11), we infer 
that 

(This receives numerical support in Fig. 7 for the case k = 3.) Certainly when 
g(g(x») = -g( -ctx)/ct, it is straightforward to verify that 

[g]k[gt = -[gt(-ctx)/ct. (19) 
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It is worth observing, though, that for every k we are allowed independently to set 

the scale* by gk(O) = 1, which means that gk(X) cannot simply be the kth iterate of 

the standard function g(x) scaled to g(O) = 1; indeed, (18) is only correct up to a 

scaling 11. In any event, each of these gk satisfies the familiar fixed point relation (16), 

indicating that an infinite number of solutions to that renormalization group equa­

tion exists. 

4. Triplications 

We now turn to a systematic study of cycle sequences of the type k· 3n, where the 

basic cycle has period k. We call these triplications of the k cycle and they correspond 

to a particular type of tangent bifurcation. First, we shall distinguish between two 

distinct sequences which we denote by k· 3n and 3n • k associated with forward and 

backward (or reverse) triplications. The forward sequence arises to the right of every 

k cycle and converges to an accumulation point which depends on k and its cycle 

structure-in many ways it is analogous to the pitchfork sequence k· 2n. (As a special 

instance the 3 cycle spawns the sequence 3n.) Such cycles may be identified by studying 

the three bands associated with the chaotic region to the right of the pitchfork accumu­

lation point A3 ' 2 00. As far as k = 3 is concerned, there is the distinct point of accu­

mulation 

A3°O = 3'854077963591, 

= 3'216164774983, 

map A; 

mapB. 

Fig. 8. Repeating triplication pattern as 

A300 is approached (see text). The density of 

points along the vertical axis thins out since 

the total number of iterations is fixed as 

A varies along the horizontal axis. 

The backward or reverse sequence, which we have denoted by 3n • k, is characterized 

by the fact that it always converges to A300, irrespective of k; indeed, this sequence 

is very similar to the reverse bifurcations discussed in the previous section. However, 

whether these triplings converge to A3°O from the left or right depends upon whether 

or not the basic k cycle lies to the left or right of the 3 cycle. Thus 3n • 5a converges 

from the left-so the terminology 'backward' is rather a misnomer for it- whereas 

3n • 5b and 3n • 5c converge from the right. This triplication pattern is exhibited in 

Fig. 8 for X(A-A3°o)-lnA/lnLl against log(A-A300) with the constants L1 and A in (21a) 

and (2Ib) already anticipated. 

* One must be careful not to confuse gk(O) with the related quantity DX2n.k = [!J2n,c(A'2n.k, 0), where 

C is the number of iterations needed to bring x to X for n = O. 
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Table 6a. Forward trifurcations 1·3" for mappings A and B 

MapA MapB 
A Dx A Dx 

3·831874055283 0·3457102029 3 ·116700451066 - 2·343405761 
3·853675276839 -0·0356580611 3 ·214601114697 0·129432449 
3·854070677510 0·0038524177 3· 216136205149 -0 ·015927717 
3·854077831706 -0,0004151813 3·216164258172 0·001690728 
3·854077961203 0·0000447527 3·216164765631 -0·000182565 

Table 6b. Ratios of successive DA and Dx for mappings A and B 

Cycle MapA MapB 
RA Rx RA Rx 

9 55·13 -9,695 63'78 -18,105 
27 55·27 -9,256 54·72 -8,126 
81 55·25 -9'279 55·28 -9'421 

243 -9'277 -9,261 

Table 7. Forward trifurcations for mapping A 

Cycle A Dx RA Rx 

(a) 4·3" 
4 3·9602701272212 0·3517754767 

12 3·9614314419566 -0,0084164470 56·00 -41,796 
36 3·9614521815369 0·0008811366 54·99 -9'552 

108 3·9614525586728 -0,0000951532 55·26 -9·260 
324 3·9614525654981 0·0000102551 -9,279 

(b) 5a·3" 
5a 3·738914912970 -0,1583420673 

15 3·744016873483 0·0232593167 58·05 -6,808 
45 3·744104768920 -0,0024341389 54·93 -9'556 

