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Abstract 

An investigation is made of the self-similar flow behind a one-dimensional blast wave from a planar 
explosion (situated on z = 0) in a medium whose density and magnetic field vary with distance as 
Z-W ahead of the blast front, with the assumption that the flow is isothermal. It is found that; 
if OJ < 0 a continuous, single-valued solution does not exist; if OJ = 0 the solution is singular and 
piecewise continuous with an inner region where no fluid flow occurs and an outer region where the 
fluid flow gradually increases; if t > OJ > 0 the governing equation possesses a set of movable 
critical points. For a weak, but nonzero, magnetic field it is shown that the value of the smallest 
critical point does not lie in the physical domain z > O. The post-shock fluid flow then cannot 
intersect the critical point, and is smoothly continuous. It is shown that to be physically acceptable, 
the fluid flow speed must pass through the origin. It is also shown that OJ must be less than t for 
the magnetic energy swept up by the blast wave to remain finite. The overall conclusion from the 
investigation is that the behaviour of isothermal blast waves in the presence of an ambient magnetic 
field differs substantially from the behaviour calculated for no magnetic field. These results point 
to the inadequacy of previous attempts to apply the theory of self-similar flows to evolving supernova 
remnants without making any allowance for the dynamical influence of magnetic field pressure. 

1. Introduction 

The theory of self-similar flows behind blast waves (see e.g. the exposition by 
Sedov 1959) has been extensively applied in the analysis and interpretation of obser­
vations of supernova remnants (SNRs) (see e.g. Woltjer 1972; Gorenstein et al. 
1974; Rappaport et al. 1974; and references therein). The large temperature 
gradients predicted by adiabatic models, however, may be inconsistent with the 
assumption that heat flux can be neglected. This difficulty was pointed out by Sedov 
(1959) and Parker (1963), both of whom suggested that it might be more appropriate 
to adopt an isothermal rather than an adiabatic treatment. Recently Solinger et al. 
(1975) demonstrated quantitatively the internal inconsistency of adiabatic blast 
wave models for SNRs and advocated the use of isothermal models instead. They 
used Korobeinikov's (1956) solution to reinterpret the properties of several observed 
SNRs. More recently still, Lerche and Vasyliunas (1976) showed that isothermal 
blast wave models themselves suffer from both global and local instabilities. Initial 
deviations do not then decay, and the system does not tend toward a self-similar form. 

Now all the above authors assume either that any magnetic field is zero, so that 
it cannot influence the dynamical evolution of the blast wave, or that it is so 'weak' 
that the magnetic field evolves kinematically (i.e. the fluid equations are solved 
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ignoring the field, and the field structure and evolution are then determined from 
Lenz's law). However, a recent investigation (Caswell and Lerche 1979a, 1979b) of 
the radio brightness variations across 33 SNRs has demonstrated that the galactic 
magnetic field plays a dominant role in their evolution. It is apparent therefore 
that proper consideration must be given to the effects of magnetic fields, and in 
particular that their influence on the dynamical evolution of blast waves must be 
properly analysed. 

The mathematical development of solutions for isothermal self-similar flows in the 
presence of magnetic fields has been rather neglected to date. No investigation seems to 
have been made of the mathematical properties of flows under any conditions when 
magnetic field pressure plays a dynamical role. The topics of interest include the 
topology of the solutions, the influence of boundary conditions and the nature 
and effects of singularities. In order to emphasize the important role played by a 
magnetic field in the evolution of a blast wave we consider here the simplest possible 
case of a plane one-dimensional isothermal blast wave. We recognize, of course, 
that the temporal behaviour of SNRs is, presumably, more accurately described by 
a spherical blast wave. However, as has been emphasized by Cox (1972) and McCray 
et al. (1975), a simplified one-dimensional treatment (ignoring curvature of the 
shock front) is sufficient to bring out the underlying physics very succinctly. While 
two- and three-dimensional effects (such as the bending of blast waves around density 
fluctuations and oblique magnetic fields) will no doubt modify the results obtained, 
the basic behaviour is nevertheless adequately described by a one-dimensional 
treatment. 

Thus there are strong arguments, both mathematical and physical, for developing 
a one-dimensional theory of self-similar isothermal flow including magnetic field 
effects. 

