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Abstract 

The contributions to the Coulomb excitation of the first excited states of 6Li, 7Li, lOB and 12C 
due to virtual excitation of the giant dipole resonance (GDR) are calculated, using shell model 
wavefunctions for the ground and first excited states. When the radial integrals are renormalized 
in order to fit the experimental B(E2) values for the transitions between these states, the calculated 
GDR contributions agree reasonably with the measured values in 6Li, 7Li and lOB. 

1. Introduction 

In the preceding paper (Vermeeret al. 1982, present issue p. 283), the Coulomb 
excitation of the first excited state of lOB has been measured. The calculated excitation 
probability depends essentially on the value of B(E2; 3+ -+ 1 +) for the transition 
from the 3 + ground state to the 1 + first excited state, and also on three higher order 
contributions, two being due to reorientation processes depending on the quadrupole 
moments Q3+ of the ground state and Ql + of the first excited state, and the other 
to virtual excitation of the GDR. Measured values of B(E2;3+ -+ 1+) and Q3+ 
are available (Ajzenberg-Selove 1979). The measurements of Vermeer et al. then 
give a relation between the values of Ql + and the GDR contribution. There are 
two published predictions of Ql +: - 0·8 e fm2 from shell model calculations (Barker 
1981) and - 2· 2 e fm2 from a projected Hartree-Fock calculation (Bouten and Bouten 
1981). The GDR contribution has not previously been calculated specifically for lOB. 

Somewhat similar studies involving the GDR contribution to Coulomb excitation 
of the 3 + first excited state of 6Li from the 1 + ground state have been reported from 
Chalk River (Disdier et al. 1971; Hausser et al. 1973) and from Heidelberg (Scholz 
et al. 1977; Gemmeke et al. 1978). In the case of 7Li, also studied at Heidelberg 
(Bamberger et al. 1972) and at Chalk River (Hausser et al. 1973), a reliable value 
of B (E2) connecting the -t - ground state and 1- first excited state is not available 
from other measurements, but the Q value of the excited state is necessarily zero. 
A measurement of the Coulomb excitation of the 2+ first excited state of l2C is 
in progress at Canberra (R. H. Spear, personal communication). 

In this paper, shell model calculations of the GDR contributions in 6Li, 7Li, lOB 
and 12C are made. 

2. Formulae 

In the Coulomb excitation of the first excited state of a nucleus, the direct E2 
excitation may be modified by interference with the two-step process involving 
virtual E1 excitation of high-lying states in the GDR region followed by their El 
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decay to the first excited state. An expression for this El contribution in the case 
of arbitrary spins has been given by Hausser et al. (1973); it depends on the ratio 

x == S(El)/<i II A(E2) II f), (1) 
where 

S(El) = L W(llIJr, 2In)<i II A(El) II n)<n II A(El) II f)/(En-EJ. (2) 
n 

The notation is that of Hausser et al. The reduced matrix elements are as defined 
by de-Shalit and Talmi (1963). In the electric multipole operators defined by 

A 

A(E2,1l) = L ejrJY).,iQ), (3) 
j=l 

the origin of coordinates is here taken as the centre of mass of the nucleus in order 
to avoid problems with lack of translational invariance. The denominator in (1) 
is related to B (E2) by 

B(E2; i --+ f) = (2I j + 1)-1 I <i II A(E2) II f) 12. (4) 

In order to simplify the calculation of SeE!), we assume that all the El strength 
from the ground state is concentrated at the energy Eg• Actually, for the case 
I I j - Ir I = 2, which includes 6Li, lOB and 12C, only intermediate states n with 
In = i(Ji+Ir) contribute to S(El), and it is sufficient to assume that all the El 
strength to states with this value of In is concentrated at Eg; unless Ii = 0, the GDR 
also contains contributions from states of other spins, but it is not necessary to make 
assumptions about these. Then equation (2) can be written 

S(El) = (Eg -EJ-1 L W(1 lIJr, 2In)<i II A(El) II n)<n II A(El) II f) 
n 

= 5-+(Eg -EJ-\i II (9211 f), (5) 

where (92 is a tensor operator of rank 2 defined by 

(92(/l) = L (11v /l-V 12{l)A(El, v) A(El, /l- v) . (6) 
v 

We now assume that the initial and final states belong to the lp shell configuration, 
and write them in the LS coupling representation 

Ik) == I TkMTIkMk) 

Then we have 

= L ak([2]SL)lls4lpA-4[2]TkSL,MTIkMk) 
[)']SL 

(k = i, f). 

