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Abstract 

Aust. J. Phys., 1983, 36, 775-98 

A theory is developed which synthesizes the classical theory of wave-wave interactions in a medium 
and the QED theory of photon-photon interactions in a vacuum with or without static fields. First, 
a covariant version of the theory of wave dispersion in an arbitrary medium is outlined. Then the 
photon propagator is calculated both by solving the wave equation directly and from the vacuum 
expectation value, and the latter is generalized by introducing a statistically averaged propagator. 
The hierarchy of nonlinear responses of the medium is introduced and used to define a nonlinear 
interaction Hamiltonian. The expansion of the S matrix with this interaction Hamiltonian is 
re-ordered to correspond to a hierarchy of processes ordered according to the number of external 
photons. The theory is used to treat three-wave and four-wave interactions and both classical 
and QED applications are discussed. A covariant form of the Onsager relations and calculations 
of the hierarchy of response tensors using covariant classical kinetic theory and the Heisenberg-Euler 
Lagrangian are presented in appendices. 

1. Introduction 

It is well known that in the presence of a magneto static field B the vacuum is 
birefringent (see e.g. Toll 1952; Minguzzi 1957, 1958; Klein and Nigam 1964; 
Erber 1966). For sin e #- 0, where e is the angle between the wavevector k and B, 
both wave modes have 1 k 1 > 0); one is linearly polarized along k x B and the other 
is linearly polarized along k x (k x B). In any version of QED in which the effect 
of a magneto static field is taken into account exactly, 'photons' must correspond 
to wave quanta in these two wave modes. Thus there are two kinds of photons 
and neither has the dispersion relation k 2 = 0)2 -I k 12 = ° in general. It follows 
that the photon propagator, whose poles correspond to the dispersion relations, 
cannot be proportional to 1/k2 and must be proportional to 1/(k2-k'+)(k2-k:'), 
where k2 = k; denote the dispersion relations for the modes labelled + and -
here. Both the wave properties and the photon propagator are found here by solving 
a wave equation which includes the response of the magnetized vacuum. This 
response may be described in terms of a polarization 4-tensor ctf'V(k), which was 
calculated explicitly for the magnetized vacuum by Melrose and Stoneham (1976, 
1977). The techniques required to derive the wave properties are essentially those 
used in the theory of wave dispersion in plasmas. These techniques may be applied 
to the magnetized vacuum alone or indeed to any system whose linear response may 
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be described in terms of a polarization 4-tensor rjJ1V(k). In effect a magnetized vacuum 
is like a material medium in that the properties of radiation in the system are 
intrinsically different from those of radiation in vacuo. Moreover, just as in a medium, 
one may define a hierarchy of nonlinear responses of the magnetized vacuum, and these 
responses allow the possibility of nonlinear interactions such as photon splitting and 
photon scattering. 

In this paper a QED formulation is developed for the theory of photon-photon 
interactions in an arbitrary medium. The main motivation is connected with the 
development of a version of QED which takes the effects of a magneto static field 
into account exactly (Melrose and Parle 1983a, 1983b; present issue pp. 755 and 
799). However, as formulated here, the theory depends only on the response tensors 
and may be applied to any system for which they are known. For a theory of the 
magnetized vacuum with an electron gas present, to be fully internally consistent 
one must use QED to calculate the response tensors, for example as done by 
Melrose (1974) and in Part III (Melrose and Parle 1983b). However, for many 
practical purposes one is well justified in using a simpler theory to calculate the 
response tensors. Indeed the theory developed here has two obvious applications, 
one as an alternative procedure for treating nonlinear photon-photon interactions 
in QED, and another as a covariant version of the theory of wave-wave interactions 
in dispersive media such as classical plasmas. 

In Section 2 a covariant theory for wave dispersion (Melrose 1973, 1981, 1982) 
is summarized. The radiation field is then second quantized simply by associating 
an annihilation operator cM(k) and a creation operator ctr(k) with, respectively, the 
positive and negative frequency parts of the wave 4-potential for waves in the mode M. 
This quantization is effectively that of a scalar field, with the 4-vector nature of the 
field determined by the polarization 4-vector e'f.tCk) for waves in the mode M. The 
photon propagator is calculated in Section 3 in two ways. One method involves 
solving the wave equation directly. The other method is based on the vacuum 
expectation value <0 I AIl(X) AV(x') I 0) and depends explicitly on the quantization of 
the photon field. The fact that the two methods produce equivalent results justifies 
the quantization procedure. In Section 3 a statistically averaged propagator is also 
defined and evaluated where the average is over the distributions of waves in various 
modes. A subsystem of waves in a particular mode M may be defined by writing 
down its Lagrangian, for example in terms of Whitham's (1965) averaged Lagrangian 
(Dewar 1977). It has been shown earlier (Melrose 1981) that the resulting classical 
wave action satisfies all the properties required for it to be reinterpreted as the photon 
occupation number, and this fact allows one to carry out the quantization procedure 
trivially. The statistical average here involves the photon occupation number. 

In Section 4 the nonlinear resP'2nse tensors are defined and used to construct a 
nonlinear Hamiltonian density !If NL(X) which describes the effects of wave-wave 
interactions. Proceeding as in QED, the S matrix is evaluated in Section 5 for inter­
actions described by £' NL(X) alone. Interactions which involve the usual interaction 
Hamiltonian in QED and £' NL(X) together are discussed in Part III. Specific formulae 
describing three-wave interactions ('photon splitting' in QED) and four-wave inter­
actions ('photon scattering' in QED) are derived in Section 6. Some aspects of the 
use of the theory are discussed and illustrated in Section 7. A number of more detailed 
points are treated in appendices. The covariant theory for wave dispersion is developed 
in more detail in Appendix 1 where it is applied to the important 'weak-anisotropy' 
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limit where the refractive index is close to unity. A covariant form of the Onsager 
relations is presented in Appendix 2. The response tensors are calculated in 
Appendix 3 for classical unmagnetized and magnetized plasmas using a covariant 
kinetic theory, and they are calculated in Appendix 4 for static fields in vacuo using 
the Heisenberg-Euler Lagrangian. 