2. Properties of One-dimensional Magnetoactive Isothermal Self-similar Blast Waves 

(a) Formulation of the Problem 

Since the general method of constructing self-similar blast waves is described in stan­
dard texts (e.g. Landau and Lifschitz 1959; Sedov 1959; Parker 1963) this section is 
brief and serves chiefly to introduce notation. Assume that the density of the cold 
ambient medium varies with distance z from the plane of the explosion as 
p(z) = po(a/z)W, where Po is the density at the reference distance a (only values of 
w < 1 are of physical interest; w > 1 would imply an infinite total mass contained 
within the blast wave). Assume that the magnetic field embedded in the ambient 
medium points in the x direction and varies with distance z from the plane of the 
explosion as BxCz) = Bo(a/z)A, where Bo is the magnetic field strength at the reference 
distance a. (Only values of A < t are of physical interest; A > t would imply an 
infinite total magnetic energy contained within the blast wave.) 

Let a blast wave move out from the plane z = 0 at t = 0 so that at time t the 
blast front is at position z.(t). The assumption of self-similarity implies that, within 
the blast wave, the density p(z, t), the z-directed flow speed Vz(z, t), the tempera­
ture T(z, t) and the magnetic field BxCz, t) are to be written in the forms 

p = '1 po(a/zs)W R(A) , (1) 
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Vz = (1]-1)1]- 1Vs V(A) , (2) 

kT /m = (I] -1)1] -2 V; e(A) - (B~/8rcPo)(1]2 -1)1] -1(a/zs)2A -ro , (3) 

Bx = I] Bo(a/zst B(A). (4) 

In these equations R, V, e and B are dimensionless functions of the argument 
A = z/ zs' and Vs = dzsJdt. If the constant I] is chosen to be the density magnification 
factor across the shock wave then the equations of mass, momentum and flux 
conservation across the shock wave are satisfied with R(1) = V(1) = B(l) = e(l) = 1. 
The assumption of isothermal flow corresponds to setting e(A) = 1. When this is 
done the parameter I] is determined by the solution to the flow equations and cannot 
be set to the customary value 4, which is appropriate to adiabatic post-shock flow 
for a constant speed shock. 

Now the equations of continuity, momentum and magnetic induction are respectively 

ap a ( ) at + 8z pVz = 0, 

( avz v avz ) a ( B;) 
p at + zaz = - az p+ 8rc ' 

aBx + ~(B v) = 0, 7ft az x z 

where p is the gas pressure: p = pkT /m. 

(5) 

(6) 

(7) 

Insertion of equations (1)-(4) into equations (5)-(7) yields three equations for 
the three functions R(A), yeA) and B(A): 

~~(I]-I)I]-1V-A)+R(I]-I)I]-1~~ -w) = 0, 

~f(I]-I)I]-1 V -.ic) +B(I]-I)I]-1 ~~ -A) = 0, 

~~ (1]-1)1]-1 V -A) + VZs Y. v.-2 

= -1](mV>?(I]-I»)-1 kT(R- 1 dR -1]2(1]2-1)-1R-1 dB2) 
s. dA dA 

_1](1]2 -1) -1 R -1 dB2 
dA . 

(8) 

(9) 

(10) 

But the self-similar assumption demands that R,V and B be functions only of A. 
Equation (10) is therefore valid only when (i) the temperature T is proportional to 
V;, and (ii) Zs Y./V; = const. However, if Bo ¥- 0 it follows from equation (3) 
that Tis proportional to V; only when V; oc Z;2A+ro, that is, when Zs oc t 2/(2-ro+2A). 
In this case we have ZS Y./V; = -(A-tw). Inspection of equations (8) and (9) 
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reveals that to avoid a singularity in either R or B as yeA) passes* through AYJ/(YJ -1) 
it is necessary that OJ =; A < t; therefore OJ < t since A < t. 

Under the conditions noted above, we have Zs oc t 2/(2+0)) and OJ < t. Equations 
(8), (9) and (10) then yield 

where 

B(A) = R(A) , 

~~(YJ-l)YJ-1V-A)+R(YJ-l)YJ-1~~ -OJ) = 0, 

dV( -1) ()_1 dR ( )( 2 -1dR dA (YJ-l)YJ V-A -tOJV = -YYJR dA -2YJ l-Y YJ -1) dA' 

Y = YJ 2kT /(YJ -l)m V? = const. < 1. 

