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Abstract 

The present author (Wyman 1946) showed that all perfect fluids which can be represented by non­
static, spherically symmetric, isotropic solutions of the Einstein field equations can be found by 
solving a nonlinear total differential equation of the second order involving. an arbitrary function 
'P(r). Since then several particular solutions of this equation have been found. Although the four 
solutions given recently by Chakravarty et at. (1976) involve particular choices of 'P(r), none of 
these is the general solution of the equation that results from the specific choice of 'P(r) that was 
made. The present paper shows how these four general solutions are obtained. 

In a recent paper, Chakravarty et al. (1976) considered the problem of determining 
nonstatic, spherically symmetric, isotropic solutions of the Einstein field equations. 
Although the specialized technique they used did yield specialized solutions, their 
method does not, in any instance, find the general solution of the differential equations 
they seek to solve. The purpose of the present note is to obtain all of these general 
solutions, and to show that the particular solutions listed by Chakravarty et al. flow 
naturally from these general solutions. 

If the line element is assumed to have the spherically symmetric isotropic form 

ds2 = exp(v)dt 2 -exp{j,t)(dr2 +r 2d02 +r 2sin20dcf>2) (1) 

then, as proved by the present author (Wyman 1946), the perfect fluid solutions ofthe 
Einstein field equations can be found by solving 

{iPJl (OJl) 2 18Jl} exp(!Jl) - --!- - - -- = 'P(r) 
8r2 or r or ' 

(2) 

where 'P(r) is an arbitrary function of its argument. When Jl = Jl(r, t) is known, the 
second gravitational potential is given by 

v = 21n(oJl/ot) + !p(t) , (3) 

where !p(t) is also an arbitrary function of its argument. The substitution x = r 2 

and R = exp( -tJl) reduces equation (2) to the form 

R" = r(x)R2 , (4) 
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where rex) is an arbitrary function of x, and primes are used to denote differentiation 
with respect to x. 

Differential equations of the type (4) were studied in considerable detail by Ince 
(1927). He introduced three functions of x, namely A, y and T which satisfied the 
following conditions 

A = (6/r)1/S, y' A- 2 , T = A"/2Ar. (5a-5c) 

The substitution 
R = AY+T, Z = y(x) (6) 

places equation (4) into the form 

82y/8z2 = 6y2 + S, where s = (rT2 - T")/(y')3/2 . (7) 

Hence, if S is a constant, say S = -tg2, then 

82y/8z2 = 6y2 -tg2' (8) 

and we therefore obtain 

(8y/8z)2 = 4y 3 -g2 Y -g3' (9) 

where g3 is an arbitrary function of t. The general solution of this equation is well 
known to be 

y = gJ(z+ cx; g2' g3), (10) 

where gJ is the Weierstrass elliptic function and cx is a second arbitrary function of t. 
In this instance, the success of the Ince method depends on the finding of a rex) for 
which S is a constant. The particular choice: 

r = 6(ax2+2bx+c)-S/2, (11) 

where a, band c are arbitrary constants, leads to 

A = (ax2+2bx+c)t, f dx 
y = ax2+2bx+c' 

T = h(ax2+2bx+c)t, (12) 

with 
h = (ac-b2)/12, S = -6h2 • (13) 

Equation (4) then becomes 

R" = 6(ax2+2bx+c)-S/2 R2. (14) 

Hence, the general solution of equation (14) is 

R = (ax2+2bx+c)t {gJ(z+cx; 12h2, g3) +h}, (15) 
where 

f dx 
Z = ax2+2bx+c. 

(16) 



-----------------------------------------
Short Communications 113 

The elementary integration of equation (16) leads to the four following cases 

Case A. a = b = 0; 

Case B. a = 0, b =I- 0; 

Case C. a =I- 0, 12h = ac-b2 = 0; 

Case D. a =1-0, h=l-O; 

z = x/c. 

z = tb- 1 ln(2bx+c). 

z = -(ax+b)-l. 