<ill(9211f) = -(J15e2/40n)(2I j +l)+(A-4) L ai([2]SL)ar([2']SL') 
[)']SL[)' ']L' 

x U(2L'Ii S,LIr) L (lpA-4[2]Ti SL{llpA- SPlfSL,lp) 
[X)'fSL 

x<lpA-4[X]TrSL'{llpA-S[X]fSL, lp) U(21LL, lL') 

x ([1 + {(N -Z)/A }2]c5T'Tf -2J3{(N -Z)/A}(Tr IMTO I Ti M T) 

x U(1 i TJ: iTr))C<lp: r 2: 1 p) -1-<ls: r: lp/). 

(7) 

(8) 
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Here we write 

(nl: rq : n' I') = f 000 Unl(r) Un'l'(r) rqr2 dr, (9a, b) 

where unl(r) is the single-particle radial wavefunction with r measured from the centre 
of the potential well, and the expression (8) involves fractional parentage coefficients 
and angular momentum recoupling coefficients. For each of the cases of interest 
here, Ti = Te = T say. Then the details of the nuclear wavefunctions, which are 
contained in the expansion coefficients ak([A]SL), can be expressed in terms of 
spectroscopic amplitudes from the state k to the parent state I nTM T 1) of the nuclei 
with A-I nucleons, plus a p-wave nucleon, with channel spin S (Lane 1960): 

.Cf't.nTMTI(s) = (A-4)t(T!MTMT-MT I TMT) L ak([A]SL)bnTi([X]SL) 
[llSL[ilSL 

x (-li-s- s+. U(LSst,lS) U(SLlk l,sL) 

where the parent state is written 

(10) 

I nTMTIM) = L bnTj([X]SL) 11s41pA-S[X]TSL,MTIM). (11) 
(hSL 

Then it follows that 

L U (Ii s21, lIe) .Cf't,n'fMTI(S) .Cf'l,nTMTI(S) 
nMTI. 

= (A -4) L ai([A]SL)ae([A']SL') U(2L'Ii S,Lle) 
[llSL[l'lL' 

x L (l pA-4[A]TSL{ll pA-S[X]TSL, Ip)(l pA-4[A.']TSL'{ll pA-S[X]TSL, Ip) 
[Alsi" . 

x U(21LL, lL'). (12) 

If we write 

Fn'fMT! = L U(Ii s21, lIe) .Cf't,nTMTI(s) .Cf'l.nTMTI(s) , (13) 
• 

then (8) can be written as 

(ill (!)2 11f) = -(v'15e2/40n)(2Ii+l)t L FnTMTI 
nTMT! 

x [1 + {(N-Z)/A}2-2vi3{(N-Z)/A}(TIMTO I TMT) U(1tTT,tT)] 

x{(lp:r2:1p)-i(1s:r:lp)2). (14) 

Similarly, we get 

(i 11.H(E2) II f) = - {e/(8n)t}(2Ii + l)t L FnTM.r! 
nTMTI 

x [{I -2N/A2 -(1 -2/A)vi3(TIMTO I TMT) U(1tTT,tT)}(1O:r2: Ip) 