The notation used here is essentially the same as that used in earlier papers 
(Melrose 1973, 1981, 1982). The main exceptions are the use of natural units here 
(h = c = 1) and of electromagnetic units from the SI system. The combination of 
natural and SI units leads to Bo = 1//1o, with Bo = 1/4n in rationalized gaussian units 
and Bo = I in unrationalized (Heaviside-Lorentz) units. The charge of the electron 
( - e with e > 0) appears in the fine structure constant rx = e2/47[Bo, the critical 
magnetic field Be = m2/e = 4·4 X 109 T (=4·4 X 1013 G), the electron gyro frequency 
Qo = eB/m and the plasma frequency wpo = (e2no/Bom)t. 

2. Wave Properties 

The covariant theory for wave dispersion used here was summarized by Melrose 
(1981). Briefly, given the linear response 4-tensor rx/lV(k) one retains only the hermitian 
(H) part of it in writing 

(1) 

One then constructs the tensor )fV(k) whose elements are the co factors of AV/l(k), 
and the tensor )fvaP(k) of cofactors of the 2 X 2 minors of A/lV(k). Due to the gauge 
invariance and charge continuity conditions one has kv A/lV(k) = 0 = k/l A/lV(k), and 
hence )fV(k) = k/lkV Jc(k) where Jc(k) is an invariant. The dispersion equation may 
be written in the invariant form 

Jc(k) =0. (2) 

Any particular solution of (2), W = wM(k) say, is the dispersion relation for a wave 
mode M. The solutions appear in pairs, one corresponding to a positive frequency 
and the other to a negative frequency. One is free to choose wM( -k) = -wM(k). 

The polarization 4-vector elJ.,c(k) for mode M may be constructed using the identity 

(3) 

where klJ.,c denotes k/l evaluated at W = wM(k). We are free to choose elJ.,c(-k) = e'i!(k). 
The normalization is specified in the temporal gauge [e~(k) = 0]: 

(4) 

The form of elJ.,c(k) in any other gauge is found by adding a constant times klJ.,c to elJ.,c(k) 
in the temporal gauge with the constant determined by the gauge condition in the 
desired gauge. The other wave quantity of interest is related to the constant of 
proportionality in (3) and may be interpreted as the ratio of electric to total energy 
in waves in mode M: 

R (k) = (_ ),o<oik) ) 
M wiU(k)/ow w=wM(k)· 

(5) 

One has RM ( -k) = RM(k). 
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(a) Explicit Expressions for )'(k) and ).flva{J(k) 

Some explicit expressions for )'(k) and ).flva{J(k) were quoted in Appendix 1 of 
Melrose (1981). These explicit forms involved AflV(k). In practice it is more convenient 
to have explicit forms involving traces of products of cr(H)(k). Relevant results are 
written down in Appendix 1 below. 

An important limiting case is that in which the wave properties are not greatly 
different from those of transverse waves in vacuo. If ()(flV(H)(k) is small in some 
meaningful sense then one can expand in powers of the components of ()(flV(H)(k). 
The degeneracy between the two transverse states of polarization in vacuo is broken 
when terms up to second order in ()(flV(H)(k) are retained. We refer to the approximation 
in which only terms up to this order are retained as the weak anisotropy limit. The 
wa,ve properties in this limit are determined explicitly in Appendix 1. 

(b) Onsager Relations 

It is well known that the Onsager relations imply the identity (see e.g. Melrose 
1980, p. 36) 

for the equivalent dielectric tensor. This symmetry property ensures that, apart from 
an arbitrary phase factor, the polarization 3-vector is of the form 

(6) 

with 

K == kjl k I , a == - K x Bjl K x B I , t == a x K. (7) 

The polarization 4-vector in the temporal gauge is e!f.t(k) = (O,eM(k)) with eM(k) 
satisfying (6) with real KM(k) and T M(k). 

It is aesthetically displeasing to need to resort to non-covariant arguments to deduce 
the property (6). One may avoid this by identifying the covariant form of the Onsager 
relations, i.e. by identifying the time-reversal-invariance property of ()(flV(k). This is 
done in Appendix 2. The generalization of (6) with (7) to an arbitrary frame and 
gauge is then found in terms of basis 4-vectors introduced by Shabad (1975), as 
discussed in Appendix 2. 

(c) Second Quantization 

Melrose (1981) wrote the Fourier transform of the 4-potential for waves in the 
mode M in the form, apart from an arbitrary phase factor, 

A!f.t(kM) = aM(k)e!f.t(k)2nb(w-wM(k)), 

and showed that the electric energy in waves in the range dkj(2n)3 is given by 

W!Jl(k) = Bo{wM(k)aM(k)Y. 

(8) 

(9) 

On second quantizing we wish to normalize to one photon in the range (density 
of photon states) Vdkj(2n? This then corresponds to a total energy 
WM(k) = W!Jl(k)jRM(k) equal to wM(k)jV. The desired normalization then 
corresponds to 

(lO) 
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The second quantization procedure is now straightforward. We introduce 
annihilation operators cM(k) and creation operators cL(k) and require that they 
satisfy the commutation relations 

[cM(k), cL·(k')] = c5MM ·{(2n?/V}c53(k-k') , 

[cM(k), cM·(k')] = 0 = [cL(k), cL·(k')]. 

The 4-potential AI'(x) for the radiation field is then rewritten as the operator 

(Ila) 

(lIb) 

+ ert(k)cL(k) exp{i wM(k)t -ik.x}], (12) 

where the sum is over all wave modes. Note that the negative frequency solutions 
are implicit in (8) due to wM( -k) = -wM(k), and these are explicit in (12) where 
only the positive solution wM(k) > 0 is to be retained in each term. 

3. Photon Propagator 

The inhomogeneous wave equation in the present context is 

(I 3) 

where J~xt(k) is an arbitrary source term. The photon propagator (in momentum 
space) is defined as any quantity DI'V(k) which satisfies 

(14) 

The final terms kl'kP/k 2 on the right-hand side of (14) have no net effect due to charge 
continuity requiring kl' J~xt(k) = 0 for any source term. 