135 3·744106369092 0·0002628481 55·27 -9,261 
405 3·744106398046 - 0·0000283256 -9'280 

(c) 5b·3" 
5b 3·905706469831 0·1804420034 

15 3 ·906641328957 -0,0097690137 56·51 -18,471 
45 3·906657872652 0·0010263518 54·96 -9'518 

135 3·906658173687 -0,0001108003 55·26 -9·263 
405 3·906658179135 0·0000119443 -9'276 

(d) 5c' 3" 
5c 3·990267046974 0·3531219383 

15 3·990335169048 - 0 . 0020549297 56·45 -17,184 
45 3·990336375733 0·0002136359 54·94 -9,619 

135 3·990336397698 - 0 . 0000230798 55 ·19 -9,256 
405 3·990336398096 0·0000024874 -9'279 

In Tables 6-8 the numerical results for both trifurcating sequences are presented, 
chiefly for map A, in a similar way to the tabulation for bifurcations. For the for­
ward sequence we define the relevant superstable values by Ak . 3 n and for the back­
ward sequence by A3 n'k' As pointed out, we have 

lim Ak'3 n == Ak'3<Xl #- A3<Xl, except for k = 3; (20a) 
n .... 00 

lim A3n 'k = A3<Xl' (20b) 
n .... oo 
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Table 8. Backward trifurcations for mapping A 

Cycle A Dx RA Rx 

(a) 3n ·4 
4 3·960270127221 0·3517754767 

12 3·855993729675 -0'0374971999 55·43 -9·381 
36 3·854112685005 0·0040525443 55 ·17 -9'253 

108 3·854078592024 -0,0004367589 55·25 -9,279 
324 3·854077974966 0·0000470753 -9,278 

(b) 3n '5a 
5a 3·738914912971 0·158342067319 

15 3·852099410353 - 0 ·015978208764 58·21 -9,910 
45 3·854042076559 0·001725644420 55·13 -9,259 

135 3·854077314123 -0,000185974316 55·26 -9,279 
405 3·854077951835 0·000020045340 55·25 -9,278 

(c) 3n '5b 
5b 3·905706469831 0·1804420034 

15 3·854991046674 -0,0190731288 56·57 -9,461 
45 3·854094524136 0·0020604249 55 ·13 -9·257 

135 3·854078263307 - 0 . 0002220630 55·25 -9,279 
405 3·854077969016 0·0000239337 -9,278 

(d) 3n ·5c 
5c 3·990267046974 0·3531219383 

15 3·856587276680 - 0·0379534384 54·26 -9,304 
45 3·854123393250 0·0041020168 55·23 -9,252 

135 3·854078785902 - 0 . 0004420946 55·25 -9·279 
405 3·854077978475 0'0000476519 -9,278 

With both sequences we find that there is a scaling law determining the relative 
window sizes, analogous to (8b), 

= 55'26, (2Ia) 

with a universal constant A that is map-independent, apart from the quadratic 
maximum requirement. As well, there is a second scaling law determining the trident 
sizes, analogous to (8a), 

-A -9,277 , (2Ib) 

governed by another universal constant A. t 
There is a striking resemblance between pitchfork bifurcations and the forward 

triplications-both converge to separate points of accumulation Ak .2 oo and Ak'3OO 

t After determining values for LI and A, we realized that Derrida et al. (1979) had determined them 
for the first class of sequences. However, it is not entirely obvious that their work extends to the 
second class or that the numbers are truly universal (map-independent). 
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Fig. 9. Forward triplication sequence 
of functions tending to 
(a) Go, 

(b) G" 
(c) G. 

The order of iteration is indicated by the 
integers. In (a) the fixed points nearest 
the origin occur where the y = ±x lines 
intersect the extrema. 

