GDR Contribution to Coulomb Excitation. I 1p Shell Nuclei

F. C. Barker
Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600.

Abstract

The contributions to the Coulomb excitation of the first excited states of ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li},{ }^{10} \mathrm{~B}$ and ${ }^{12} \mathrm{C}$ due to virtual excitation of the giant dipole resonance (GDR) are calculated, using shell model wavefunctions for the ground and first excited states. When the radial integrals are renormalized in order to fit the experimental $B(\mathrm{E} 2)$ values for the transitions between these states, the calculated GDR contributions agree reasonably with the measured values in ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}$ and ${ }^{10} \mathrm{~B}$.

1. Introduction

In the preceding paper (Vermeer et al. 1982, present issue p. 283), the Coulomb excitation of the first excited state of ${ }^{10} \mathrm{~B}$ has been measured. The calculated excitation probability depends essentially on the value of $B\left(\mathrm{E} 2 ; 3^{+} \rightarrow 1^{+}\right)$for the transition from the 3^{+}ground state to the 1^{+}first excited state, and also on three higher order contributions, two being due to reorientation processes depending on the quadrupole moments $Q_{3}+$ of the ground state and Q_{1+} of the first excited state, and the other to virtual excitation of the GDR. Measured values of $B\left(\mathrm{E} 2 ; 3^{+} \rightarrow 1^{+}\right)$and $Q_{3^{+}}$ are available (Ajzenberg-Selove 1979). The measurements of Vermeer et al. then give a relation between the values of Q_{1+} and the GDR contribution. There are two published predictions of $Q_{1^{+}}:-0.8 e \mathrm{fm}^{2}$ from shell model calculations (Barker 1981) and $-2 \cdot 2 e \mathrm{fm}^{2}$ from a projected Hartree-Fock calculation (Bouten and Bouten 1981). The GDR contribution has not previously been calculated specifically for ${ }^{10} \mathrm{~B}$.

Somewhat similar studies involving the GDR contribution to Coulomb excitation of the 3^{+}first excited state of ${ }^{6} \mathrm{Li}$ from the 1^{+}ground state have been reported from Chalk River (Disdier et al. 1971; Häusser et al. 1973) and from Heidelberg (Scholz et al. 1977; Gemmeke et al. 1978). In the case of ${ }^{7} \mathrm{Li}$, also studied at Heidelberg (Bamberger et al. 1972) and at Chalk River (Häusser et al. 1973), a reliable value of B (E2) connecting the $\frac{3}{2}^{-}$ground state and $\frac{1}{2}^{-}$first excited state is not available from other measurements, but the Q value of the excited state is necessarily zero. A measurement of the Coulomb excitation of the 2^{+}first excited state of ${ }^{12} \mathrm{C}$ is in progress at Canberra (R. H. Spear, personal communication).

In this paper, shell model calculations of the GDR contributions in ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li},{ }^{10} \mathrm{~B}$ and ${ }^{12} \mathrm{C}$ are made.

2. Formulae

In the Coulomb excitation of the first excited state of a nucleus, the direct E2 excitation may be modified by interference with the two-step process involving virtual E1 excitation of high-lying states in the GDR region followed by their E1
decay to the first excited state. An expression for this E1 contribution in the case of arbitrary spins has been given by Häusser et al. (1973); it depends on the ratio

$$
\begin{equation*}
X \equiv S(\mathrm{E} 1) /\langle\mathrm{i}\|\mathscr{M}(\mathrm{E} 2)\| \mathrm{f}\rangle \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
S(\mathrm{E} 1)=\sum_{n} W\left(11 I_{\mathrm{i}} I_{\mathrm{f}}, 2 I_{n}\right)\langle\mathrm{i}\|\mathscr{M}(\mathrm{E} 1)\| n\rangle\langle n\|\mathscr{M}(\mathrm{E} 1)\| \mathrm{f}\rangle /\left(E_{n}-E_{\mathrm{i}}\right) . \tag{2}
\end{equation*}
$$

The notation is that of Häusser et al. The reduced matrix elements are as defined by de-Shalit and Talmi (1963). In the electric multipole operators defined by

$$
\begin{equation*}
\mathscr{M}(\mathrm{E} \lambda, \mu)=\sum_{j=1}^{A} e_{j} r_{j}^{\lambda} \mathrm{Y}_{\lambda \mu}\left(\Omega_{j}\right), \tag{3}
\end{equation*}
$$

the origin of coordinates is here taken as the centre of mass of the nucleus in order to avoid problems with lack of translational invariance. The denominator in (1) is related to $B(\mathrm{E} 2)$ by

$$
\begin{equation*}
B(\mathrm{E} 2 ; \mathrm{i} \rightarrow \mathrm{f})=\left(2 I_{\mathrm{i}}+1\right)^{-1}|\langle\mathrm{i}\|\mathscr{M}(\mathrm{E} 2)\| \mathrm{f}\rangle|^{2} . \tag{4}
\end{equation*}
$$