From the identity (A7) of Melrose (1981) and the form AI'V(k) = kl'kVA(k) for the 
matrix of cofactors, we have 

(15) 

By inspection an acceptable form for the propagator is 

k k ;"l'avP(k) 
DI'V(k) _ a P 

- )100 --:;,.-:-:( k:-:-)- • (16) 

As expected the poles of DI'V(k) at A(k) = 0 define the natural wave modes. 
On using (16) and (14) to solve (13) one finds that the solution AI'(k) is in the 

Lorentz gauge. If we desire AI'(k) to be in an arbitrary gauge, with gauge condition 

(Ggauge) , (17) 

say, then in place of (16) we may choose 

(18) 
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More generally DIlV(k) is defined only to within a transformation of the kind 

(19) 

where C, ~Il and X may depend on the components of kll. 
In constructing the propagator in coordinate space, which we shall not do here, 

one may close the W contour and use contour integration. The contribution from 
the poles is found using the Landau prescription. Near W = wM(k) one has 

(20) 

We refer to the part of DIlV(k) arising from the semiresidue at each pole as the 
resonant (res) part. One finds 

(21) 

where the sum is over all the modes. At this stage both solutions W = wM(k) = 

-WM( -k) of (2) are implicit. The negative k solution is assumed to be related to 
the positive k solution by 

The two solutions contribute equally when evaluating the propagator in coordinate 
space. 

We have invoked the causal condition in evaluating (21), and hence its Fourier 
inversion describes the propagator DIl'(X_X') only for t-t ' > 0. We have 

8(t-tl )DIlV(X-X' ) = f d4
k4 exp{ -ik(x-x' )} Di:es)(k) 

(2n) 

'\' f dk RM(k) * 
= it i,uo (2n)3 wM(k/f.r(k)eMV(k) 

x exp{ - i wM(k)(t - t') + i k. (x - x')} , (23a) 

where a factor of 2 arises from the two solutions implicit in (21) with wM(k) > ° 
now in (23a). The propagator for t I > t is obtained by replacing + i ° by - i ° in 
(20), and hence by complex conjugating (21). Thus, we find 

. . f dk RM(k) 
8(t l -t)DIlV(X-X' ) = ~I,uo (2n? wM(k{U'(k)e~ik) 

x exp{iwM(k)(t-t' ) -ik.(x-x')}, (23b) 

where we again rewrite the result in terms of positive frequencies wM(k) > ° for 
comparison with the vacuum expectation value. 

(a) Vacuum Expectation Value 

The definition of D"V as a vacuum expectation value is 

DIlV(X-X') = i<OI T{A"(x) A\x')} I 0). (24) 
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On using (10)-(12), and also the definition cM(k) I 0> = 0 of the vacuum, one obtains 

D/tV(x-'x') = I if dk 3 RM(k) [O(t-t')e~(k)ell(k) 
M (2n) eo wM(k) 

x exp{ -iWM(k)(t-t') +ik.(x-x')} +O(t'-t)e'XrCk)eV"ik) 

x exp{iwM(k)(t-t') -ik.(x-x')}] , (25) 

which reproduces equations (23) as required. 

(b) Statistically Averaged Propagator 

If photons are present we may define a statistically averaged propagator by 
replacing the vacuum state 10> in (24) by the actual state I >. Using the density 
matrix p == I >< I we replace (24) by 

D/tV(x-x') = iTr{pA/t(x)AV(x')}, (26) 

where 'Tr' denotes the trace. The evaluation of the trace reduces to 

Tr{p cL(k) cM'(k')} = NMCk)(2n)3lj3(k-k')ljMM··' (27a) 

Tr{p cM(k) cL,(k')} = {I +NM(k)}(2n)3lj3(k-k')ljMM" (27b) 

U sing these properties one finds in place of (21) 

(28) 

4. Nonlinear Interactions 

The expansion of the induced current in powers of the amplitude of the electro­
magnetic field defines not only the linear response tensor a/tV(k) but also a hierarchy 
of nonlinear response tensors: 

x a/tV! ... vn( - k, kl' ... , kn) AvJk 1 ) •.• AVn(kn) ' (29) 

d '(n) _ d4 kl d4 kn 4-4 
Ie = (2n)4 ... (2n/2n) () (k- kl ... - kn)· (30) 

(Note the convention that k is given a minus in the argument of a/tV! ... Vn.) The 
quadratic (n = 2), cubic (n = 3) etc. nonlinear responses imply the possibility of three­
photon, four-photon etc. interactions respectively. 

Without loss of generality we may assume that the nth order nonlinear response 
tensor is symmetric under permutations of the labels I to n. It then follows that, 
provided one neglects intrinsically nonlinear dissipative processes, the tensor is 
symmetric under permutations of all n+ I indices and arguments (Melrose 1972). 
That is, one has 

(31) 
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where Pg\;:~.n' denotes an arbitrary permutation of 0'1' ... n' amongst 01 ... n, and 
where we have 

n n' 

L k i = L ki' = O. (32) 
i~O i'~O' 

We may impose the symmetry property (31) explicitly by writing 

vOVl ... Vn(k k k ') 1" p 0 1. .. n 
a 0' 1, ... , n = (n+ I)! 'f;' O'I'."n' 

X rxvo'vl'",vn'(ko', kl" ... , kn ,), (33) 

where the sum is over all (n + I)! permutations. 
To second quantize (29) we simply replace AIl(k) by the operator 

.J1l(k) = f d4x exp(i kx) AIl(X) , (34) 

with .J1l(X) given by (12). Explicit evaluation gives 

.J1l(k) = L aM(k){ e~{k) cM(k)(2nt64(k- kM) + e~(k) c1(k)(2n)464(k + kM)} , (35) 
M 

where wM(k) is now assumed positive. 

Nonlinear Hamiltonian Density 

The Hamiltonian density corresponding to the nonlinear interaction is 

Yl' NL(X) = JItL(X) AIl(x) , (36) 

with JItL(X) given by the inverse Fourier transform of the sum in (29). In the following 
we shall be concerned only with 

f d4x Yl'NL(X) = f (~:~4 J~L(k)Ai -k). (37) 

On inserting the sum from (29) into (37) we need to take account of the different 
meanings ascribed to AIl(k). In equation (29), A V1(k1) etc. describe the components 
of a test field, and A Il( -k) in (37) describes the nonlinear interaction with another 
test field. If we combine the two separate test fields into a single test field, then 
the self-interaction for the nth term in (29) is just lin of the result obtained by direct 
substitution, i.e. direct substitution corresponds to counting the self-interaction n 
times. Hence, we make the identification 

for the total nonlinear self-interaction, where we now second quantize denoting the 
operation by a circumflex. 