(b) 

.' 5 5 '5 .5 

(d) -' 

Fig. 10. Forward sequence offunctions tending to Go for (a) 4'3n, (b) 5a'3n, (c) 5b·3n and (d) 5c·3n 

iterates. Observe how (a) is a scaled version of Fig. 9a. The fixed points in each case are displayed 
similarly to Fig. 9a. 
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respectively-as well as between reverse bifurcations and trifurcations-both converge 
to the same point of accumulation A2'" and A300 respectively .. These analogies suggest 
that we should pursue the idea of universal trifurcation functions as we have already 
done for both kinds of cycle doublings. 

5. Universal Triplication Functions 

We begin by focussing on the analogue of the pitchfork sequence, namely forward 
period tripling k· 3". By standard computational techniques we have shown that the 
limiting function 

Go(x) = lim (-At[Jr" (A3"' x/( -At) 
"-+ co 

exists; it is depicted in Fig. 9a. Of course one can also define a series of functions 
via 

G,(x) = lim ( - A)"[fJ3" (A3"+r, x/( - At) , (22) 
"-+co 

whereupon 

G,-1(X) = -AG,(GlG,( -x/A»). (23) 

Computations (see Figs 9b and 9c) suppport the expectation that this sequence G, 
converges to a limit function 

G(x) = lim G,(x) = lim (-A)"[Jr"(A3 oo ,X/(-A)"), (24) 
r-+ 00 n-+ 00 

such that 

G(x) = -AG(GtG( -x/A»). (25) 

Again we may fix the scale through G(O) = 1. (Actually more is necessary, as shown 
in the following section.) Equation (25) is in direct analogy to the Feigenbaum­
Cvitanovic equation (12). 

A study of the first sequence k· 3" produces the same universal function (see Fig. 
10). Thus, if 

n 

Go(Jlx) = Jllim (-A)n[Jr' 3 (Ak'3"' x/( -At), 
n-+co 

we find that G(x) emerges (again up to some magnification) when we go to the accu­
mulation point directly: 

G(JlX) = Jllim (-At[Jr' 3" (Ak'3 OO ' xj(-A)"). (26) 
"-+ co 

This is shown for the case k = 4 in Fig. 11. 
However, a study of the second reverse class of sequences 3"' k leads to different 

universal functions which we denote by G~: 

G~(x) = lim (-At[J]3"'k(A3"'k' x/( -A)"). 
"-+co 
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. Fig. 11. Forward triplicating sequence 
4.3 n tending to scaled G. 

Fig. 12. Reverse sequence of functions 
(a) 3n .4, 
(b) 3n ·5b, 
(c)3 n .5c, 
tending to G6, G~b and G~c respectively. 
In each part the fixed points 
are displayed similarly to Fig. 9a. 

Fig. 13. Reverse sequences G4 associated 
with 3 n .4 cycles. We know this to be the 
fourth iterate of G, up to a scaling. 
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I 

Figs l2a-12c show how this I happens for k = 4, 5b and 5c respectively. Again one 
may define a sequence of functions 

G!(x) =± lim (-A)n[Jrn'k(A3n+rok' x/( -At), (27) 
n-+ 0() 

satisfying 

G:_ 1(x) =i -AG~(G~(G!( -x/A))). (28) 
I 

There is graphic support (see Fig. 13) for the assumption that this sequence converges 
to a limit function 

Gk(x) I lim G~(x), 
r-+O() 

I 

obeying the triplication equation 

(29) 

Alternatively, if we allow r t~ tend to infinity in (27) we see that formally 

Gk(x) =; lim (-At[J]3nOk(A3OO, x/( -At). (30) 
I n-+oo 

Once more we come across! an infinite class of functions obeying the same fixed 
point triplication equation (25). It would seem from (30) that one can identify 

I 

(31) 

up to a magnification Ji. No1netheless, it is important to realize that, as was the case 
for gk(X) in Section 3, it is admissible to set the normalization Gk(O) = 1 for each k 
a priori. It is certainly true t~at when G(x) obeys (25) so does [G ]\x). 

The examination of these universal functions and sequences reinforces the parallel 
between the 2n and 3n harmonics. We have little doubt that these considerations 
apply to other kinds of peri<;>d multiplications; for instance, the fourfold sequences 
associated with the 4-cycle ~indow born by tangent bifurcation. 

