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Abstract

The recently developed theory of Lin ef al. has been used to make a systematic study of calculated
electron drift velocities and diffusion coefficients. Differences between the usual two-term solution
and the converged results are calculated for a number of cases to demonstrate the effects of anisotropic
scattering on the interpretation of swarm experiments.

1. Introduction

Transport coefficients determined in electron swarm experiments have usually
been related to microscopic collision processes through solutions of Boltzmann’s
equation that are based on a two-term spherical harmonics representation of the
electron velocity distribution function and matching approximations in the collision
operator. Thus, the equation for the electron velocity distribution function, which
may be written

@ = £ + 3. fi0)Pieosd), M)

where 0 is the angle between v and the electric field E, is approximated by

Jf(@®) = fo(v) +fi(v)cosB. ()

In many circumstances the errors in the transport coefficients calculated using this
order of approximation have been shown to be less than experimental error (Braglia
1977; Milloy and Watts 1977), so that the additional complexity associated with
the use of more rigorous theory (Lin ef al. 1979) is usually not necessary. Nevertheless,
general arguments have been used (see e.g. Ferrari 1977) to predict that there are
combinations of circumstances for which first-order theory may prove inadequate,
and later work has produced quantitative illustrations of these predictions (Kleban
and Davis 1977, 1978; Lin et al. 1979; Reid 1979).

Reid’s (1979) work provided a number of examples for isotropic scattering models,
and it also demonstrated an enhanced failure of the first-order theory when the
scattering is markedly anisotropic. Nevertheless, the Monte Carlo simulation
technique he used, while providing valuable bench marks, is too time consuming
and costly to be used for systematic surveys, and a number of questions remain to be
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answered. Among these is the effect of anisotropy on transport coefficients calculated
using first-order theory for low energy electron swarms in H, and CO.*

As noted by Reid (1979), the analysis of transport coefficients for these gases
has led to unresolved inconsistencies between the results of beam and swarm
experiments: in the case of hydrogen there is an unacceptable difference between
the threshold behaviour of the v = 0 — 1 vibrational excitation cross section (for a
discussion see Crompton et al. 1970), while in the case of CO the two techniques
yield different threshold characteristics (see e.g. Schulz 1964) and different overall
magnitudes for the vibrational cross sections (Land 1978). For both gases, spot
checks made by Reid at a few values of E/N (the ratio of electric field strength to
gas number density), using cross sections that modelled the real cross sections,
showed that the first-order analytical solution was likely to be adequate provided
the scattering was isotropic, but that its use might lead to unacceptable errors in
the calculated transport coefficients, at least in the case of CO, when account was
taken of anisotropy. However, the problem could not be examined in sufficient
detail to provide definitive conclusions. ‘

The object of this paper is a more comprehensive study of the effect of anisotropic
scattering on the interpretation of swarm experiments. Such a study has been made
possible by the formulation by Lin et al. (1979) of a general solution of Boltzmann’s
equation. Their treatment provides the means of calculating the transport coefficients
to any order of accuracy from ‘real’ cross section data, that is, from differential
cross section data whose energy and angular dependences cannot be represented
analytically.

The present work consists of three parts. In Section 2 the theory is applied to the
calculation of the drift velocity vy, and the perpendicular and parallel diffusion
coefficients D, and D for one of the models studied by Reid (1979). Here, and in
the other cases studied subsequently, comparisons are made between the ‘converged’
results, that is, results that do not vary as further terms are included in the series
representation of the velocity distribution function, and the results obtained when
the series is truncated at the second term, corresponding to the results of the usual
first-order analysis. Thus, the work in this section parallels but extends Reid’s
work, with the difference that his ‘converged’ results were obtained from a Monte
Carlo simulation. A comparison of the results where possible provides a test of the
consistency of the two approaches.

In Section 3 we examine the effect of increasing anisotropy by using a model in
which the total momentum transfer cross section and the total cross sections for
inelastic scattering are those for H,, but artificial anisotropy is introduced through
angular dependences which vary as cos"(36) and sin"(30) to represent forward and
backward scattering respectively. In this way we are able to demonstrate for a
real set of integral cross sections the anisotropy required to introduce significant
error in the transport coefficients calculated using conventional first-order transport
theory. :

In Section 4 we present data for H, calculated with realistic angular dependences,
that is, with data based on the somewhat limited experimental results for angular

* Here we define ‘low energy’ as referring to swarms in which ionization plays a negligible role.
When there is significant electron production (or loss) additional theoretical problems arise, unrelated
to the two-term representation of the velocity distribution function, problems whose significance has
been the subject of several recent papers (see e.g. Tagashira et al. 1977; Reid and Hunter 1979).
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distributions in the energy range of our investigation. Finally, in Section 5, we discuss
the implications of these results.
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Fig. 1. Differences between the two-term and the converged results for the
transport parameters shown, obtained using the cross sections of Reid’s (1979)
case C. (Differences are positive when the two-term result is the larger.)