(17) 

(18) 

(19) 

z = (12h)-t arctan(12h)-t (ax + b» . 

(20) 

For case D, it has not been assumed that h > 0; if h < 0, the resulting expression 
for z is still real. Since rx is an arbitrary function of t, a constant of integration was 
not included in the four integrations of equation (16). Coupled with equation (14), 
the above cases yield four different differential equations, the solutions of which 
(in each case) will be determined by the Ince method. 

It is well known that the Weierstrass elliptic function will degenerate into an 
elementary function if and only if 

g3 = ±8h3 • (21) 

Without specifying the sign of h, the elementary solutions are known and are given by 

R = (ax2+2bx+c)t{±3hcot2(±3h)t(z+P» +h±2h}, (22) 

where the same sign must be chosen in each term. The special case h = ° can be 
obtained by a limiting procedure as 

R = (Z+p)-2. (23) 

Now, the recent solutions found by Chakravarty et al. (1976) correspond to the 
two solutions given in equation (22) for the conditions given in (20). When the plus 
signs are chosen in equation (22) we obtain 

R = 3h(ax2+2bx+c)fcosec2{tarctan(12h)-t(ax+b» +f3}, (24) 

where (3h)t 13 has been replaced by 13 in (22). Hence we have 

R = 6h(ax2+2bx+c)t 

l-cos{arctan(12h) l(ax+b» +f3} 

6h(ax 2 + 2bx + c) 

(ax 2 +2bx+c)t-(12hja)tcos 13 +(ax + b)(a) -t s111 f3' 
(25) 

Regardless of the sign of h or a, equation (25) can always be put in a form in which 
R is real. For example, if a is negative then h/a is positive, where we have taken 
c > ° so that (ax2 + 2bx+ c)t is real at r = x = 0. Replacing 13 by ( -1)t 13, makes 
equation (25) take the form 

R = J.. 6h(ax2+2bx+c) .1.' (26) 
(ax 2 +2bx + C)2 -(12h/a)tcoshf3 +(ax+ b)( - a) 2 sinh 13 
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In any event, the gravitational potentials J1 and v are given by 

exp J1 = R- 2 

[(ar4+2br2+c)t -_\l!h ja)t cos fJ +(ar2+b)a-t sinfJ]2 (27a) 
(ar4+2br2+c) 

expv = K(t)( (12hjarsinfJ +(~r2+b)a-tcosfJ )2, (27b) 
(ar4+2br2+c)2 -(12hja)2cosfJ +(ar2+b)a tsinfJ 

where K and fJ are arbitrary functions of t. Returning to equation (22), the choice 
of minus signs yields 

R = -h(ax2 + 2hx+ c )[3 cot2{t arctanh( (-12h)t (ax+h» +fJ} + 1], (28) 

and this seems to be the simplest form in which this solution can be placed. 
Cases A, Band C above yield three differential equations whose general solutions 

are now easily determined. These equations have particular solutions which can be 
expressed in terms of elementary functions. By using equations (22) and (23) it is 
not difficult to show that these elementary solutions correspond to the so-called known 
solutions listed by Chakravarty et al. (1976). 

The Ince method of finding solutions of equation (4) depends for its success on 
finding the functions rex) for which 

s = (r-r2 - -rfl)j(y'?/2 = const. (29) 

It is not too difficult to prove that equation (29) implies that A, must be a solution of 

2(A,4A,f1)" _A,3(A,f1)2 = const. r 3 • (30) 

Once A, is known, r is determined by equation (5a). 
Although equation (22) does give a necessary and sufficient condition for the Ince 

procedure to reduce (4) to the Weierstrass elliptic differential equation, solutions of 
(22) have not proven easy for the present author to find. In a recent paper (Wyman 
1976) he used a slightly modified Ince procedure to yield extremely complicated 
solutions of the problem. 
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