+ {2N/A 2 -(2/A)vi3(TlMTO I TMT) U(ltTT, tT)H(ls:r: Ip)2]. (15) 
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For comparison with experimental results, the quantity X defined in equation (1) 
should be expressed in terms of the unit normally used in computer analyses of the 
experimental data (Disdier et al. 1971; Hausser et al. 1973; Fewell 1978). To obtain 
this unit, the quantity SeE!) defined in (2) is written, for the case Ii = 0, in terms 
of the measurable quantity (J _ 2, where (In is the nth moment of the photonuclear 
cross section, and a parameter 110' The value of (J-2 is taken from a formula that 
is based on the hydrodynamic model and is empirically satisfied for heavier nuclei, 
(J-2 = 3'5A5/3IlbMeV-l (Levinger 1957), and 110 is estimated from the hydro
dynamic model (see de Boer and Eichler 1968). One finds that the unit is 

Xo = 0'00058A/Z eMeV- 1 . (16) 

The ratio 

k = X/Xo (17) 

is used in fitting the experimental data. 

3. Calculated Values 

With the simple assumption of harmonic oscillator single-particle wavefunctions, 
with length parameter b, one has 

(18a, b) 

so that <i II (!)211 f) vanishes, leading to S(El) = 0 and X = O. This result can 
alternatively be obtained from the sum-rule approach of Koo and Tassie (1976). 
They considered only isoscalar electric multipole operators and found that a perfect 
giant 2'-pole state based on a 0+ ground state cannot decay to a state with J1t == (21)+ 
by emitting a 2'-pole photon. This result is obtained because the isoscalar operator 
has a vanishing double commutator with the potential term of the Hamiltonian. 
The same result is obtained for an isovector multipole operator if the potential has 
no charge-exchange term (L. J. Tassie, personal communication). Our assumptions 
of only one unfilled shell (the 1 p shell), of harmonic oscillator single-particle wave
functions, and of a perfect giant dipole state imply that the Hamiltonian is just 
the sum of harmonic oscillator single-particle Hamiltonians and therefore contains 
no charge-exchange term. The result for Ii =1= 0 follows from the more general 
sum-rule formulae of Koo and Tassie. 

It is more reasonable to assume single-particle wavefunctions belonging to a 
finite-depth potential well. In such cases it is usual to choose the well depth by 
fitting the nucleon binding energy. We use the Ip nucleon binding energy appropriate 
to an 'average' parent state, obtained by using calculated values of the weighting 
factors Fn'fMT 7. We do not distinguish between nucleons originating in the ground 
state and in the first excited state of the nucleus under study, since the formulae 
for the Coulomb excitation probability including the GDR contribution neglect terms 
of order (Er-EJ/(Eg-Ei) (de Boer and Eichler 1968); the lp binding energies are 
therefore measured from the mean of the ground state and first excited state 
energies. The Is proton binding energies are obtained from (e, e'p) or (p,2p) 
experiments, the neutron values following after adjustments for Coulomb energy 
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differences. We use a real Woods-Saxon potential, with central and surface-peaked 
spin-orbit terms, plus the Coulomb potential of a uniformly charged sphere. 
Parameter values for such a potential for Ip shell nuclei have been given by Elton 
and Swift (1967) and by Gamba et al. (1973) from fitting elastic electron scattering 
form factors, single-particle binding energies from (e, e'p) and (p,2p) experiments, 
and elastic proton scattering data. These values of the radius parameters, diffuseness 
and spin-orbit strength are used, and the central potential depth adjusted by fitting 
binding energies. 

Table 1. Shell model interaction and potential parameter values 

Case Shell model 
interaction ro 

6Li A 1·45 
7Li A 1·38 

lOB B 1·25 
12C C 1·36 

A Barker (1966). 
B Barker (1981), set III. 
C Cohen and Kurath (1965,1967), (8-16)POT. 
D Elton and Swift (1967). 

Potential parameters (fm) 
R a 

2·48 0·65 
2·51 0·65 
2·69 0·57 
3·02 0·55 

Ref. 

D 
D 
E 
D 

E Gamba et al. (1973); note that Gamba et al. define ro by R = ro A ' /3 instead 
of the more usual R = ro (A _·1)'/3. 