In order to simplify the calculation of S (E1), we assume that all the E1 strength from the ground state is concentrated at the energy E_{g}. Actually, for the case $\left|I_{\mathrm{i}}-I_{\mathrm{f}}\right|=2$, which includes ${ }^{6} \mathrm{Li},{ }^{10} \mathrm{~B}$ and ${ }^{12} \mathrm{C}$, only intermediate states n with $I_{n}=\frac{1}{2}\left(I_{\mathrm{i}}+I_{\mathrm{f}}\right)$ contribute to $S(\mathrm{E})$, and it is sufficient to assume that all the E1 strength to states with this value of I_{n} is concentrated at E_{g}; unless $I_{\mathrm{i}}=0$, the GDR also contains contributions from states of other spins, but it is not necessary to make assumptions about these. Then equation (2) can be written

$$
\begin{align*}
S(\mathrm{E} 1) & =\left(E_{\mathbf{g}}-E_{\mathrm{i}}\right)^{-1} \sum_{n} W\left(11 I_{\mathrm{i}} I_{\mathrm{f}}, 2 I_{n}\right)\langle\mathrm{i}\|\mathscr{M}(\mathrm{E} 1)\| n\rangle\langle n\|\mathscr{M}(\mathrm{E} 1)\| \mathrm{f}\rangle \\
& =5^{-\frac{1}{2}}\left(E_{\mathbf{g}}-E_{\mathrm{i}}\right)^{-1}\left\langle\mathrm{i}\left\|\mathcal{O}^{2}\right\| \mathrm{f}\right\rangle, \tag{5}
\end{align*}
$$

where \mathcal{O}^{2} is a tensor operator of rank 2 defined by

$$
\begin{equation*}
\mathscr{O}^{2}(\mu)=\sum_{v}(11 v \mu-v \mid 2 \mu) \mathscr{M}(\mathrm{E} 1, v) \mathscr{M}(\mathrm{E} 1, \mu-v) . \tag{6}
\end{equation*}
$$

We now assume that the initial and final states belong to the 1 p shell configuration, and write them in the $L S$ coupling representation

$$
\begin{align*}
\mid k) & \left.\equiv \mid T_{k} M_{T} I_{k} M_{k}\right) \\
& \left.=\sum_{[\lambda] S L} a_{k}([\lambda] S L) \mid 1 \mathrm{~s}^{4} 1 \mathrm{p}^{A-4}[\lambda] T_{k} S L, M_{T} I_{k} M_{k}\right) \quad(k=\mathrm{i}, \mathrm{f}) . \tag{7}
\end{align*}
$$

Then we have

$$
\begin{align*}
\left\langle\mathrm{i}\left\|\mathcal{O}^{2}\right\| \mathrm{f}\right\rangle= & -\left(\sqrt{ } 15 e^{2} / 40 \pi\right)\left(2 I_{\mathrm{i}}+1\right)^{\frac{1}{2}}(A-4) \sum_{[\lambda] S L\left[\lambda^{\prime} L^{\prime}\right.} a_{\mathrm{i}}([\lambda] S L) a_{\mathrm{f}}\left(\left[\lambda^{\prime}\right] S L^{\prime}\right) \\
& \times U\left(2 L^{\prime} I_{\mathrm{i}} S, L I_{\mathrm{f}}\right) \sum_{[\bar{\lambda}] \overline{\mathrm{S}} \bar{L} \bar{L}}\left\langle1 \mathrm { p } ^ { A - 4 } [\lambda] T _ { \mathrm { i } } S L \left\{\left|1 \mathrm{p}^{A-5}[\bar{\lambda}] \bar{T} \bar{S} \bar{L}, 1 \mathrm{p}\right\rangle\right.\right. \\
& \times\left\langle1 \mathrm { p } ^ { A - 4 } [\lambda ^ { \prime }] T _ { \mathrm { f } } S L ^ { \prime } \left\{\left|1 \mathrm{p}^{A-5}[\bar{\lambda}] \bar{T} \bar{S} \bar{L}, 1 \mathrm{p}\right\rangle U\left(21 L \bar{L}, 1 L^{\prime}\right)\right.\right. \\
& \times\left(\left[1+\{(N-Z) / A\}^{2}\right] \delta_{T_{\mathrm{i}} T_{\mathrm{f}}}-2 \sqrt{ } 3\{(N-Z) / A\}\left(T_{\mathrm{f}} 1 M_{T} 0 \mid T_{\mathrm{i}} M_{T}\right)\right. \\
& \left.\times U\left(1 \frac{1}{2} T_{\mathrm{i}} \bar{T}, \frac{1}{2} T_{\mathrm{f}}\right)\right)\left(\left\langle 1 \mathrm{p} \vdots r^{2} \vdots 1 \mathrm{p}\right\rangle-\frac{5}{3}\langle 1 \mathrm{~s}: r: 1 \mathrm{p}\rangle^{2}\right) . \tag{8}
\end{align*}
$$

