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Abstract

The literature on the strong absorption theory of heavy-ion elastic collisions contains a discrepancy
involving a singularity in the scattering amplitude at the critical angle §,. The formulae concerned
have been carefully derived ab initio and the obscurity removed. The validity of the approximations
for the scattering amplitude at angles less than and greater than 6, has been examined. The insight
gained has made it possible to investigate further the effect of refraction, and to consider the
behaviour of the real part of the nuclear phase.

1. Introduction

There have been various approaches to the theory of elastic collisions of heavy
ions. In the optical model the parameters of the nuclear potential are found by
obtaining best fits to experimental angular distributions; but the values found by
different workers for the parameters cover a wide range, and no clear picture emerges.

Accounts based on diffraction theory have led ultimately to formulae which have
become complicated and tiresome to evaluate, and which again provide no clear
picture.

More insight has been provided by the strong absorption model (Frahn and Venter
1963) in which the term of order / in the partial wave series for the scattering
amplitude f(6) contains a factor S(/) which cuts off the smaller values of /. A key
element in the method is the separation of () into two parts £ *(0) and £ ~(f). Then
f*() is given in terms of S(/). Glendenning (1975) has shown how the form of
S(!) varies with the values of the parameters adopted for the nuclear interaction.
We showed (Mohr 1979) that values of f*(6) and f~(0) may be extracted from
experimental angular distributions of elastic scattering, so as to obtain S (/) for a wide
range of pairs of colliding nuclei, taking S(/) to be of Woods—Saxon form.

This method was then extended to transfer reactions (Mohr 1980) and inelastic
collisions (Mohr 1982), taking S(/) to have the form of a bell-shaped peak, and
it was shown how transfer and inelastic collisions result in greater nuclear penetration
than elastic collisions.

An important element in the theory is the effect of refraction, which depends on
the real part of the nuclear phase, and while this dependence has hardly been
investigated, we found it less important for transfer and inelastic collisions than for
elastic collisions.
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At this stage we began to have suspicions about the treatment of elastic collisions
in the strong absorption theory, and in fact we found a discrepancy which obscures a
proper understanding of the theory. Having cleared up the obscurity, it became
possible to investigate further the effect of refraction.

2. Scattering Amplitudes /* for Pure Coulomb Field
The scattering amplitude f(6) is given by

2ik £(6) = 20 QI+ 1)S (1) exp(2i o) Py(cos ), )

‘where o, is the Coulomb phase shift of the partial wave of order /. Since
P,(cos0) ~ (2/nlsinO)*sin{(/+H0+%n}, @)

we may break up the sin0 term into two exponentials, and so break up f(6) into
£*(0) and £(0), to give

ksin0 £5(0) = —2n)* S 15 S()exp{+il0+20)}, 3
=0

disregarding the quantity § in comparison with /. Once f *(0) and f ~(0) are separated
out, the phase factors exp(+iZn) which are associated with them may be dropped.

For a pure Coulomb field S(/) is 1 for all /, and we have previously shown (Mohr
1979, Section 3) that the terms in the partial wave series for /() form a Cornu-like
double spiral in the complex plane, specified in terms of Fresnel integrals of argument
w, where

w = (I/msin0,)*2sin{3(0—0,)}, @

I, = ncot(30), )

I, = ncot(30,), ©
and where

lc =~ k(Rl +R2)a (7)

n=22Z,e*hv. )

We have shown (Mohr 1976) also that

w = Qn/n)*(l,—lo)sin(30). )

These results follow from the semiclassical (stationary phase) approximation in which,
at small angles, £ is small compared with /7, so that f ~ f~. Also, 0, is the quarter-
point angle, at which f = }fc.