Values of the spectroscopic amplitudes that enter the expression (13) for the 
weighting factors FnTMTI are taken for the shell model interactions as indicated in 
Table 1, which also gives the values of the potential parameters used. Table 2 gives 
the values of FnTMTI and of the corresponding 1 p binding energies for both neutron 
and proton channels. The adopted average values of these binding energies, together 
with the Is binding energies, are listed in Table 3, which also gives the resultant 
values of the radial integrals. 

The values of the matrix elements and of B(E2) given in Table 4 are obtained 
from the values in Tables 2 and 3 by using equations (14), (15) and (4). The 
experimental values of B (E2) are also given. The discrepancies apparent between 
the calculated and experimental values of B(E2) are examples of a well-known 
phenomenon, which is usually attributed to the neglect of higher configurations in 
the assumed wavefunctions and remedied by the introduction of effective charges. 
In the A(E2) operator, the charge ej of the jth nucleon is replaced by ej +ee, where 
e is the proton charge and e is usually about 0·5. It is not obvious, however, what 
effective charge should be used in the operator (92, which is needed in the calculation 
of S(El); the only simple choices that avoid the introduction of additional arbitrary 
parameters are to use the bare charges (e = 0) or the same effective charges as for 
A(E2). Neither of these choices changes the value of the matrix element <i II (9211 f), 
since the additional charge ee is isoscalar and the operator (92 is derived from the 
El operator with the origin of coordinates at the centre of mass of the nucleus. 
An alternative way of fitting B(E2), which seems in the present cases to have as 
much justification as the use of effective charges, is to adjust the radial integrals. 
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Since the (final) term in (15) involving <Is:r: Ip) is of order A-I relative to the 
<I p: r 2: 1 p) term, and vanishes in the usual approximation of neglecting recoil, we 
renormalize only the radial integrals (1 P : r 2 : 1 p), multiplying them by a factor f in 
order to fit B(E2). Then these renormalized values of (lp:r2: lp) are also used in 
calculating (i II (92 IIf). Values obtained in this way are given in Table 5. 

Case 

6Li 
7Li 

lOB 
12C 

Table 4. Calculated values of matrix elements and values of B(E2) 

Case <i 1I@211f) 
(e 2 fm2) 

6Li -0,291 
7Li 0·125 

lOB 0.165 
12C 0·061 

<i 11.4(E2) 11f) 
(efm2) 

-4,61 
2·48 
2·69 
4·40 

B(E2;i ---> f) (e 2 fm4) 
Calc. Exp. 

7·08 25·6A 

1·54 8·3 B 

1·03 1·81 c 

19·4 38.80 

A Eigenbrod (1969). B Hausser et 
o Ajzenberg-Selove and Busch (1980). 

at. (1973). c Ajzenberg-Selove (1979). 

Table 5. Renormalization factors for radial integrals and GDR contributions 

f <i II .4(E2) II f) <i 11@2110 Eg-El S(El) X 
(efm2) (e2fm2) (MeV) (e2 fm2 MeV- l) (eMeV- l) Calc. 

2·01 -8'76 -1·060 24 -0,0198 0·00225 1·94 
2·44 5·76 0·948 24 0·0177 0·00307 2·27 
1·35 3·56 0·314 28 0·0050 0·00141 1·22 
1·45 6·23 0·369 29 0'0057 0·00091 0·77 

k 
Exp. 