Equation (3) implies Y ~ 1 with equality when Bo = O. 
It is convenient to define the new variables 

(11) 

(12) 

(13) 

x = )"YJy-t(YJ-l)-t, U = Vy-t(YJ-l)t, r = 2YJ2(1-Y)(YJ2_1)-1y- 1R, (14) 

in terms of which equations (13) and (12) respectively become 

dU( ) 1 (1 _1)dr - u-x --OJU - +r -dx 2 dx' (15) 

~;(u-x) +r(~~ -OJ) = o. (16) 

Note that the parameter YJ no longer appears explicitly. Here we explore analytically 
the nature of the solutions to the u(x) and rex) equations, in the physical domain 
x ~ O. 

The physical requirements that yeA) = R(A) = 1 on A = 1 (the shock front) 
yield the requirements that 

Xs = YJy-t(YJ-1)-t, Us = y-t(YJ-l)t, rs = 2YJ2(1- Y)y- 1(YJ2_1)-1. (17) 

Elimination of YJ from equations (17) gives the shock curve equations 

Xs = us +(Yus)-1, rs = 2(I-y)y- 2us- 2(I+YuD2(2+Yu;)-1, (l8a,b) 
with 

YJ = 1 + Yu; ~ 1. (19) 

* It should be noted that if we take OJ = A before we manipulate equations (8), (9) and (10) we find, 
as will be seen in Section 3 below, that in fact yeA) is everywhere less than All/(Il-I). Thus neither 
R nor B has a singularity. Whether the same is true when OJ =F A is unknown. The point is that the 
structure of the equations determining the post-shock flow properties depends on the parameters 
OJ and A. For OJ =F A, elimination of, say, Rand B in favour of V leads to a third-order ordinary 
nonlinear differential equation. The topological nature of the flow pattern is determined by such 
an equation. However, for OJ = A the governing equation, while nonlinear, is only second order. 
This is such a tremendous simplification that the present investigation has been restricted to precisely 
the OJ = A case. The author would, of course, be most interested to see the results of calculations 
bearing on the more general problem. 
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Note that the minimum value of Xs is 2y-t occurring when Us = y-t, and that 
at this value of Us we have rs = f(1- y)y-l and Y/ = 2. 

Both the flow equations (15) and (16) and the values of their solutions (18) on 
the shock are then no longer dependent on Y/ explicitly. Hence the topology of solutions 
u(x) and r (x) can be discussed independently of the value of Y/. 

Equations (15) and (16) are two first-order ordinary differential equations. They 
require specification of two boundary conditions. Physically, an obvious requirement 
is that the flow speed u(x) vanish at the origin; thus an appropriate boundary 
condition is u(O) = 0 (more precisely u ~ 0 as x ~ 0). The second physical boundary 
condition is that the density rex) be finite at the origin; rex = 0) = ro, say, with 
ro > o. 

Equations (15) and (16) can be combined into a single second-order ordinary 
differential equation. An appropriate dependent variable is 

M(x) = f: rex') dx' , 

with M(x) obeying the equation 

d2M{ dM (dM)-2} { dM } dx2 1+ dx" -(1-w)2M2 dx" = +-!-w xdx" +(l-w)M , 

where 
u(x) = x-(I-w)M(dM/dx)-l. 

The boundary conditions on M(x) are 

dM/dxlx;o = ro > 0, M~rox as x~O. 

(20) 

(21) 

(22) 

(23) 

Equation (22) automatically yields u(x) ~ wx as x ~ O. Note that, since rex) is 
proportional to the gas density, we require M(x) ~ 0 and dM /dx ~ 0 for all x ~ O. 

Before considering the topological structure of solutions to equation (21) for 
arbitrary w « -!-), we first examine in detail the case w = 0 for which a piecewise 
analytic solution is obtainable. 