5. S-matrix Expansion 

Consider systems of photons interacting due to the nonlinear responses described 
by (29) and included in :k NL' A dynamical theory for such nonlinear wave-wave 
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interactions may be developed by using the conventional S-matrix expansion of QED 
with the interaction Hamiltonian density taken to be if NL- Formally, the expansion 
gives 

/ , , 
I 

'4 

,--- .... 

" , 
\ 

Fig. 1. An m -photon vertex is 
represented by a hatched circle with 
m external photon (dotted) lines. 

Fig. 2. A 4-photon vertex with two 
vertices joined by a photon propagator may 
represent (i) a radiative correction to the 
vacuum polarization or (ii) a nonlinear correction 
to the linear response tensor (provided the 
statistically averaged photon propagator is used). 

(39) 

A diagrammatic interpretation of terms in (39) involves associating an m-photon 
vertex (Fig. 1) with a response involving (Xvo ••• V~-1 (Melrose 1974). We argue below 
that each such vertex is equivalent to a term of order m - 2 in the usual expansion in 
QED. We need to rearrange the expansion (39) so that all terms of a given order are 
grouped together. Firstly, we use Wick's theorem to rearrange the integrand in normal 
order. The usual separation into connected and disconnected parts applies (see e.g. 
Bjorken and Drell 1965, p. 188) and we need consider only the sum of connected 
terms. The connected part involves terms with no contractions, one contraction, 
two contractions etc., with each contraction being associated with the photon 
propagator through (24). The resulting diagrams may be put into three classes. One 
class consists of an m-photon vertex with no propagators; these diagrams correspond 
to no contractions in the S-matrix expansion. The second class consists of ml photon, 
m2 photon etc. vertices, each of which has one vertex connected to a photon 
propagator. The third class consists of diagrams in which one or more m-photon 
vertices has two or more vertices connected to a photon propagator. The simplest 
example of a diagram of the third class is the 4-photon vertex with two vertices 
connected by a photon propagator (Fig. 2). This corresponds either to a radiative 
or a nonlinear correction to the photon propagator. 
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(a) Order of an S-matrix Element 

Let us define the order of an S matrix element in terms of the number of external 
lines. (All lines here are photon lines.) The photon propagator has two external 
lines and it is clearly of order zero in that it involves no photon interactions. The 
term involving the 3-photon vertex and no propagators is then of order one, and the 
term involving the m-photon vertex and no propagators is of order m - 2. Diagrams 
of the second class involving m1 photon, m2 photon etc. vertices connected by 
propagators correspond to elements of order (m1 - 2) + (m2 - 2) + .... Then to second 
order we have one diagram of the first class involving the 4-photon vertex, and 
three diagrams of the second class involving two 3-photon vertices and a propagator 
(Fig. 3). 

3 

4 

(a) (b) 

2 ___ ~ ___ ! -2-_---4-
1 . 

-8_--, ,--.---, 
(c) (d) 

Fig. 3. Effective cubic response tensor is composed of the true cubic response tensor (a), 

and three pairs of quadratic response tensors (b), (c) and (d), each connected by a propagator. 

(b) Equivalent Response Tensors 

We may combine the terms with no contractions, those with one contraction 
between two m-photon vertices, two contractions between three m-photon vertices, 
and so on (but with no closed loops) and rearrange the expansion in the form 

= m~3 (-i) J d4x~l:i.-2)(x) + multiply contracted terms. (40) 
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The equivalent m-photon vertex function involves a sum of terms including the 
m-photon vertex function and singly connected m 1 photon, m2 photon etc. vertex 
functions, such that one has (ml - 2) + (m2 - 2) + ... = m - 2. In evaluating the 
contractions in momentum space, one uses 

AIl(k)AV(k') = -iDIlV(k)(2n)4()4(k+k'). (41) 
'-----J 

Then by writing 

_. J d4 :£,(n-l)(.) - i J d4 ko d4 kn 4 4 
1 X en NL X - - -- -, -4 .,. ~ (2n) () (ko + ... + kn) 

n+l (2n) (2n) 

X a:o ... Vn(ko, ... , kn) Avo(ko) ... AVn(kn) ' (42) 

one defines a set of equivalent response tensors fi. 
For n = 2 we have 

(43a) 

For n = 3 there is a contribution from pairs of 3-photon vertices (Figs 3b-d): 

- 2{()(VOV1Q(ko, kb k2 + k3) DQo(k2 + k3) ()(8V2V3(k2 + k3' k2, k3)+perm.} , (43b) 

where' + perm.' implies the addition of further terms obtained from that written 
by the interchanges (Vi' k 1) <--c> (V 2 , k 2) and (Vb k 1) <--c> (V3' k3)' 

(c) Multiple Contractions 

The definition of the equivalent response tensors covers cases where two or more 
m-photon vertices are connected by photon propagators without any closed (photon) 
loops. In practice one is interested in cases where only the nonresonant part of these 
propagators contributes; the resonant part of a propagator splits the diagram into 
diagrams for two independent processes. More generally closed photon loops may 
occur. The simplest example is a propagator connecting two of the vertices in the 
4-photon vertex, and analogous diagrams involving pairs of 3-photon vertices, as 
illustrated in Fig. 3. These terms correspond to nonlinear corrections to the linear 
response tensor. The best known physical consequences of such nonlinear corrections 
are self-focusing of light and collapse of Langmuir turbulence. 