Here we write

$$
\begin{equation*}
\left\langle n l: r^{q}: n^{\prime} l^{\prime}\right\rangle=\int_{0}^{\infty} u_{n l}(r) u_{n^{\prime} l^{\prime}}(r) r^{q} r^{2} \mathrm{~d} r, \quad \int_{0}^{\infty} u_{n l}^{2}(r) r^{2} \mathrm{~d} r=1, \tag{9a,b}
\end{equation*}
$$

where $u_{n l}(r)$ is the single-particle radial wavefunction with r measured from the centre of the potential well, and the expression (8) involves fractional parentage coefficients and angular momentum recoupling coefficients. For each of the cases of interest here, $T_{\mathrm{i}}=T_{\mathrm{f}}=T$ say. Then the details of the nuclear wavefunctions, which are contained in the expansion coefficients $a_{k}([\lambda] S L)$, can be expressed in terms of spectroscopic amplitudes from the state k to the parent state $\left|n \bar{T} \bar{M}_{T} \bar{I}\right\rangle$ of the nuclei with $A-1$ nucleons, plus a p-wave nucleon, with channel spin s (Lane 1960):

$$
\begin{align*}
& \mathscr{S}_{\overline{\frac{1}{k}, n \bar{T}} \bar{M}_{T} \bar{I}(s)=}(A-4)^{\frac{1}{2}}\left(\left.\bar{T}_{\frac{1}{2}} \bar{M}_{T} M_{T}-\bar{M}_{T} \right\rvert\, T M_{T}\right) \sum_{[\lambda] S L[\bar{\lambda} \bar{J} \bar{S} \bar{L}} a_{k}([\lambda] S L) b_{n \bar{T} \bar{I}}([\bar{\lambda}] \bar{S} \bar{L}) \\
& \times(-1)^{\bar{I}-s-\bar{S}+s} U\left(\bar{L} \bar{S} s_{2}^{1}, \bar{I} S\right) U\left(S \bar{L} I_{k} 1, s L\right) \\
& \times\left\langle1 \mathrm { p } ^ { A - 4 } [\lambda] T S L \left\{\left|1 \mathrm{p}^{A-5}[\bar{\lambda}] \bar{T} \bar{S} \bar{L}, 1 \mathrm{p}\right\rangle,\right.\right. \tag{10}
\end{align*}
$$

where the parent state is written

$$
\begin{equation*}
\left.\left.\mid n \bar{T} \bar{M}_{T} \bar{I} \bar{M}\right)=\sum_{[\bar{\lambda}] \overline{\bar{S}} \bar{L}} b_{n \bar{T}(}([\bar{\lambda}] \bar{S} \bar{L}) \mid 1 \mathrm{~s}^{4} 1 \mathrm{p}^{A-5}[\bar{\lambda}] \bar{T} \bar{S} \bar{L}, \bar{M}_{T} \bar{I} \bar{M}\right) . \tag{11}
\end{equation*}
$$

Then it follows that

$$
\begin{align*}
& \sum_{{ }_{n \bar{M}_{T} \bar{I} s}} U\left(I_{\mathrm{i}} s 21,1 I_{\mathrm{f}}\right) \mathscr{S}_{\mathrm{i}, n \bar{T} \overline{T M}_{T} \bar{I}}^{\frac{1}{I}}(s) \mathscr{S}_{\mathrm{f}, n \overline{T M}}^{\frac{1}{n}} \bar{T}_{T}(s) \\
&=(A-4) \sum_{[\lambda] S L\left[\lambda^{\prime} L^{\prime}\right.} a_{\mathrm{i}}([\lambda] S L) a_{\mathrm{f}}\left(\left[\lambda^{\prime}\right] S L^{\prime}\right) U\left(2 L^{\prime} I_{\mathrm{i}} S, L I_{\mathrm{f}}\right) \\
& \times \sum_{[\bar{\lambda}] \bar{S} \bar{L}}\left\langle1 \mathrm { p } ^ { A - 4 } [\lambda] T S L \left\{| 1 \mathrm { p } ^ { A - 5 } [\overline { \lambda }] \overline { T } \overline { S } \overline { L } , 1 \mathrm { p } \rangle \left\langle1 \mathrm { p } ^ { A - 4 } [\lambda ^ { \prime }] T S L ^ { \prime } \left\{\left|1 \mathrm{p}^{A-5}[\bar{\lambda}] \bar{T} \bar{S} \bar{L}, 1 \mathrm{p}\right\rangle\right.\right.\right.\right. \\
& \times U\left(21 L \bar{L}, 1 L^{\prime}\right) . \tag{12}
\end{align*}
$$