(b) Solution for w = 0 

For w = 0 equation (21) reduces to 

-1+ __ M2_ =0 d2M. {dM (dM) -2} 
dx2 dx dx ' 

(24) 

so that either 

(i) d2M/dx2 = 0, implying M = a + bx ; (25) 
or 

(ii) (dMjdx)3+(dMjdx)2-M 2 = O. (26) 

Consider equation (26). On introduction of the parametric variable P, through 

dMjdx = PM, (27) 
equation (26) yields 

M = (1_p 2)p- 3 • (28) 
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Using dMjdx = (dMjdP)(dPjdx), from the relations (27) and (28) we then obtain 
the equation 

dPjdx = _p2(1_p 2 )(3_p2 )-1 

whose general solution is 

(1+P)(I-p)-1exp(-3p-1) = Aexp(-x), (29) 

where, at the moment, A is an arbitrary, but positive, constant of integration. Note 
that the density and flow velocity are given parametrically through the relations 

dM rex) = _ = (1_p2)P- 2 
dx ' 

u(x) = x_p- 1 , 

~: = 2(1_p2 )P- 1(3_p2 )-1 ~ 0, 

du = 2(3_p2)-1 ~ O. 
dx 

(30a) 

(30b) 

Now the requirement M ~ 0 demands either 1 ~ P ~ 0 or - 00 ~ P ~ -1; the 
requirement dM/dx ~ 0 then restricts the range of P to 1 ~ P ~ O. 

Equation (29) shows, however, that x(P) is a monotonically decreasing function of 
increasing P in the range 1 ~ P ~ 0 with x(P = 0) = + 00 and x(P = 1) = - 00. 

But M = 0 on x = O. Inspection of equation (28) reveals that M is zero only on 
P = 1 in the range 1 ~ P ~ O. Hence it must be concluded that the solution branch 
following from equation (26) cannot extend to the origin x = O. On the other hand, 
the solution branch (25), if valid at the origin x = 0, implies M = rox, rex) = ro 
and u(x) = O. Hence this solution branch cannot extend out to the shock front. 
Thus: the only possibility is that the solution branch (25) extends out from x = 0 to 
some point x = x.; for x ~ x. the solution branch (26) must take over and carry 
on out to the shock. Consider then the matching conditions at x = x.. We require 
u(x.) = 0 and M (x.) = r 0 x.. From equation (30b) we see that u(x.) = 0 implies 
an associated P. with 

P. = x.- 1 • (31) 

Using equations (31) and (29) we now determine A as a function of P.: 

A = (I+P.)(I-p.)-lexp(-2p;1). (32) 

From equation (28) we also have 

rox. = (l_p;)p;3. (33) 

Combination of equations (31) and (33) then yields the value for x.: 

x. = (1 +ro)t, P. = (1 +ro)-t. (34) 

Note that we have P. < l' as required. The slopes du/dx and dr/dx of the solution 
branch (26) on x = x. are 

du/dx = 2(I+ro)(2+3ro)-1, dr/dx = 2ro(1 +ro)+t(2+3ro)-1, (35) 

so that the solution branch valid for 0 ~ x ~ x. matches (with discontinuous 
derivatives) to the solution branch valid for x > x •. 
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Consider now the shock conditions (18a, b) and (19). From equations (30b) 
we see that on x = xs' where u = US' we require Ps = YUs. But then, from equations 
(18b) and (30a), we have 

r. = (1-P;)Ps- 2 = 2y- 2(1- Y)us- 2(1 + Yu;)2(2+ Yu;)-1. (36) 

Equation (36) yields a positive value for Us solely in terms of Y: 

Us = (2y)-t(2- Y)-t{(9+4Y _4y2)! -(3 -2y)}t > (37) 
with 

xs(y) = us(Y) + {Yus(Y)} -1, rs(Y) = (Yus)-2{1- (Yus)2} > O. 

(Note that we have Ps ~ 1 (us ~ y-1).) But, from equation (29) evaluated at 
x = Xs and u = Us with equation (32), we obtain 

(1 +Ps)(I-Ps)-1 exp{ -2Ps- 1 +Ps y-1} 

= {(1+ro)t+l}{(I+ro)t-l}-1exp{ -2(1+ro)t}, (38) 

so that equation (38) determines ro as a function solely of Y. 
The slopes of the solution branch (26) on the shock curve specified by equations 

(18) are 

~~ = 2{3-(Yus)2}-1 > 0, ~: = 2(Yus)-1{1-(Yus)2}{3-(Yus)2} > o. (39) 