It follows from (29), with the response tensors replaced by equivalent response 
tensors, that for one contraction over two of the A factors in the cubic response 
we have a nonlinear correction to the linear response tensor: 

()(IlV(k) = -3iJ d4k' ii. IlV8q(_k k k' -k')Jj (k') 
NL (2n)4 ' " Oq' 

(44) 

where we introduce the statistically averaged photon propagator (28). In the expres­
sion (28) for JjIlV the unit term corresponds to a radiative correction in a QED 
calculation of the linear response tensor for the vacuum, and the term proportional 
to NM(k) corresponds to the nonlinear correction which allows the possibility of self­
focusing of light and collapse of Langmuir turbulence. 
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(d) S Matrix in Momentum Space 

In writing down the S matrix in momentum space we ignore the radiative and/or 
nonlinear corrections and retain only the connected diagrams. Then we have, finally, 

$(0) = 1, (45a) 

(45b) 

(45c) 

6. Photon Splitting and Photon-Photon Scattering 

We may use the theory developed above to derive formulae describing photon­
photon interactions. To first order one has photon splitting or photon coalescence, 
i.e. one photon in and two photons out or vice versa. In next order one has 
photon-photon scattering, i.e. two photons in and two photons out, and also one 
photon splitting into three and the inverse coalescence of three photons into one. 

(a) Photon Splitting 

Consider a photon in the mode M splitting into two photons in the modes M' 
and M", with wavevectors k, k' and k" respectively. Our initial state is cL(k) I 0) 
and our final state is <0 I cM,(k') cM,,(k"). On inserting (12) in (45b) and taking the 
matrix elements between these states one finds 

Sfi = -2i(2n)4b4(kM-k~,-k~,,)aM(k)aM,(k')aM,,(k")rJ.MM'M"(k, -k', -k") , (46) 

with 

MM'M"(k k' k") I' (k) *vC·k') *P(k") (k k' k") rJ. ,-, - = eM eM' eM" rJ.I'VP M, - M" - M" . (47) 

The factor 2 in (46) arises from the factor t in (45b) and a factor 6 from the six terms 
of the form AMAM'AM" in (AM+AM,+AM,Y. 

The rate per unit time at which the splitting proceeds is given by 

(48) 

where density of states factors for the final electrons are included. On using (10) 
in (46), one finds 

MM'M" , "dk' dk" 
dWfi = u (k, -k , -k ) (2n? (2n)3' (49) 

with 

MM'M". , " (2nt RM(k) RM.(k')RM,,(k") 
u (k,-k,-k) = 4TlwM(k)WM,(k')wM"(k")1 

x I rJ.MM'M"(k, -k', -k") 12b(wM(k)-wM,(k')-WM,,(k"») b\k-k' -k"). (50) 
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In (49) and (50) we adopt the convention that positive k denotes an outgoing photon 
and negative k denotes an ingoing photon. With this convention (50) includes all 
the crossed processes with the relation between the positive and negative k defined . 
by (22). 

(b) The Case M' = Mil 

Suppose the two final photons are in the same mode M'. Then the factor 2 is absent 
in (46). However, there is a factor of 2 which arises from <01 CM' CM' clr, cIt, 1 0) = 2, 
The net effect is that the factor 4 in (50) is replaced by 2. Alternatively one may 
adopt the convention that in this case one is to use (50) as it stands and to integrate 
over only half the final available phase space. 

(c) Photon-Photon Scattering 

For photon-photon scattering, say of waves in the modes Ml and M2 into waves 
in the modes M3 and M4 with wavevectors kl to k4 respectively, one finds in place 
of (46) 

with 

Sfi = -6i(2nt(54(kMl+kMl-kM3-kM4)aMl(kl)aMl(k2) 

x aM,(k3)aM4(k4)iiMIM2M3M4( -kl , -k2,k3,k4), 

iiMIM2M3M4( - k l , -k2, k3, k4) == eit;(kJ) eZt.:(k2) e'l..r3(k3) e'kik4) 

(51) 

x iil1vp,,(kMl,kM2' -kM3 , -kM.}. (52) 

The rate per unit time for this process is given by 

(53) 

with 

UMIM2M3M4(kl,k2' -k3, -k4) = {36(2n)4jB6} 

RMJkJ)RM2(k2)RM3(k3)RM4(k4) I-MIM1M3M4(k k· -k -k )12 x . CI. I, 2, 3' 4 
1 WM Jk l ) WM2(k2) WM3(k3) WM4(k4) 1 

x (5(wMJk)+WM2(k2)-WM3(k3)-WM4(k4)) (53(k J +k2 "'-k3 -k4)' (54) 

7. Specific Applications 

The theory developed here reproduces known results in the classical theory of 
wave-wave interactions in plasmas and in the QED theory of photon-photon inter­
actions in a vacuum with (or without) a static electromagnetic field. Here we discuss 
(a) the possible significance of a covariant and gauge invariant classical theory and 
(b) photon splitting in QED in the presence of static magnetic and electric fields 
and a cold electron gas. 

(a) Classical Wave-Wave Interactions 

The results derived in Section 6 differ from those derived by semiclassical methods 
only in the use of covariant notation. Before commenting on the covariance and 
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gauge invariance of the theory there is one intrinsically quantum effect which might 
be pointed out. 

In a three-wave interaction M +-t M' + M" the rate of the process is proportional to 

This includes a term NM(k) and other terms involving the product of two occupation 
numbers. In semiclassical theory the term proportional to NM(k) is discarded because 
it is impossible to describe the corresponding process without using Planck's constant. 
In other words the process described by the term NM(k) is intrinsically quantum 
mechanical. In the usual treatment of photon splitting in a magnetized vacuum the 
occupation numbers of the final photons are assumed negligible, and this corresponds 
to ignoring all but the NM(k) term. Thus, although 'photon splitting' and 'three-wave 
interactions' may be described by the same probability (47), the conventional meanings 
of these terms imply quite distinct processes. 

A covariant and gauge invariant theory has the obvious advantages in that one 
may choose the frame and the gauge for convenience. However, these advantages 
are relevant only if the response tensors ri'", aflVP etc. are available in covariant form. 
(If they are not available one may construct them from the corresponding 3-tensors, 
but this is sufficiently tedious to outweigh any calculational advantages.) It is 
straightforward to calculate the tensors using covariant versions of cold plasma theory 
and of kinetic (Vlasov) theory, for example in the form used by Melrose (1982). 
The calculation using covariant kinetic theory has a major advantage over the non­
covariant form in that it is relatively simple to partially integrate and reduce the 
resulting cumbersome expressions to relatively simple forms in which the symmetry 
properties of the tensors are manifest. The final results, which have not been written 
down before (except for aflV in an unmagnetized plasma), are given in Appendix 3 
for both the unmagnetized and magnetized cases. The cold plasma case follows 
trivially by writing F(p) = no b4 (p - Po), where no and pI) are constants. To obtain 
the cold plasma limit in the magnetized case, one is also to take the small gyro radius 
limit R = 0, which corresponds to setting So = 0, Sl = ° etc., with Jo(O) = 1 and 
Js(O) = ° for s i= ° in equations (A34)-(A38). Using these results the theory is 
automatically in covariant form. 