2. Transport Coefficients calculated for Reid’s Model

The model used in Section 4b of Reid’s (1979) paper has the following
characteristics:

Neutral mass M = 2 a.m.u.
Elastic momentum transfer cross section 6, c = 10 A? (= 10x 10-20 m?)
Total inelastic cross section o; = 0-4(c—e) A2 for e = ¢
Inelastic threshold & = 0-516 eV

Gas temperature 7 = 0 K
Four angular distributions for all scattering events were examined:
(A) 1(6) = constant (isotropic scattering);
(B) I(0) = cos*d;
(C) I(0) = exp{—1-5(1 +cos)};
(D) I0) =1for0<60<0-134n and0'75n<0<n,

= 0 otherwise.

The total elastic cross section was adjusted in cases C and D (where the scattering
is asymmetric about x) so as to maintain the elastic momentum transfer cross



246 G. N. Haddad ef al.

section o, . at 10 A%. However, since the total inelastic cross section was the same
in all cases, the total momentum transfer cross section ¢ was different (actually
somewhat larger) in cases C and D (Reid 1979).

Fig. 1 shows that the differences between the two-term and the converged results
become significant when an appreciable number of electrons in the swarm have
energies which exceed the threshold energy for the inelastic process.

Table 1. Results for the four models (see text)
Values in parentheses are from Reid (1979)

v var (10°cms™1) kT; (eV) D,/u (V) Dy/u (V)
Model A
2 5-2715 (5-27) 0-8216 (0-821) 0-9496 (0-950) 0-5000
3 5-2597 0-8200 0-9303 0-5096
4 5-2560 0-8200 0-9308 0-5095
5 5-2560 (5-26) 0-8200 (0-823) 0-9308 (0-930) 0-5095
Model B
2 52715 (5-27) 0-8216 (0-821) 0-9496 (0-950) 0-5000
3 5-2440 0-8178 0-9064 0-5221
4 5-2447 0-8178 0-9080 0-5216
5 5-2447 (5-24) 0-8178 (0-819) 0-9080 (0-905) 0-5217
Model C
2 5-1844 (5-27) 0-8145 (0-821) 0-9465 (0-950) 0-4857
3 5-1650 0-8119 0-9162 0-5004
4 5-1655 0-8119 0-9174 0-5001
5 5-1655 (5-13) 0-8119 (0-811) 0-9174 (0-935) 0-5002
Model D
2 5-1844 (5-27) 0-8145 (0-821) 0-9465 (0-950) 0-4857
3 5-1341 0-8075 0-8711 - 0-5234
4 5-1367 0-8076 0-8772 0-5218
5 5-1365 (5-12) 0-8076 (0-807) 0-8771 (0-876) 0-5218

In Table 1 we give our results together with Reid’s for all four cases at E/N = 25 Td
(= 25x10717 Vcm?) to enable a direct comparison to be made. In the first column
is the number of Legendre polynomials retained in the calculations, indicated by v.
The row for v = 2 thus contains the transport coefficients calculated with the usual
two-term (i.e. first-order) approximation. The convergences of the results are apparent
as v increases from 2 to 5. The values in parentheses are those given by Reid. The
accuracies of our calculated transport coefficients for these models are 0-19% for
vg, and kT; (the average electron energy is given by 3k7}) and 0-29; for D, and D).
In the case v = 2, Reid’s results were obtained using Gibson’s (1970) code based on a
solution of Boltzmann’s equation due to Holstein (1946; see also Frost and Phelps
1962); these calculated values of vy, and D, are subject to computational errors
of less than 0-29. = Reid’s Monte Carlo results are shown against the entries for
v = 5. Errors in the Monte Carlo results for vy, and k7 were estimated to be less
than 19, and in D, less than 2 9.