If we write

$$
\begin{equation*}
F_{n \bar{T} \bar{M}_{T} \bar{I}}=\sum_{s} U\left(I_{\mathrm{i}} s 21,11_{\mathrm{f}}\right) \mathscr{S}_{\mathrm{i}, n, n \bar{T} \bar{M}_{T} \bar{I}}(s) \mathscr{S}_{\hat{\mathrm{F}}, n \bar{T} \bar{M}_{T} \bar{I}}(s), \tag{13}
\end{equation*}
$$

then (8) can be written as

$$
\begin{align*}
\left\langle\mathrm{i}\left\|\mathcal{O}^{2}\right\| \mathrm{f}\right\rangle= & -\left(\sqrt{ } 15 e^{2} / 40 \pi\right)\left(2 I_{\mathrm{i}}+1\right)^{\frac{1}{2}} \sum_{n \bar{T} \bar{M}_{T} \bar{I}} F_{n \bar{T} \bar{M}_{T} \bar{I}} \\
& \times\left[1+\{(N-Z) / A\}^{2}-2 \sqrt{ } 3\{(N-Z) / A\}\left(T 1 M_{T} 0 \mid T M_{T}\right) U\left(1 \frac{1}{2} T \bar{T}, \frac{1}{2} T\right)\right] \\
& \times\left(\left\langle 1 \mathrm{p} \vdots r^{2} \vdots 1 \mathrm{p}\right\rangle-\frac{5}{3}\langle 1 \mathrm{~s} \vdots r: 1 \mathrm{p}\rangle^{2}\right) . \tag{14}
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
\langle\mathrm{i}\|\mathscr{M}(\mathrm{E} 2)\| \mathrm{f}\rangle & =-\left\{e /(8 \pi)^{\frac{1}{2}}\right\}\left(2 I_{\mathrm{i}}+1\right)^{\frac{1}{2}} \sum_{n \overline{T M}}^{T} \bar{I} \\
& F_{n \bar{T} \bar{M} \bar{I}} \\
& \times\left[\left\{1-2 N / A^{2}-(1-2 / A) \sqrt{ } 3\left(T 1 M_{T} 0 \mid T M_{T}\right) U\left(1 \frac{1}{2} T \bar{T}, \frac{1}{2} T\right)\right\}\left\langle 10 \vdots r^{2}: 1 \mathrm{p}\right\rangle\right. \tag{15}\\
+ & \left.\left\{2 N / A^{2}-(2 / A) \sqrt{ } 3\left(T 1 M_{T} 0 \mid T M_{T}\right) U\left(1 \frac{1}{2} T \bar{T}, \frac{1}{2} T\right)\right\} \frac{5}{3}\langle 1 \mathrm{~s}: r: 1 \mathrm{p}\rangle^{2}\right] .
\end{align*}
$$

For comparison with experimental results, the quantity X defined in equation (1) should be expressed in terms of the unit normally used in computer analyses of the experimental data (Disdier et al. 1971; Häusser et al. 1973; Fewell 1978). To obtain this unit, the quantity S (E1) defined in (2) is written, for the case $I_{\mathrm{i}}=0$, in terms of the measurable quantity σ_{-2}, where σ_{n} is the nth moment of the photonuclear cross section, and a parameter η_{0}. The value of σ_{-2} is taken from a formula that is based on the hydrodynamic model and is empirically satisfied for heavier nuclei, $\sigma_{-2}=3 \cdot 5 A^{5 / 3} \mu \mathrm{~b} \mathrm{MeV}^{-1}$ (Levinger 1957), and η_{0} is estimated from the hydrodynamic model (see de Boer and Eichler 1968). One finds that the unit is

$$
\begin{equation*}
X_{0}=0 \cdot 00058 A / Z e \mathrm{MeV}^{-1} \tag{16}
\end{equation*}
$$

The ratio

$$
\begin{equation*}
k=X / X_{0} \tag{17}
\end{equation*}
$$

is used in fitting the experimental data.