Figs 1 and 2 show how the spirals change with 6, for the two extreme cases n = 20
(heavy nuclei) and n = 2 (light nuclei) respectively. For easy comparison each is
scaled by the factor sin?(30). Here f~ is given by the length of the straight line
from O’ to a particular / value on the spiral, and fc approximately by the length
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Fig. 1. Phase-amplitude diagrams for scattering by a Coulomb potential through an angle 6 for
n = 20. The successive terms in the partial wave series for f~(6) are represented by lines starting
at the point O (/ = 0) and ending at the point O’ (/ = ). The numbers denote the values of /.
For ease in drawing, a continuous curve without breaks in direction is shown. The cross indicates
the value /, = ncot(46) (point of stationary phase) which is nearly at the midpoint of the straight
line OO’.
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0O’ in the case of Fig. 1. As 0 decreases the / values move from the spiral about
O’ to the spiral about O, in such a way that 0(/—/,), and hence the value of w in
(9), remains constant. The spirals shown were calculated from (3), but they agree
well with those calculated by the semiclassical approximation using Fresnel integrals,
for n = 20. For n = 2 the agreement is not as good.

We therefore expect this approximation also to give a fair account of the variation
. of £~ with 0, for [ < [, with [, given by (7), so that § < 0, from (5) and (6). The
form of the cutoff in / values due to absorption in close collisions is of vital importance,
however, for [ > I, and 0 > 0., and this is dealt with in the next section.

For small n, however, classical considerations may be expected to break down,
and this may be seen in Fig. 2 for n = 2. The spiral about O’ has only about one turn
before expanding indefinitely. For a point P on the spiral with / > [, so that S ~1,
we have from (3) and the discussion of our previous paper (Mohr 1979, Section 3)

O'P o 1¥/(0—2p) ~ 1¥/(0 —2n/l),

which is a minimum for / = 6r/0, and these points of minimum radius are indicated
by arrows in Fig. 2. Lack of convergence is a well-known difficulty with the long-
range Coulomb field, and is worst for small n (weak fields).

Other features of Fig. 2 are: The point / = I, (shown by a cross) is no longer a
point of symmetry; as 0 decreases the diagrams shrink, and since they incorporate
a factor sin?(30), this implies that f~ varies at a slower rate than for Coulomb
scattering.

3. Strong Absorption Approximation

In this approximation one takes / = [, and o, = 4/0, for all values of /, and then
(3) becomes

ksin*0 f~(0) = —(I,)2n)* Y. S()exp(—il67), (10)
=0
where 0~ = 0—0,. Putting A = /—/; and replacing the summation by an integral

gives

ksin*0 £~ (0) = cfw

S(A)exp(—iA07)dA, (11)

where ¢ = —(I,/2n)*. It is usual to take S(4) to be of the Woods-Saxon form
1/{1 +exp(—4/4)}, and then S = +at A = O or / = [, where § = 0, the quarter-point
angle at which f = 1 f.. For values of A large enough to make S(1) ~ 1, the term
exp(—iA07) in (11) for given 6~ and varying A can be represented by a circle of
unit radius, and we note from Figs 1 and 2 that the spirals about O’ tend to circles at
large /.

Forl ~ [, or A ~ 0, we have S (1) = }exp(4/4), so in (11) we have a phase factor
exp(—iA07) arising from the Coulomb phase o, and a ‘phase factor’ exp(4/4) which
can be interpreted as arising from an imaginary nuclear phase. The real part of the
nuclear phase takes account of the effect of refraction, to be considered in the next
section.
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We now evaluate (11), separating the real and imaginary parts, and for convenience
in notation put f = 1/4, so that S(1) = 1/{1+exp(—p1)}. We start from the known
integral (Gradshteyn and Ryzhik 1965, equation 3.911(1))

f ’ sin(0~ 2)/ {1 +exp(BA)} dA = 1/20~ — /2B sinh(0™/B). (12)
4]

We also require use of

fw exp(—pl)exp(—if~ 1) di = 1)(u+i07), (13)
0

where exp(—u4) is a convergence factor which makes the spiral about O’ converge
to the point O’, and take u — 0, giving in the limit

f " cos(0 ) di = 0 = f * cos(0-2) di, (14)
0 —

f : sin(0=4) di = 1/6™ . (15)

Subtracting (12) from (15) gives
J:o sin(0~A)/{1+exp(—pA)} dA = 1/20~ +x/2Bsinh(0~7/B). (16)