Note from equations (30a) and (30b) that, in the range Xs ;;::: x ;;::: x., rex) and u(x) 
are monotonically increasing functions of increasing x, and that YUs < P < (1 +ro)-t. 
The value of rJ is then determined as a function of Yalone through 

rJ = I+Yu; = {1+(9+4Y-4y2)t}(4-2y)-1. (40) 

Thus we have that: 

as Y~O, Yu; ~ 0 so that rJ ~ 1 ; (41a) 
and 

as Y~ 1, Yu; ~ 1 so that rJ ~ 2. (41b) 

This is most unlike the situation in the complete absence of an external magnetic 
field (Lerche and Vasyliunas 1976). The difference arises from the magnetic pressure 
term in the equation of motion. In the complete absence of a magnetic field both the 
continuity equation and the equation of motion contain r only in the form r -1 drJdx, 
so that no fundamental scale of density amplitude is present in either equation. 
On the other hand, inclusion of a finite-strength magnetic field completely destroys 
this property, since a term directly proportional to dr/dx appears in the equation 
of motion. Solutions in the absence of a magnetic field are therefore topologically 
different from those in the presence of a magnetic field (a first-order differential 
equation for the fluid flow obtains instead of a second-order differential equation). 
More simply, if Y = 1 then us(y) = 1 and rs = 0, that is, the scaling transformation 
(14) fails since division by zero is implied. 
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Thus in order to obtain a self-similar isothermal blast wave in the case w = ° 
and for a given value of Y ( < 1), it is necessary to match the two solution branches 
(25) and (26) at a precise value of x. The matching has to be done with discontinuous 
slopes for du/dx and dr/dx. All parameters of the solution (namely Us, 1'/, ro, rs, 

x. and xs) are then uniquely determined as specified functions of Y by the requirement 
that the solution branch (26) must pass through the shock. There is no other self­
similar solution with continuous post-shock velocity and density. 

3. Topology of Solutions for (0 #- 0 

For w #- 0, the behaviour of solutions to equation (21) is more difficult to analyse. 
This is, essentially, a consequence of the fact that when equation (21) is written in 
the form 

d2M (dM)2{ dM}{(dM)3 (dM) 2 }-1 - = 1-W - (l-w)M +x- - + - -(1-w)2M2 
dx2 dx dx dx dx 

(42) 

it clearly has movable critical points (lnce 1956). Since the behaviour of solutions is 
dependent on the structure of the equation at the critical points, and since the structure 
of movable critical points depends on the initial (x = 0) values of M and dM/dx, 
an analysis of the topological behaviour of solutions to equation (42) is an extremely 
difficult problem. t 

(a) Behaviour in the Vicinity of the Origin x = ° 
For x ~ 0, the solution to equation (42) with M (x) = ro x + O(X3) + ... is 

M(x) ~ ro x +-I2rO w(2- w)(1 + ro)-1x3 + O(X5) , 
so that 

r (x) ~ ro + iro w(2 - w)(1 + ro) -1 x 2 + O(X4) , 

u(x) ~ wx +iw(2-w)(1 +ro)-1(1-w)x3 +O(x5). 

From equation (43) it follows that, at small x, 

(dM)3 (dM) 2 . D == dX + dX -(1-w)2M2 

(43) 

(44a) 

(44b) 

r x 2 
( ) ~ r~(l+ro) +(1:ro) iw(2-w) -ro(1+ro)(1-w)2 +O(x3) (45a) 

and 
N == (l-w)M +xdM/dx 

~ ro x(2 - w){1 +-I2W( 4- w)x2(1 + ro) -1} + O(X4). (45b) 

t For a second-order differential equation not to have movable critical points it is necessary that it 
should be of the form (Ince 1956) 

d 2yjdx2 = A(x,y) (dyjdx) 2 + B(x,y)dyjdx + C(x,y). 