3. Calculated Values

With the simple assumption of harmonic oscillator single-particle wavefunctions, with length parameter b, one has

$$
\begin{equation*}
\left\langle 1 \mathrm{p} \vdots r^{2} \vdots 1 \mathrm{p}\right\rangle=\frac{5}{2} b^{2}, \quad\langle 1 \mathrm{~s} \vdots r \vdots 1 \mathrm{p}\rangle=\left(\frac{3}{2}\right)^{\frac{1}{2}} b, \tag{18a,b}
\end{equation*}
$$

so that $\left\langle\mathrm{i}\left\|\mathcal{O}^{2}\right\| \mathrm{f}\right\rangle$ vanishes, leading to $S(\mathrm{E} 1)=0$ and $X=0$. This result can alternatively be obtained from the sum-rule approach of Koo and Tassie (1976). They considered only isoscalar electric multipole operators and found that a perfect giant 2^{l}-pole state based on a 0^{+}ground state cannot decay to a state with $J^{\pi}=(2 l)^{+}$ by emitting a 2^{l}-pole photon. This result is obtained because the isoscalar operator has a vanishing double commutator with the potential term of the Hamiltonian. The same result is obtained for an isovector multipole operator if the potential has no charge-exchange term (L. J. Tassie, personal communication). Our assumptions of only one unfilled shell (the 1 p shell), of harmonic oscillator single-particle wavefunctions, and of a perfect giant dipole state imply that the Hamiltonian is just the sum of harmonic oscillator single-particle Hamiltonians and therefore contains no charge-exchange term. The result for $I_{\mathrm{i}} \neq 0$ follows from the more general sum-rule formulae of Koo and Tassie.

It is more reasonable to assume single-particle wavefunctions belonging to a finite-depth potential well. In such cases it is usual to choose the well depth by fitting the nucleon binding energy. We use the 1 p nucleon binding energy appropriate to an 'average' parent state, obtained by using calculated values of the weighting factors $F_{n \bar{T} \bar{M}_{T} \bar{I}}$. We do not distinguish between nucleons originating in the ground state and in the first excited state of the nucleus under study, since the formulae for the Coulomb excitation probability including the GDR contribution neglect terms of order $\left(E_{\mathrm{f}}-E_{\mathrm{i}}\right) /\left(E_{\mathrm{g}}-E_{\mathrm{i}}\right)$ (de Boer and Eichler 1968); the 1 p binding energies are therefore measured from the mean of the ground state and first excited state energies. The 1 s proton binding energies are obtained from (e, $e^{\prime} p$) or ($p, 2 p$) experiments, the neutron values following after adjustments for Coulomb energy
differences. We use a real Woods-Saxon potential, with central and surface-peaked spin-orbit terms, plus the Coulomb potential of a uniformly charged sphere. Parameter values for such a potential for 1 p shell nuclei have been given by Elton and Swift (1967) and by Gamba et al. (1973) from fitting elastic electron scattering form factors, single-particle binding energies from (e, e'p) and ($p, 2 p$) experiments, and elastic proton scattering data. These values of the radius parameters, diffuseness and spin-orbit strength are used, and the central potential depth adjusted by fitting binding energies.

Table 1. Shell model interaction and potential parameter values

Case	Shell model interaction	r_{0}	R	a	Pef.
	A	1.45	2.48	0.65	D
${ }^{6} \mathrm{Li}$	A	1.38	2.51	0.65	D
${ }^{7} \mathrm{Li}$	B	1.25	2.69	0.57	E
${ }^{10} \mathrm{~B}$	C	1.36	3.02	0.55	D
${ }^{12} \mathrm{C}$					

${ }^{\text {A }}$ Barker (1966).
${ }^{\text {B }}$ Barker (1981), set III.
${ }^{\text {c }}$ Cohen and Kurath $(1965,1967)$, (8-16)POT.
${ }^{\text {D }}$ Elton and Swift (1967).
${ }^{\mathrm{E}}$ Gamba et al. (1973); note that Gamba et al. define r_{0} by $R=r_{0} A^{1 / 3}$ instead of the more usual $R=r_{0}(A-1)^{1 / 3}$.

Values of the spectroscopic amplitudes that enter the expression (13) for the weighting factors $F_{n \bar{T} \bar{M}_{T} \bar{I}}$ are taken for the shell model interactions as indicated in Table 1, which also gives the values of the potential parameters used. Table 2 gives the values of $F_{n \bar{T} \bar{M}_{T} \bar{I}}$ and of the corresponding 1 p binding energies for both neutron and proton channels. The adopted average values of these binding energies, together with the 1s binding energies, are listed in Table 3, which also gives the resultant values of the radial integrals.