Replacing 1 by —A in (12) gives

fo sin(0”4)/{1+exp(—pA)} dA = —1/20" +n/2Bsinh(0"7/p). a7

Adding (16) and (17) gives

f " sin(074)/{1+exp(—BA)} dA = 7/Bsinh(8~7/B). (18)

The same procedure, having regard to signs and using (14) instead of (15), gives
f cos(0~A)/{1+exp(—BA)} di = 0. (19)

Finally, from (11), (18) and (19) we have
ksin0 f~(0) = icnd/sinh(n4607). (20)

A different result is implied by Bassichis and Dar (1966, equation 43) and by
Hartmann (1976, equation 22), namely

ksin*0 f~(0) = icnd0~ [sinh(nd07), 21

which differs in an important respect from (20) in its behaviour as 8 — 0,, or 6~ — 0:
the result (21) tends to a constant, whereas (20) tends to infinity. The original work
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of Frahn and Venter (1963, equations 52a and 77) calls (21) a ‘form factor’ which
has to be multiplied by the sharp cutoff amplitude O'P, where P is a point on the
spiral about O’. From our earlier paper (Mohr 1979, Section 3) we have, for 0~
small, O'P oc 1/0~, which brings us back to the correct form (20).

The divergence in the result (20) for 0 — 6, comes from the approximations made
in the derivation. The question arises: for what values of 6 does the result fail to
hold? For 6 < 0, we have the semiclassical approximation, for 6 > 0, we have (20),
and the curves for £~ in these two regions must join smoothly together as 0— 0,
from above. This procedure will indicate where (20) ceases to hold, and of course
will leave a gap just above 0,. This gap is smallest for large n, for then [~ is largest
for 6 < 0,. Thus the divergence in (20) provides the flexibility required to bridge
the region 0 = 0, even though a little arbitrariness is involved.

A result similar to (20) holds for f* with 0% in place of 0, but f* never diverges
because 0% > 0.

Y
/— .

Fig. 3. Phase-amplitude diagram for
scattering by a Coulomb potential with
strong absorption. The imaginary axis
Q’Y corresponds to A = 0, and the
angle YO'P has the value A6~. The
curve ending at Ty is for 4 = 1,

0~ = 1, and the curve ending at T,
for 4 = 1, 8- = 2. The bars mark off
equal intervals of /.
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Later we shall require the form of the phase-amplitude diagram when the term
S(4) in (11) is taken into account. It is shown in Fig. 3 for two values of 6~. For
large enough A, when S(4) — 1, the form is the circle exp(iA0~). For smaller A
it is given by [7 S(4)exp(—iA07)d4, the integral being evaluated numerically for
suitably spaced values of 4. For 4 = —oo the integral has the value (20), indicated
by the lengths O'T; and O'T, for 46~ = 1 and 2 respectively.

In the early part of this section we were concerned mainly with the behaviour
of f~ for 6~ — 0, but (10), (11) and (20) hold also with /™ in place of /™ and 0*
in place of 87, so that Fig. 3 is valid for both f* and f~, if we consider only the
Coulomb interaction. A basic assumption was to take the difference between
successive Coulomb phases to be a constant §.. And we recall that fis given by the
vector sum of the amplitudes f* and /™.

4. Effect of Refraction

- Refraction gives rise to a difference between f* and f~, and involves the real
nuclear phase due to the nuclear interaction. If we assume that this phase is
appreciable only for / < [, and that the difference between successive nuclear phases
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is a constant Oy for the first few values of / < I, we obtain an appropriate modifica-
tion of (20), and of the left side of the axis O'Y in Fig. 3 where A1 < 0. For f~
the spiral winds up more tightly, and f* less tightly, so that the terminal point T
is raised and lowered respectively, and f* and f~ increased and decreased
correspondingly.

The nuclear phases are best calculated using the WKB method for a complex
potential, for then we obtain insight into the behaviour of the real and imaginary
parts of the nuclear phase, the differential equations for which are strongly coupled
in this method.
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