This is clearly not the case with equation (42). Hence it has movable critical points. 
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Consider firstly the behaviour for OJ < O. In this case du/dx Ix=o = OJ < 0, 
so that u is negative for small x. Therefore if the fluid flow is ever to cross the shock 
curve Xs = us+(Yus)-l in the region Xs > 0, it follows that u must eventually become 
positive as x increases. Hence, somewhere between x = 0 and the crossing point 
where u = 0 again, u must take on its most negative value where du/dx = O. Let 
this be at x = x., with u(x.) = -uo «0); r(x.) = r. > O. From equation (15) 
we then obtain 

dr/dxlx=x. = -iOJuor.(1+r.)-l > O. (46a) 

But since we have dr/dx Ix-+o < 0 it follows that r goes through a minimum in the 
region x < x •. At the minimum of r, we have d2 M/dx2 = O. However, from equation 
(21), d2M/dx2 = 0 at x = Xt say only when 

r(xt) == dM/dxlx=xt = -(l-OJ)M/xt < O. (46b) 

But the density must be positive. Hence for OJ < 0 it must be concluded that there 
is no self-similar solution, with continuous post-shock velocity starting at the origin 
x = 0, which eventually crosses the shock. Hereinafter we therefore restrict our 
attention to the regime 0 < OJ < !. 

(b) Miscellaneous Solution Properties for 0 < OJ < ! 
Since we have u = x - (I - OJ )M/ Mx and since M and Mx are required to be 

positive, it follows that u lies in the range 0 ~ u < x. Hence u never crosses the line 
u = x. Thus the assumption made in Section 2 that A must be precisely equal to OJ 
in order to avoid a singularity in either p or B as u crossed x is not necessary; A 
and OJ can take values independently of each other. Nevertheless the situations which 
correspond to A = OJ are physically permitted. Throughout the remainder of this 
paper we shall consider only the A = OJ situations for the reasons given in the 
footnote following equation (10). Consideration of the more general case A '# OJ 
(which is much more difficult to investigate) is deferred to a later paper. 

Equation (42) has a critical point at x = xc, say, where M = Mc ~ 0, u = Uc 
and dM/dx == M ~ ~ 0 with 

(I-OJ)Mc = -xcM~, M~3+M~2_(I-OJ)2M~ = O. (47) 

Equations (47) yield 

Mc = _(l-OJ)-lXc{(xc)2_1}, M~ = (xc)2_1. (48) 

Thus a critical point does not exist in the physical domain x > 0 since the twin 
requirements Mc > 0, M~ > 0 cannot both be met by equations (48). Consider 
then the behaviour of M in equation (42) as. x increases from zero with (43) as the 
value of M at small x. Three possibilities exist: (i) M varies in such a way that the 
numerator N == (1- OJ)M + x dMjdx goes to zero before D goes to zero; (ii) M 
varies in such a way that D goes to zero before N goes to zero; (iii) neither D nor N 
goes to zero and M steadily increases, eventually crossing the shock when 

Ms = 2(1- y)y- 3us- 3(1 + Yu;)2(2+ Yu;)-l, (49a) 
and 

dM/dxlx=x. = 2(1- Y)u;2(1 + YU;)2y-2(2+ Yu;)-l. (49b) 
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Consider now the first two possibilities in turn. 

(i) If N goes to zero at some x, say Xt, then 

d2 Mjdx2 lx=xt == drjdx Ix=xt = O. 

But from equations (1S) and (16) we have 

dr _ {dU( ) } dx = -r(l+r) 1 dx u-x -lwu , 

~: -r(~~ -w)(U-Xf1 

At drjdx = 0 equation (SOa) yields 

dujdxlx=xt = -lwut(xt -ut)-l, 

while equation (SOb) yields 

dujdx Ix=xt = w. 

I. Lerche 

(SOa) 

(SOb) 

(Sla) 

(SIb) 

Equations (Sl) are satisfied only when Ut = 2xt . However, if u(x) ever crosses the 
line u = 2x then, since dujdx Ix=o = W < 2, it must do so with a slope dujdx > 2. 
But this contradicts equation (Sl b), and hence it must be inferred that the assumed 
crossing does not take place, and that N cannot go to zero before D. We therefore 
conclude that the first possibility does not obtain. 

(ii) Consider the second possibility that as x increases from zero the variation 
of M is such that D goes to zero before N. In this case we have d 2 M jdx2 I D = 0 --+ ± 00. 

Let D go to zero at x = Xo where M = Mo and dMjdx = M~. Then 

M~2(1+M~) = (l-w)2M~, 

and also, since we have N > 0, 

-xo < (1-w)MojM~. 