The values of the matrix elements and of $B(\mathrm{E} 2)$ given in Table 4 are obtained from the values in Tables 2 and 3 by using equations (14), (15) and (4). The experimental values of $B(\mathrm{E} 2)$ are also given. The discrepancies apparent between the calculated and experimental values of B (E2) are examples of a well-known phenomenon, which is usually attributed to the neglect of higher configurations in the assumed wavefunctions and remedied by the introduction of effective charges. In the $\mathscr{M}(\mathrm{E} 2)$ operator, the charge e_{j} of the j th nucleon is replaced by $e_{j}+\varepsilon e$, where e is the proton charge and ε is usually about $0 \cdot 5$. It is not obvious, however, what effective charge should be used in the operator \mathcal{O}^{2}, which is needed in the calculation of $S(\mathrm{E} 1)$; the only simple choices that avoid the introduction of additional arbitrary parameters are to use the bare charges $(\varepsilon=0)$ or the same effective charges as for $\mathscr{M}(\mathrm{E} 2)$. Neither of these choices changes the value of the matrix element $\left\langle\mathrm{i}\left\|\mathbb{O}^{2}\right\| \mathrm{f}\right\rangle$, since the additional charge εe is isoscalar and the operator \mathcal{O}^{2} is derived from the E1 operator with the origin of coordinates at the centre of mass of the nucleus. An alternative way of fitting $B(\mathrm{E} 2)$, which seems in the present cases to have as much justification as the use of effective charges, is to adjust the radial integrals.
Table 2. Values of weighting factors and $\mathbf{1 p}$ binding energies

[^0]Since the (final) term in (15) involving $\langle 1 \mathrm{~s}: r: 1 \mathrm{p}\rangle$ is of order A^{-1} relative to the $\left\langle 1 \mathrm{p}: r^{2}: 1 \mathrm{p}\right\rangle$ term, and vanishes in the usual approximation of neglecting recoil, we renormalize only the radial integrals $\left\langle 1 \mathrm{p}: r^{2}: 1 \mathrm{p}\right\rangle$, multiplying them by a factor f in order to fit $B(\mathrm{E} 2)$. Then these renormalized values of $\left\langle 1 \mathrm{p}: r^{2} \vdots 1 \mathrm{p}\right\rangle$ are also used in calculating $\left\langle\mathrm{i}\left\|\mathcal{O}^{2}\right\| \mathrm{f}\right\rangle$. Values obtained in this way are given in Table 5.

Table 4. Calculated values of matrix elements and values of $B(\mathrm{E} 2)$

Case	$\left\langle\mathrm{i}\left\\|\mathcal{O}^{2}\right\\| \mathrm{f}\right\rangle$ $\left(e^{2} \mathrm{fm}^{2}\right)$	$\langle\mathrm{i}\\|\mathscr{M}(\mathrm{E} 2)\\| \mathrm{f}\rangle$ $\left(e \mathrm{fm}^{2}\right)$	$B(\mathrm{E} 2 ; \mathrm{i} \rightarrow \mathrm{f})$ Calc.	
$\left.e^{2} \mathrm{fm}^{4}\right)$				
Exp.				

${ }^{\text {A }}$ Eigenbrod (1969). ${ }^{\text {B }}$ Häusser et al. (1973). ${ }^{\mathrm{c}}$ Ajzenberg-Selove (1979).
${ }^{\text {D }}$ Ajzenberg-Selove and Busch (1980).

Table 5. Renormalization factors for radial integrals and GDR contributions

Case	f	$\langle\mathrm{i}\\|\mathscr{M}(\mathrm{E} 2)\\| \mathrm{f}\rangle$ $\left(e \mathrm{fm}^{2}\right)$	$\left\langle\mathrm{i}\left\\|\mathcal{O}^{2}\right\\| \mathrm{f}\right\rangle$ $\left(e^{2} \mathrm{fm}^{2}\right)$	$E_{\mathrm{g}}-E_{\mathrm{i}}$ (MeV)	$S(\mathrm{E} 1)$ $\left(e^{2} \mathrm{fm}^{2} \mathrm{MeV}^{-1}\right)$	X $\left(e \mathrm{MeV}^{-1}\right)$	Calc.	Exp.
${ }^{6} \mathrm{Li}$	2.01	-8.76	-1.060	24	-0.0198	0.00225	1.94	$2 \cdot 6-3.9$
${ }^{7} \mathrm{Li}$	2.44	5.76	0.948	24	0.0177	0.00307	$2 \cdot 27$	$2 \cdot 3-3.6$
${ }^{10} \mathrm{~B}$	1.35	3.56	0.314	28	0.0050	0.00141	1.22	$1 \cdot 3 \pm 0 \cdot 3$
${ }^{12} \mathrm{C}$	1.45	6.23	0.369	29	0.0057	0.00091	0.77	