The advantages of a gauge invariant theory are rather limited. It is well known 
that waves in an isotropic plasma are either longitudinal or transverse. However, 
this is the case only in the rest frame of the plasma and in any other frame the waves 
are not longitudinal or transverse. In the rest frame it may be convenient to use 
the Coulomb gauge to describe longitudinal waves. These waves have ef = (0, K) 
in the temporal gauge, and hence 

(55) 

in the Coulomb gauge. Thus, for example, the matrix element for a three-wave 
interaction between three longitudinal waves is 

and so on. 
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(b) Photon Splitting in a Strong Magnetic Field 

The conventional treatment of photon splitting in a strong magnetic field (e.g. 
Adler et al. 1970; Bialynicka-Birula and Bialynicki-Birula 1970; Adler 1971) involves 
expanding in powers of B. The lowest order Feynman diagram is the box with 
vertices corresponding to the three photons and to B, but this gives zero in the 
nondispersive case, i.e. when the photons are assumed to have k 2 = O. The hexagon 
diagram, with three vertices corresponding to B, gives the lowest order nonvanishing 
result. In the simplest treatment the amplitudes for the box and hexagon diagrams 
are calculated indirectly using the Heisenberg-Euler Lagrangian, and this restricts 
the validity to 'low' frequencies. Exact calculations are possible (Adler 1971; 
Stoneham 1979), and an exact treatment of photon dispersion (Stoneham 1978) 
suggests that 'low' frequencies correspond to 

(56) 

which is adequately satisfied for most purposes. 
The method developed here allows one to treat photon splitting in a relatively 

simple way, and it also allows one to include plasma effects. The response tensors 
r:iLV, ry!'VP and rxflVP< are calculated in Appendix 4 from the Heisenberg-Euler Lagrangian. 
In the weak anisotropy limit the tensor t flV introduced in Appendix I describes the 
dispersive properties: t flV is equal to l1-orxflV(k) evaluated at k 2 = 0 and with only 
the components orthogonal both to the time axis and to kfl retained. Choosing axes 

. along 

e~ = (0, a) , e~ = (0, t), (57a, b) 

cf. equations (7), in a frame in which E and B are parallel, one finds 

tflV = ~ w2sin2 0(8E2+14B2 -6EB), 
90n B~ -6EB 14E2+8B2 

(58) 

with·rx == e2j4nBo the fine structure constant. The results derived in Appendix I then 
imply 

(59) 

(60a, b) 

The well-known results for a magnetized vacuum are reproduced for E = O. Note 
that one has ~ oc kaF(D)afl oc b~ and e': oc kant oc b~, where b~ and b~ are defined 
by equations (A2Ia) and (A2Ib). 

It might be remarked that a more conventional derivation of the wave properties 
(59) and (60) using non-covariant methods is considerably more complicated than 
the covariant method used here. Although the vacuum response for E = 0 and 
B #- 0 may be described in terms of a dielectric tensor and magnetic permeability 
tensor, for E#-O and B #- 0 there are also magneto-electric responses and the two 
magneto-electric susceptibility tensors must be included. Here the magneto-electric 
responses appear in the terms 6EB in (58). 
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In the non-dispersive limit the three wavevectors must be collinear and hence we 
have sin e = sin 0' = sin en. Using this fact, on considering the small contributions 
to ki, one finds that k/L = k'/L + k"/L can be satisfied only for M = - and M' = 
M" = +. Using the explicit expression (A49) for a/LVP one finds that the term of 
O(e4) does not contribute (due to terms like ko kl being proportional to k 2 which 
is assumed negligible and terms like k/Le/L vanishing due to the waves being assumed 
transverse) and, as a result of the orthogonality of b~ and b~, only the final explicit 
term in (A49) contributes for M = - and M' = M" = +. Substitution into (47) 
and (50) then gives 

u-++(k, -k', -k") = (2n)4 ( 13e6 (E2 +B2)3/2ww'W" sin30) 3 

48~ ww'w" 315n2m8 

X (j(w-w' -w") (j3(k-k' -k"), (61) 

which reproduces Adler's (1971) result (cf.his equations 21 and 22), with the minor 
generalization that a nonzero parallel electric field is included. Further generalizations 
have been discussed in detail by Stoneham (1979). 

A plasma can affect photon splitting in at least three ways: it affects the dispersion 
of the waves, the polarization of the waves and it contributes to a/LVP. The first two 
effects may be taken into account in the cold plasma approximation by adding to 
(58) the contribution 

t = w 
/LV 2 ( w2 /( w2 - Q~) i wQo cos O/(w2 - Q~) ) 

p pO -iwQocose/(w2-Q~) w2cos2e/(w2-Q~) +sin20 
(62) 

from the cold plasma in its rest frame with wpo and Qo the plasma frequency and 
electron gyrofrequency respectively. For w2 ~ Q~ the contribution to k 2 is positive 
and of order w;o. Inspection of (59) shows that the contribution of the electron gas 
and of the magnetized vacuum (B ~ E) are in a ratio of order (90n/a)(w;0/Q~)(m/w)2. 
If the plasma dominates one finds that photon splitting is kinematically forbidden. 
Even when the effect of the plasma is weak it causes the natural modes to be slightly 
elliptically polarized rather than strictly linearly polarized, as (A6) implies. However, 
this has only a minor effect on the numerical coefficient in (61). 