2·6-3·9 
2·3-3·6 
1·3±0·3 

Values of Eg-Ej, which are needed in the calculation of S(El), may be estimated 
from photonuclear cross sections, although it should be noted that the GDR contains 
contributions from states with spins different from those contributing to S(El) 
(except for 12C). For a perfect giant dipole state, one would have Eg-Ej = unJun- 1 , 

for any integer n. The approximation made in going from equation (2) to (5) should 
be most accurate, however, if we use Eg-Ej = u-du- 2 , since there is a close 
resemblance between the formula (2) for S(El) and that for u- 2 : 

u- 2 = -(16n3J9Iic){3J(2Ij+l)}t 

xL W(llIJj,OIn)(i 11'#(El) II n)(n 1I'#(El) II i)J(En-EJ (19) 
n 

(see Appendix J of Alder and Winther 1975). We make use of the values of U- 1 

and u _ 2 obtained by Ahrens et al. (1975) from their total nuclear photon absorption 
cross section measurements for Li, Be, C and heavier elements. Since the lower 
limit of their integrations was at 10 MeV photon energy, their values of u -1 and 
u _ 2 should not contain Ml contributions, which can be appreciable at lower energies 
(Kniipfer and Richter 1981). We use values with the upper limit of integration at 
140 MeV. This gives Eg-Ej = 24, 27 and 29 MeV for Li, Be and C respectively. 
We assume that the Li value is valid for both 6Li and 7Li, that the C value holds 
for 12C, and that the appropriate value for lOB is 28 MeV. These values, together 
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with the resultant values of S(El), X and k obtained from equations (5), (1) and 
(17) respectively are given in Table 5. 

4. Experimental Yalues 

Experimental values of k are available for 6Li, 7Li and lOB. 
For 6Li, Disdier et al. (1971) fitted their experimental data with k = 3·9. Hausser 

et al. (1973) fitted the same data with S(E1) = 0·036 e2 fm2 Mey- l ; when combined 
with B(E2; 1 + ~ 3+) = 24 e2 fm4 (Disdier et al. 1971), this gives k = 3·6. Gemmeke 
et al. (1978) obtained k = 2·6. 

For 7Li, Hausser et al. (1973) fitted their own data with S(E1) = 0·028 
e2 fm2 Mey-l and B(E2;~ - ~ ! -) = 8·3 e2 fm\ giving k = 3·6; they also fitted 
various data of Bamberger et al. (1972) with values of S(E1) and B(E2;r ~ r) 
that correspond to k = 3·2, 2·3 and 3·4. 

In the preceding paper, Vermeer et al. (1982) found that a fit to their data for 
lOB required k> 0·5, for any value of Ql+. For Ql+ in the range -0·8 to 
- 2·2 e fm2, as suggested by the calculations, their fits require k = 1·3 ± 0·3. 

These experimental values of k are included in Table 5. 

5. Discussion 

Too close an agreement between the calculated and experimental values of k 
should not be expected, in view of the approximations made in the calculations and 
uncertainties in the analysis of the experiments. 

In the 6Li measurements, it is not obvious that nuclear interference effects are 
insignificant in the 24 MeV Chalk River data and the 23 MeV Heidelberg data at 
the larger angles; the fact that such effects were not observed in elastic scattering 
does not necessarily mean that they were negligible for inelastic scattering (Thomson 
et al. 1971; Feng et al. 1976). Also the experimental value of k is very sensitive to 
the assumed B(E2) value; the 6Li data of Gemmeke et al. (1978) would suggest 
a much smaller value of k if B (E2; 1 + ~ 3 +) were taken as 21· 8 e2 fm4 (Yen et al. 
1974) rather than the 25·6 e2 fm4 (Eigenbrod 1969) that they used. 

Considerable uncertainty in the calculated values can arise from the assumption 
that all the E1 strength from the ground state is concentrated at the energy Eg, with 
the consequent necessity of estimating the value of Eg - Ei , and also from the 
assumption that the wavefunctions of the ground and first excited states belong to 
the 1 p shell configuration, requiring a renormalization of the radial integrals in order 
to fit B (E2) values (the customary procedure of fitting B (E2) values by introducing 
effective charges does not offer a viable approach to the calculation of the quantity 
S(El». This renormalization procedure does, however, have the advantage of 
making the calculated value of k insensitive to the choice of shell model interaction, 
potential well parameters and B (E2) value. 

In view of these uncertainties, the agreement between the calculated and experi
mental values of the GDR contribution, as shown by the k values in Table 5, seems 
reasonable. 
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