Values of $E_{\mathrm{g}}-E_{\mathrm{i}}$, which are needed in the calculation of $S(\mathrm{E} 1)$, may be estimated from photonuclear cross sections, although it should be noted that the GDR contains contributions from states with spins different from those contributing to $S(\mathrm{E} 1)$ (except for ${ }^{12} \mathrm{C}$). For a perfect giant dipole state, one would have $E_{\mathrm{g}}-E_{\mathrm{i}}=\sigma_{n} / \sigma_{n-1}$, for any integer n. The approximation made in going from equation (2) to (5) should be most accurate, however, if we use $E_{\mathrm{g}}-E_{\mathrm{i}}=\sigma_{-1} / \sigma_{-2}$, since there is a close resemblance between the formula (2) for $S(\mathrm{E} 1)$ and that for σ_{-2} :

$$
\begin{align*}
\sigma_{-2}= & -\left(16 \pi^{3} / 9 \hbar c\right)\left\{3 /\left(2 I_{\mathrm{i}}+1\right)\right\}^{\frac{1}{2}} \\
& \times \sum_{n} W\left(11 I_{\mathrm{i}} I_{\mathrm{i}}, 0 I_{n}\right)\langle\mathrm{i}\|\mathscr{M}(\mathrm{E} 1)\| n\rangle\langle n\|\mathscr{M}(\mathrm{E} 1)\| \mathrm{i}\rangle /\left(E_{n}-E_{\mathrm{i}}\right) \tag{19}
\end{align*}
$$

(see Appendix J of Alder and Winther 1975). We make use of the values of σ_{-1} and σ_{-2} obtained by Ahrens et al. (1975) from their total nuclear photon absorption cross section measurements for $\mathrm{Li}, \mathrm{Be}, \mathrm{C}$ and heavier elements. Since the lower limit of their integrations was at 10 MeV photon energy, their values of σ_{-1} and σ_{-2} should not contain M1 contributions, which can be appreciable at lower energies (Knüpfer and Richter 1981). We use values with the upper limit of integration at 140 MeV . This gives $E_{\mathrm{g}}-E_{\mathrm{i}}=24,27$ and 29 MeV for Li, Be and C respectively. We assume that the Li value is valid for both ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$, that the C value holds for ${ }^{12} \mathrm{C}$, and that the appropriate value for ${ }^{10} \mathrm{~B}$ is 28 MeV . These values, together
with the resultant values of $S(\mathrm{E} 1), X$ and k obtained from equations (5), (1) and (17) respectively are given in Table 5.

4. Experimental Values

Experimental values of k are available for ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}$ and ${ }^{10} \mathrm{~B}$.
For ${ }^{6} \mathrm{Li}$, Disdier et al. (1971) fitted their experimental data with $k=3 \cdot 9$. Häusser et al. (1973) fitted the same data with $S(\mathrm{E} 1)=0.036 e^{2} \mathrm{fm}^{2} \mathrm{MeV}^{-1}$; when combined with $B\left(E 2 ; 1^{+} \rightarrow 3^{+}\right)=24 e^{2} \mathrm{fm}^{4}$ (Disdier et al. 1971), this gives $k=3 \cdot 6$. Gemmeke et al. (1978) obtained $k=2 \cdot 6$.

For ${ }^{7} \mathrm{Li}$, Häusser et al. (1973) fitted their own data with $S(\mathrm{E} 1)=0.028$ $e^{2} \mathrm{fm}^{2} \mathrm{MeV}^{-1}$ and $B\left(\mathrm{E} 2 ; \frac{3}{2}^{-} \rightarrow \frac{1}{2}^{-}\right)=8 \cdot 3 e^{2} \mathrm{fm}^{4}$, giving $k=3 \cdot 6$; they also fitted various data of Bamberger et al. (1972) with values of $S(\mathrm{E} 1)$ and $B\left(\mathrm{E} 2 ; \frac{3}{2}^{-} \rightarrow \frac{1}{2}^{-}\right)$ that correspond to $k=3 \cdot 2,2 \cdot 3$ and $3 \cdot 4$.

In the preceding paper, Vermeer et al. (1982) found that a fit to their data for ${ }^{10} \mathrm{~B}$ required $k>0 \cdot 5$, for any value of $Q_{1^{+}}$. For $Q_{1^{+}}$in the range -0.8 to $-2 \cdot 2 e \mathrm{fm}^{2}$, as suggested by the calculations, their fits require $k=1 \cdot 3 \pm 0 \cdot 3$.

These experimental values of k are included in Table 5.

5. Discussion

Too close an agreement between the calculated and experimental values of k should not be expected, in view of the approximations made in the calculations and uncertainties in the analysis of the experiments.

In the ${ }^{6} \mathrm{Li}$ measurements, it is not obvious that nuclear interference effects are insignificant in the 24 MeV Chalk River data and the 23 MeV Heidelberg data at the larger angles; the fact that such effects were not observed in elastic scattering does not necessarily mean that they were negligible for inelastic scattering (Thomson et al. 1971; Feng et al. 1976). Also the experimental value of k is very sensitive to the assumed $B(\mathrm{E} 2)$ value; the ${ }^{6} \mathrm{Li}$ data of Gemmeke et al. (1978) would suggest a much smaller value of k if $B\left(\mathrm{E} 2 ; 1^{+} \rightarrow 3^{+}\right)$were taken as $21 \cdot 8 e^{2} \mathrm{fm}^{4}$ (Yen et al. 1974) rather than the $25 \cdot 6 e^{2} \mathrm{fm}^{4}$ (Eigenbrod 1969) that they used.