The contribution of the plasma to a/LVP has not been recognized in this context 
previously. The relevant form of a/LVP is for a cold magnetized plasma and is given 
by setting R = 0 and F(p) = no (j4(p) in equation (A34) with (A35)-(A38). For 
w ~ Qo expanding in Qo/w gives the unmagnetized case to lowest order, i.e. (A29) 
with F(p) = no (j4(p), and this gives zero for three transverse waves. To next order 
in Qo/w one obtains a nonzero result and comparing it with the vacuum contri­
bution to a/LVP one finds them to be in a ratio of order (315n2/13a)(w;0/Q~)(m/w)4. 
One may conclude that there is a small range of parameters where the nonlinear 
contribution of the plasma is important but the dispersion of the plasma is not. 
This range corresponds roughly to 

( W) 2 90n w;o (m) 2 - ~--- ~l. 
m a Q~ w 

(63) 

It is unlikely that (63) is satisfied in cases of practical interest. 
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8. Conclusions 

The theory developed here synthesizes the classical theory of wave-wave inter­
actions in plasmas and photon-photon interactions in QED. The ideas and methods 
involved in treating nonlinear electromagnetic interactions here are also relevant in 
the treatment of particle-wave interactions, which are discussed in the following 
Part III. 
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Appendix 1. Weak Anisotropy Limit 

Let us write 

omit arguments k and define the traces 

(AI) 

t (3) = t/1 tV t P 
- V P /1' (A2a, b,c) 

One then finds, for example using equations (A13) and (A14) of Melrose (1981), 

(A3) 
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+ k/lka{ (k2 + t (l»)gVP _ t VP} _ k/lkP {(k2 + t (l))gva _ tva} 

+ kVkP {(k2 + t (1»)g/la _ t/la} _ kVka{ (k2 + t (1») g/lP _ t/lP} 

D. B. Melrose 

(A4) 

with t (2)/lV == t /l P t pv. It is usually simpler to calculate the determinant of the 3-tensor 
rather than the trace of the cube of the 4-tensor: 

t(D) == (ljw 2)det{t i j (k)} 

= (lj6k2){(t(l))3_3t(l)t(2)+2t(3)}. (A5) 

Caselt(l)I~l 

Now we may solve Jc(k) = 0 under the assumption that t/lV(k) is proportional to 
a small parameter. In (A3) we neglect the terms cubic in this parameter and find 

(A6) 

where the subscript 0 indicates that the quantity is evaluated at k 2 = O. The two 
modes are now labelled M = ±. The result (A6) simplifies further if we choose a 
particular frame. We choose an orthonormal set of basis vectors 

Ub == (1,0), et == (0, K), e't, ei· (A7) 

The longitudinal (L) part of t /lV does not contribute in the limit k 2 = 0 due to 

t(1) = (k2jw2)t(L)+t\ +t 22, 

and similarly for t(2) and t(3). Then (A6) reduces to 

(AS) 

k 2 = k~ = _~(t11+t22)±H(t\-t22)2+4t12t2dt, (A9) 

which involves only the transverse part of t/lv. In (A9) and below we now omit sub­
scripts to denote k 2 = O. 

The polarization 4-vectors may be found in this case by noting that the wave 
equation has been effectively reduced to the two-dimensional equation 

(k 2g/lV + t /lV)ev = 0 (A 10) 

in the radiation gauge (u/le/l = 0, et ell = 0). One finds 

(All) 

with 

e~ e~ = (t\ +k~)jA, (A12a, b) 

and with 

(A13) 
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The polarization is elliptical with axial ratio T (> 0 for RH and < 0 for LH 
polarization) relative to an axis at an angle 4J to the direction e~, with 

(A14) 

In (A12)-(A14) the indices 1 and 2 refer to components along e~ and e~ respectively. 

Appendix 2. Covariant Form of the Onsager Relations 

Let quantities be denoted by a bar after the time reversal operation has been 
applied to them. We have :i/L = (-f,X), k/L = (-w,k), F/LV = (E, -B) and so on. 
Now the hermitian (H) and antihermitian (A) parts of rt./LV(k) describe the time 
reversible and time irreversible parts of the response respectively. Hence, denoting 
the dependence on F/LV explicitly, we have 

(AI5a, b) 

which combine to give 

(AI6) 

which is a covariant version of the Onsager relations. In component form (A16) 
implies, for a magnetostatic field, 

rt.00(w,k)IB = rt.00(w, -k)I-B' 

rt.0i(w,k) IB = -rt.iO(w, -k) I-B' 

rt.ii(w,k)I B = rt.ii(w, -k)I-B' 

(AI7a) 

(A17b) 

(A17c) 

A set of 4-vectors bi to b: may be constructed from F/LV and k/L (Shabad 1975) 
and used as a set of basis vectors. We write 

B = (l-F/LVF )t 
- 2 /LV' 

g\r == g/LV -g'J..v , 

F{D)/LV == te/LV 1%(1 FI%(I , 

where D denotes the dual. Then we introduce 

b/L =f/Ll%k 
1 - 1%' b~ == j<D)/Ll%kl%' 

b~ == k/L. 

(AI8a, b) 

(A19a, b) 

(A20a, b) 

(A21a, b) 

(A21c,d) 

Inspection shows that under time reversal b~, b~ and b~ transform similarly and 
that bi has an additional change of sign. Hence on writing 

3 

rt."V(k) = L rt.Aik) b~ b1, (A22) 
A,B=l 

where the components along k/L and kV vanish due to charge continuity and gauge 
invariance, the Onsager relations (AI6) imply 

(A23) 
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The tensor AIlV(k), cf. equation (1), also satisfies (A23). It then follows that if we 
write a polarization 4-vector in the form 

4 

e'f.t.(k) = I E<:\k) b~ , (A24) 
A=l 

then, apart from an arbitrary overall phase factor, E~P(k) is imaginary and the 
other three components are real. 

Let us note that in a frame in which the static field is a magnetostatic field along 
the 3-axis we have 

0 0 0 0 0 0 0 -1 

0 0 -1 0 0 0 0 0 
Illv = I(D)IlV = (A25a, b) 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

g" _ r~ 
0 0 0 0 0 0 

-1 0 0 0 0 0 0 

l - l~ 
gnV = (A26a, b) 

0 -1 0 0 0 0 0 

0 0 0 0 0 0 -1 

bi = (0, kz, -kl' 0), bi = (-k3 ,0,0,w), (A27a, b) 

b'3 = (1/k2)(ki+k~, kl(W2_kD, k2(W2_k~), k3(ki+kD) , (A27c) 

b~ = (w, kl' k2' k 3), (A27d) 

where ki, k~, k~ denote here squares of the space components of the 3-vector k. 