Apart from the results for vy, and kT for v = 2 in cases C and D the agreement
with Reid’s results are within mutual uncertainties. The enhanced inaccuracy of
the two-term results due to anisotropy which Reid noted is confirmed.
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The discrepancies between Reid’s two-term results and the present ones for cases
C and D are due to approximations inherent in the usual application of Holstein’s
(1946) equation that are not made in the approach of Lin ez al. (1979). When the
scattering is significantly asymmetrical about 17, as in cases C and D, the ‘equivalent’
momentum transfer cross section that appears in Holstein’s equation (see e.g. Reid
1979) may differ significantly from the sum of the momentum transfer cross section
for elastic scattering and the total inelastic scattering cross sections (contrary to the
normal assumption). Thus, the use of an equivalent cross section calculated in this
way may lead to significant error in the two-term result, in addition to that which

arises from the inadequate representation of the velocity distribution function by
the truncated spherical harmonics expansion.
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Fig. 2. (a) Angular distributions used in the calculation of the transport parameters in (b). The
curves labelled A, B, C and D correspond to I(0) = cos®°(10), 1(8) = sin®(%0), 1(0) = sin2°(10)
and 1(0) = sin®°(10) respectively. (b) Differences between the two-term and the converged results

for the transport parameter ND, in ‘hydrogen’ using a variety of angular distributions, corresponding
to those shown in (a). (Differences are positive when the two-term result is the larger.)

3. Hydrogen with Artificial Angular Distributions

Fig. 2a shows a variety of anisotropies which were introduced into the angular
distributions for all scattering channels. Fig. 2b presents the results of comparisons
of the two-term and converged results for ND, in ‘hydrogen’ using these anisotropies.
The largest changes are seen as the degree of backward scattering is increased, i.e.
as n increases with angular distributions of the form sin"(460). The calculations with
isotropic angular distributions show no significant differences.

More specifically, the maximum differences for the calculated values of ND,
in the range 1 < E/N < 30 Td increase from approximately 3% for angular dis-
tributions of the form sin®(36) (curve B) to 159 for those of the form sin®°(36)
(curve D). It should be noted that for the strong forward scattering case cos®°(10)
(curve A) the differences are only of order 0-59%,.

In most cases the values for the drift velocity calculated using the two-term and

multiterm solutions are not significantly different. The largest difference is again
seen in the backscattering case but is only of order 19%.
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Fig. 3. Differences between the two-term and the converged results for the
transport parameters in hydrogen with realistic angular distributions for elastic
scattering. (Differences are positive when the two-term result is the larger.)

4. Hydrogen with Realistic Angular Distributions

Fig. 3 shows the differences in the values of vy, ND, and ND in hydrogen for
0-3 < E/N < 30 Td, which have been calculated using the two-term and multiterm
solutions of the Boltzmann equation and realistic angular distributions for elastic
scattering.

Angular distributions for elastic scattering in hydrogen at several energies have
been published by Linder and Schmidt (1971). The angular distributions at the
energies required for our calculations were determined from linear interpolations
of these data. For all the inelastic processes the angular distribution for thev = 0 — 1
vibrational excitation process at 4-5 eV (taken from Linder and Schmidt) was used.
The choice of a representative angular distribution was permissible as the results
were found to be insensitive to this choice.

In Fig. 3 the calculations show no significant difference in the drift velocities
calculated using the two methods, but differences of up to 1-:59 in ND, and ND).

Estimates of the errors arising from the use of the two-term solution may be
obtained from the formulae given by Lin et al. (1979). We have in fact calculated
the predicted differences according to these formulae and compared them with the
differences between the two-term and converged results. The predictions of errors
in the calculation of the drift velocity are remarkably accurate (for example, —0:7 %,
from the prediction formula and —0-59%; from the calculations), but are somewhat
less reliable in the case of the diffusion coefficients.

5. Conclusions
From the work described in this paper we are able to draw the following
conclusions:

(1) The more extensive calculation we have been able to make with one of Reid’s
(1979) models has confirmed the general conclusions he reached with regard to both
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the magnitudes of the errors in the transport coefficients calculated using the two-term
approximation and their dependence on the degree of anisotropy in the scattered
distribution.

(2) From calculations based on a set of integral cross sections for hydrogen
assembled from presently available experimental and theoretical data, but with
arbitrarily chosen angular distributions for the scattered electrons, it has been shown
that back scattering is responsible for much larger errors than forward scattering
when the same degree of anisotropy is assumed. The calculations have also indicated
how anisotropic the scattering must be in order to introduce significant error into
the two-term results in this case.

(3) The calculations for hydrogen based on realistic angular scattering distributions
for the elastic channel have shown that small (<29%) but significant errors result
from the use of the two-term approximation in the range 0 < E/N < 30 Td. This
is the range of E/N used to determine the threshold behaviour of the v =0 — 1
vibrational excitation cross section in hydrogen (Crompton et al. 1970). The transport
data will thus require reanalysis to eliminate the small errors that have been introduced
by using the conventional analysis. Since the values of D, /u calculated using the
multiterm analysis are lower than the two-term results, the vibrational cross section
will have to be lowered to restore agreement with experiment. Unfortunately this will
enhance rather than diminish the disagreement between the beam and swarm results.
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