Considerable uncertainty in the calculated values can arise from the assumption that all the E1 strength from the ground state is concentrated at the energy E_{g}, with the consequent necessity of estimating the value of $E_{\mathrm{g}}-E_{\mathrm{i}}$, and also from the assumption that the wavefunctions of the ground and first excited states belong to the 1 p shell configuration, requiring a renormalization of the radial integrals in order to fit $B(\mathrm{E} 2)$ values (the customary procedure of fitting B (E2) values by introducing effective charges does not offer a viable approach to the calculation of the quantity $S(E 1)$). This renormalization procedure does, however, have the advantage of making the calculated value of k insensitive to the choice of shell model interaction, potential well parameters and B (E2) value.

In view of these uncertainties, the agreement between the calculated and experimental values of the GDR contribution, as shown by the k values in Table 5, seems reasonable.

Acknowledgments

The author is grateful to Professor J. A. Kuehner and Dr R. H. Spear for helpful discussions.

References

Ahrens, J., et al. (1975). Nucl. Phys. A 251, 479.
Ajzenberg-Selove, F. (1979). Nucl. Phys. A 320, 1.
Ajzenberg-Selove, F., and Busch, C. L. (1980). Nucl. Phys. A 336, 1.
Alder, K., and Winther, A. (1975). 'Electromagnetic Excitation' (North-Holland: Amsterdam).
Bamberger, A., Jansen, G., Povh, B., Schwalm, D., and Smilansky, U. (1972). Nucl. Phys. A 194, 193.
Barker, F. C. (1966). Nucl. Phys. 83, 418.
Barker, F. C. (1981). Aust. J. Phys. 34, 7.
de Boer, J., and Eichler, J. (1968). 'Advances in Nuclear Physics', Vol. 1 (Eds M. Baranger and E. Vogt), p. 1 (Plenum: New York).

Bouten, M., and Bouten, M. C. (1981). Prog. Part. Nucl. Phys. 5, 55.
Cohen, S., and Kurath, D. (1965). Nucl. Phys. 73, 1.
Cohen, S., and Kurath, D. (1967). Nucl. Phys. A 101, 1.
Disdier, D. L., Ball, G. C., Häusser, O., and Warner, R. E. (1971). Phys. Rev. Lett. 27, 1391.
Eigenbrod, F. (1969). Z. Phys. 228, 337.
Elton, L. R. B., and Swift, A. (1967). Nucl. Phys. A 94, 52.
Feng, D. H., Barnett, A. R., and Goldfarb, L. J. B. (1976). Phys. Rev. C 13, 1151.
Fewell, M. P. (1978). Ph.D. Thesis, Australian National University.
Gamba, S., Ricco, G., and Rottigni, G. (1973). Nucl. Phys. A 213, 383.
Gemmeke, H., Deluigi, B., Lassen, L., and Scholz, D. (1978). Z. Phys. A 286, 73.
Häusser, O., McDonald, A. B., Alexander, T. K., Ferguson, A. J., and Warner, R. E. (1973). Nucl. Phys. A 212, 613.
Knüpfer, W., and Richter, A. (1981). Phys. Lett. B 107, 325.
Koo, W. K., and Tassie, L. J. (1976). Phys. Lett. B 64, 9.
Lane, A. M. (1960). Rev. Mod. Phys. 32, 519.
Levinger, J. S. (1957). Phys. Rev. 107, 554.
Nakamura, K., Hiramatsu, S., Kamae, T., Muramatsu, H., Izutsu, N., and Watase, Y. (1978). Nucl. Phys. A 296, 431.
Scholz, D., Gemmeke, H., Lassen, L., Ost, R., and Bethge, K. (1977). Nucl. Phys. A 288, 351. de-Shalit, A., and Talmi, I. (1963). 'Nuclear Shell Theory' (Academic: New York).
Thomson, J. A., Scharenberg, R. P., and Lutz, W. R. (1971). Phys. Rev. C 4, 1699.
Vermeer, W. J., Zabel, T. H., Esat, M. T., Kuehner, J. A., Spear, R. H., and Baxter, A. M. (1982). Aust. J. Phys. 35, 283.
Yen, R., Cardman, L. S., Kalinsky, D., Legg, J. R., and Bockelman, C. K. (1974). Nucl. Phys. A 235, 135.

[^0]: ${ }^{\text {A }}$ Nakamura et al. (1978). $\quad{ }^{\text {B }}$ Ajzenberg-Selove and Busch (1980).