Appendix 3. Classical Response Tensors 

A covariant version of Vlasov theory (see e.g. Melrose 1982) leads to the following 
expressions for the response tensors for a distribution of electrons F +(p) and of 
positrons F _ (p). (Recall that q = - e for electrons.) 

Case B = 0 

In the unmagnetized case electrons and positrons contribute similarly with 
either the same or opposite signs and we write F(p) == F +(p) + F _(p) and 
FD(p) == F+(p)-F_(p): 

(A28) 
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(A30) 

where (v, k 1) - (p, k 2 ) denotes another three terms obtained from those written by 
the indicated interchanges, and (v, k 1) - (T, k3) denotes a further three terms obtained 
similarly. In (A28)-(A30) we use the notation ufl = pfl/m and 

(A31) 

(A32) 

Case B #- 0 

In the magnetized case electrons (+) and positrons (-) contribute differently: 

(r(k) = ~(-e2/m) I d4 pF±(p) .=~oo Gafl(S,k,U)T~t)(s,k,u)G*P'(s,k,u), (A33) 

00 

x L: 

(A34) 

where + ... denotes five other terms obtained from that written by permuting 
(f.1" so, k o), (v, S1' k1) and (p, S2' k2). In (A33) and (A34) we introduce the notations 

Gfl'( k ) = fl'J (k R) _ kflU'(S, k) 
S, ,u - g ..L (k) Q' u II- s 0 

(A35) 
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± (ku)lI-sDo 
-r( )I'V (s, k, u) == g1j" + {7(::-k--')----'--"-----:}:-;;2-=-------;;2 

U II-sDo -Do 

where gil" gfV and fltv are defined by (A18) and (A19) and with 

(A36) 

Do == eB/m, (AB)II == gilV AI' Bv , (A37a,b) 

R == yVJ../Do =pJ../eB, kl' = (OJ,kJ..cosI/J,kJ..sinI/J,k ll ), (A37c,d) 

and 

UI'(s,k) = (yJ.(kJ..R), yV(s,k», (A38a) 

V(s, k) = (tv 1.. {exp(±iI/J)J:-1(kJ.. R) + exp(=FiI/J)J.+l(kJ.. R)} , 

±ti VJ.. {exp(±iI/J)J.-1(kJ.. R) -exp(=FiI/J)J.+ 1(kJ.. R)}, vII J.(kJ.. R». (A38b) 

Appendix 4. Response Tensors from the Heisenberg-Euler Lagrangian 

The Heisenberg-Euler Lagrangian describes a vacuum with static E and B fields. 
It may be used to derive the response tensors for such a vacuum at 'low' frequencies, 
which is usually assumed to mean OJ ~ m, but, at least for the linear response, 
requires only that (56) be satisfied. 

One form of the Heisenberg-Euler Lagrangian is (Schwinger 1951) 

with 

co _ ~ E2 _ 2) _ ~ J 00 ds (_ 2)( 2 2e BRe{cosh(esx)} 
oL - 2 80( B 8 3 exp m s e s • I { h . )} 1C 0 S m cos (esx 

An expansion gives 

(A40) 

with oc == e2/41C80 the fine structure constant and Be == m2/e the critical magnetic field. 
The result (A41) may be written in covariant form using 

E B - _~F(D)~PF 
• - 4 ~P' (A42a, b) 

where the dual F(D)~P is defined by (A20b). 
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We assume that FIlV consists of a static part F~v and a fluctuating part 

(jFllV(x) = J d4
\: exp{ikx}{ikI'AV(k) -ikVAI'(k)}. 

(2n) 

An expansion of 2 in powers of A(k) gives 
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(A43) 

(A44) 

If Fl'v = (E, B) denotes the construction of Fl'v from E and B, then the tensors 
GI'V = (D, H) and M I'V = (P, - M) may be used to describe the response, with 
D = eoE +P and H = B/J.1o -M as usual. We have 

(A45) 

The 4-current is related to MI'V(k) by 

(A46) 

On substituting (A44) and (A45) and writing ko = - k, one identifies the response 
tensors defined by (26): 

{ :1n+l(r/J (LOO)/iJL,ao ~Fal ~F~n} x u ,;z; -,;z, .1' Va 0 VI'" 0 Vn F=Fo' (A47) 

with 2 0 == !eo(E2-B2). 
For n = I equation (A47) gives the linear response tensor 

(A48) 

where only terms of order (E 2 + B 2)/ B; are retained. As required cr is diagonal 
when the axes are oriented along the 4-vectors bi to b!;: introduced in equations (A21). 
For n = 2 it is important to retain the terms of next order in (E2 +B2)/B~; one finds 

+1- k k e'l'/Jv k F(D)yp + perm} 4 0, I/J 2y 0 • 

+ 8i eO Ct {4k Fall k Fl'v k FYP 
4 0> 0 I/J 0 2y 0 315nBc 
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+ II k F(D)aJl k F(D)Pv ,. F(D)yp 
2 Oa 0 IP 0 K2y 0 

+ (k k gllV - k V kll)(3PP F k / FYP o 1 0 I 0 Oap 2y 0 

+ J-1. F(D)ap F k F(D)yP) 
8 0 Oap 2y 0 

+ J-1. k k aaIlPV(F(O)ap F k pYP + FaP F k F(D)yp) 
8 Oa I P 0 Oap 2 y 0 0 Oap 2 y 0 

+perm.} (A49) 

where '+ perm.' implies adding further terms obtained from those written by the 
interchanges (1, v) +-* (2,p) and (0,J,l)+-*(2,p), and where aallPv is the permutation 
symbol. For n = 3 the lowest order term gives a response independent of F't!: 

(A50) 

where' + perm.' here means adding further terms obtained from those written by 
the replacements (1, v) +-* (2, p) and (1 , v) +-* (3, r). Photon-photon scattering in vacuo 
in the 'low' frequency limit may be treated by inserting equation (A50) in (50); the 
resulting cross section is well known (see e.g. Jauch and Rohrlich 1955, p.295). 
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