I 

6. Fractional Universal Functions 

The fact that the sequenc6 
I 

, 

(-alp o 2n (Ak o 2 °O, x/( -ay) 

converges to g(x) as n --+ 00 suggests that the related sequence 

may converge in the limit n -:-+ 00 to some 'fractional' universal function which we 
denote by l/k(X). Even if gVk(X) is not unique, the kth iterate clearly is unique and 
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it would be very surprising if no sort of convergence occurred as n ~ 00. If gl/k 
exists, obviously 

(32a, b) 

When k = 4 there are solid grounds for anticipating such convergence because, up 
to a scaling, we know that 

g(x) = lim ( - a)y4'Zn (A4.Z"" x/( - at), 
n--+ 00 

and therefore 

gl/4(X) = lim (-an zn (A4'Z"" x/( -at) 
n-+ro 

n--+ 00 

(33) 

evidently exists. Direct computation (see Fig. 14) bears out this assertion. Contrary 
to what is commonly believed (Feigenbaum 1983), this argument shows that there 
are other points of accumulation besides A = Az'" at which 

lim (-anzn(A,x/(-a)n) 
n--+ 00 

exists. More generally, we would expect convergence of this function sequence for 
all k = 2m (m integer> 1) provided wefix A = Azm.z"', in which case the limit function 
is of the type 

and satisfies (32). 

(34) 

Fig. 14. Sequence of functions leading to 
g1!4 at the accumulation point 

"4.200= 3·96119824. 

The idea can be further generalized in a straightforward way to universal functions 
associated with period tripling. Thus, there must exist fractional functions such that 

(35a, b) 
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for k = 3m and m > 1. For instance, when m = 2 we must have 

(36) 
n--+ 00 

where ,19.3'" is a point of accumulation (#,13 00 ) associated with one of the many 9 
cycles. 

We conclude with some remarks on the normalization of the universal functions. 
The basic Go(x) has three superstable fixed points near the origin, one of which may 
be taken to be x = 0; see Fig. 9a. The function G1(x) is, of course, related to Go(x) 
through 

Now, in the case of pitchfork bifurcation, the curve associated with gl(X) supports 
a circulation square such that 

Alternatively we may regard x = 0, 1 as fixed points of the iterate [g d2 , i.e. [g d2(0) = 0 
and [glf(l) = 1. However, for period tripling the curve associated with G1(x) 
supports a circulation polygon, corresponding to three supers table fixed points of 
[G1l3(x), which we may take to be 1,0 and ")11; having set the scale with the first two 
fixed points, ")11 is some new universal constantt lying between 0 and - 1. Here we 
have 

(37a, b, c) 

thereby setting the scale for the first function in the sequence Gr. The limiting function 
G as r --+ 00 must then satisfy 

G(O) = 1, G(I) = ")I, G(")I) = -ljA, (38a, b, c) 

in contrast to (37), because of the fixed point relation (29). The need for three boundary 
or normalization conditions (38) for G is dictated by G being a solution of a period­
tripling functional equation. While the origin of the third boundary condition is 
clear, it is not obvious to us at present whether or not it is a truly independent con­
dition. 

Note added in proof: A good approximation to G(x) in lowest order is given by 

For curves with a quadratic maximum 11 is related to A via equation (6a), so the value 
,1300 = 3·8541 determines 11300 = 1·7864. To this order we find that equations (38) 
become approximately 

t In relation to this, and by examining our various universal curves which exhibit nontrivial local 
fixed point structure (Figs 5 and 6), we see that in every case one can choose the centremost fixed 
point to be x* = 0 and (by s,"aling the horizontal axis) the rightmost fixed point to bex* = 1. The 
values x* of all other fixed points are then determined to lie between - 1 and 1, at universal locations. 
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which illustrates that the second boundary condition is not independent. In numerical 
terms this gives 

'}' = ~O'7864, A = 9'534, 

yielding a value for A within 3 % of the experimental value. Higher order (in x 2 ) 

approximations to G(x) shift the above numerical value of '}' by less than 1 %, while 
A agrees with the experimental value to rather better than I % already at second order. 
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