Consider the behaviour of M in the neighbourhood of D = O. Write ( = X-Xo 
and M = Mo +M~ (+c5m with c5m«( =0) = 0 and d(c5m)jd(l~=o = O. Then to 
lowest order in c5m from equation (42) we have 

c5m~~ = lwM~2{(1-w)Mo +xo M~}{c5m~M~(2+3M~) -2Mo M~(1_W)20 -1, (S2) 

where a subscript ( denotes djd(. Equation (S2) can be integrated once to give 

lc5mt M~(2+3M~) -2MoM~(1-W)2( c5m~ +c5m2Mo M~(1-w? 

= lwM~2{(I-w)Mo +xoM~}C (S3) 

where we have used the fact that c5m~ vanishes on ( = 0 to determine the arbitrary 
constant of integration. 
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On the requirement that c5mCC =0) = 0 = c5m,(C =0) the appropriate behaviour 
of equation (53) in the vicinity of C = 0 is 

c5m, = ± [wM~(2+3M ~)-l{(l-w)Mo +xo M~}]tCt. (54) 

By hypothesis the coefficient of Ct in equation (54) is real, since N has not yet reached 
zero and, as x ~ 0, N is positive. However, then for x < x o, Ct is imaginary. Hence 
as x ~ Xo from below c5m is pure imaginary. But M is required to be real. Therefore 
it must be inferred that D does not tend to zero while N is still positive. We thus 
conclude that the second possibility also does not obtain. 

Overall it must be concluded that for I > Y > 0, W > 0 the solutions to equation 
(42)startingwithM = Oatx = OanddM/dx > Oatx = Olie in the range 0 ~ u < 2x 
for all values of x(>O) until the shock curve x = u+(YU)-l is reached. For w < 0 
no single-valued solution starting at the origin with u = 0 and dM/dx > 0 at x = 0 
exists which crosses the shock. For w = 0 we have a singular solution which matches 
piecewise (with discontinuous derivatives at the matching point) at a given point 
and crosses the shock curve. 

4. Discussion and Conclusions 

We have analysed the equilibrium properties of isothermal self-similar blast 
waves in one dimension propagating away from a plane source explosion into a 
surrounding medium whose density and magnetic field both vary as z-w with w < t­
Our main results are the following. 

(I) For w < 0 there do not exist physically acceptable self-similar solutions. 
(2) For w = 0 a singular solution exists which is piecewise continuous. 
(3) For 1- > w > 0, the second-order differential equation describing the fluid 

flow behind the blast wave has movable critical points. Since the line of movable 
critical points does not exist in the physical domain x > 0 we have been 
able to show that the physical solution curve is smoothly continuous out 
to the shock. 

To the extent that a three-dimensional blast wave can be regarded as planar 
(Cox 1972; McCray et al. 1975) the results reported here accurately portray the 
evolution of such a blast wave into a magnetized surrounding medium. (The case 
w ~ 0 is often regarded as appropriate in describing the evolution of a supernova 
remnant.) 

The fluid flow behaviour uncovered by the analysis here raises several questions, 
and suggests further lines of investigation to improve our understanding of blast 
wave expansion into media in the presence of magnetic fields. 

The first question is: what is the qualitative and quantitative modification to the 
present results when allowance is made for the three-dimensional nature of the 
explosion? Can the shock curvature really be neglected? 

Secondly: what modification results to the flow behaviour, even within the one­
dimensional framework, when the variation of density and magnetic field ahead of 
the blast front are allowed to vary differently, that is, p ex z-W and B ex Z-A (A 1= w)? 

Thirdly: is the magnetic field a stabilizing or a destabilizing influence on the blast 
waves? The point here is that it is known that in the absence of an external magnetic 
field the three-dimensional self-similar isothermal blast waves are linearly and 
nonlinearly unstable (Lerche and Vasyliunas 1976; Bernstein and Book 1978). 
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Clearly, since our theoretical understanding of the dynamical evolution of supernova 
remnants is closely tied to our knowledge of the properties of blast waves, it is of 
some importance to ascertain the temporal behaviour of perturbations introduced 
into a spherical blast wave expanding into a magnetoactive medium. In the next 
paper in this series we shall consider the behaviour of a self-similar isothermal 
spherical blast wave expanding into a surrounding medium which contains a magnetic 
field. An investigation of the behaviour of perturbations to the self-similar flow 
will be deferred to the third paper in the series. 
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