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Abstract 

Classical relativistic field theory is used as a basis for a general discussion of the problem of splitting 
up the total energy-momentum tensor of a system into contributions from its component subsystems. 
Both the Minkowski and Abraham forms (including electrostriction) arise naturally in alternative 
split-up procedures applied to a non dispersive dielectric fluid. The case of an electromagnetic wave 
in a (spatially and temporally) dispersive medium in arbitrary but slowly varying motion is then 
treated. In the dispersive case the results cannot be found by replacing the dielectric constant Ii with 
e(k, ro) but include derivatives with respect to the wave vector k and the frequency ro. Ponderomotive 
force expressions are obtained and the perturbation in the total energy-momentum tensor due to a 
one-dimensional wavepacket is found. A nonlinear SchrOdinger equation is obtained for the evolution 
of a three-dimensional wavepacket. Both hot and cold plasmas are treated. 

1. Introduction 

The ancient Abraham-Minkowski dispute regarding the correct form of the 
energy-momentum tensor for non dispersive electromagnetic waves in material media 
has recently received renewed attention in the literature. For a review of the older 
literature the reader is referred to the English edition of Pauli's book on relativity 
(1958, pp. 109, 110), while for the current status of the controversy the review by 
Robinson (1975) is recommended. 

The latter author, while emphasizing the difficulty of obtaining a general micro­
scopic derivation, points out that the problem of obtaining a macroscopic solution in 
arbitrarily moving media has been solved by Penfield and Haus (1967) using their 
method of virtual power. As Robinson points out, the result is in fact a generalization 
of Helmholtz's (1882) solution for the force density acting on a medium subject to 
static fields, a result which predates the controversy itself by almost 30 years! Stated 
succinctly, the conclusion is that the force density acting on the medium (henceforth 
called the ponderomotive force density) is that expected from the Abraham form of 
the energy-momentum tensor, plus a part described macroscopically as electro­
strictive and magnetostrictive effects. This result can be found in such text books as 
Landau and Lifshitz (1960) or Panofsky and Phillips (1962) for the special case of 
quasistatic nondispersive media. It is the calculation from first principles of the 
electrostrictive and magnetostrictive coefficients which makes a microscopic treatment 
difficult (Robinson 1975; Peierls 1976). 

There is a case, however, in which a microscopic treatment is possible, namely that 
of the collisionless plasma. The problem of ponderomotive forces of electromagnetic 
waves in inhomogeneous plasmas is of great interest in laser fusion research (Hora 
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1969) and also has application in magnetic containment devices in RF confinement 
and microwave heating. The reason for the tractability of the problem in the plasma 
case is that the particles of a plasma are weakly interacting and may be adequately 
described using a self-consistent field model: the Vlasov equation or some fluid 
approximation to it. Klima and Petrzilka (1968) have shown that the ponderomotive 
force in a cold plasma is that expected from the Abraham tensor with the electro­
strictive correction. This is actually quite surprising since a plasma is a highly dis­
persive medium and it is not clear that the conventional treatment holds. Landau 
and Lifshitz (1960, p. 256) give a derivation of the time-averaged internal energy 
density in a medium exhibiting temporal dispersion, but they explicitly state that 
ponderomotive force expressions have not been derived for such a medium. We shall 
see in Section 4d here that the reason why the result holds is that there is no spatial 
dispersion in a cold plasma. This is no longer true in a warm plasma, and it is one 
of the principal aims of this paper to derive the ponderomotive force for a system 
exhibiting spatial dispersion. Our overall aim is to provide a unified macroscopic 
(continuum) description in which ponderomotive effects in all states of matter (solids, 
fluids and plasmas) can be discussed. 

A simple application of the ponderomotive force expression combined with the 
electromagnetic energy-momentum tensor is to calculate the total perturbed energy­
momentum tensor convected with a one-dimensional wavepacket. This has been 
discussed by Haus (1969) and by Robinson (1975) in the nondispersive case, and by 
Hora (1974) and Klima and Petrzilka (1973, 1975) in the cold plasma case. As the 
equation of motion for the background medium must be solved to find the amount 
of momentum and energy carried by the background, the result corresponds neither 
to the Abraham nor to the Minkowski result in general-the medium 'dresses' the 
wavepacket and modifies the energy-momentum tensor. A three-dimensional wave­
packet leaves a sonic wake behind it (Peierls 1976), which is related to induced 
Brillouin scattering (Kroll 1965). There are also self-focusing effects and modulational 
instabilities (Karpman and Krushkal' 1969) which tend to break an initially one­
dimensional wavetrain into three-dimensional wavepackets. 

Although the preceding remarks would appear to imply that Minkowski was 
'wrong' and Abraham (and Helmholtz) were 'right', the situation is not as simple as 
this since there is no unique way of splitting up a system into interacting subsystems. 
This point has been made clearly by Penfield and Haus (1967). The Minkowski form 
is wrong only if one demands that the energy-momentum tensor for the background 
subsystem be unaffected in form by the introduction of interacting fields. But surely 
this is the only 'natural' assumption? In this paper we argue that there is at least one 
other equally natural form for the background energy-momentum tensor. By basing 
the treatment on Hamilton's principle and the methods of relativistic field theory 
(Pauli 1941; Hill 1951) it becomes apparent that there is a canonical procedure which, 
from a Hamiltonian viewpoint, is also very natural. Just as the canonical momentum 
for a particle in general differs from its physical momentum, so does the canonical 
energy-momentum tensor for a subsystem differ from what we shall call its physical 
energy-momentum tensor. This distinction is different from that between the 
canonical and the symmetrized energy-momentum tensor (Pauli 1941) for the system 
as a whole. The canonical and physical split-up procedures could be applied to either 
the canonical or symmetrized tensor, although we will not find it useful to talk about 
the physical split-up of the canonical energy-momentum tensor. 
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The approach we adopt is a natural extension of earlier work (Dewar 1970) on 
hydromagnetic waves, in which the idea of canonical and physical split-up procedures 
was introduced, and Whitham's (1965) averaged Lagrangian principle was used to 
effect a general treatment of dispersive waves within the WKB approximation. Some 
of the techniques have· also been used to discuss the analogy between electrostatic 
plasma waves and galactic density waves (Dewar 1972a), and to treat modulational 
instability of electrostatic 'plasma waves (Dewar 1972b). The concept of canonical 
background momentum in the presence of waves has also been approached from the 
point· of view of canonical transformation theory (Dewar 1973, 1976). 

In generalizing the previous work to fully electromagnetic waves the major obstacle 
has been that the standard treatments of field theory do not include an arbitrarily 
deformable background medium. It is essential to vary the background coordinate 
field in Hamilton's principle (taking into account such constraints as mass con­
servation) in order to obtain the correct ponderomotive force; and so a relativistic 
variational technique has been developed which includes the constraints explicitly, 
unlike Penfield and Haus (1967) who use Lagrange multipliers. 

Although for most practical purposes a relativistic theory for the background is 
quite unnecessary, it is required for the electromagnetic field. It has been found that 
the most efficient technique with any claim to generality is first to do the calculations 
fully (special) relativistically, exploiting the compactness of 4-vector notation, and then 
to translate the results into 3-vector form, making nonrelativistic approximations as 
desired. 

A few other authors (e.g. Toupin 1960; SchOpf 1964) have alsO used Hamilton's 
principle to treat the electrodynamics of continuous media, but have not treated 
dispersive waves. On the other hand, Furutsu (1969) has treated dispersive waves 
relativistically but has omitted to vary the background. Dougherty (1970, 1974) has 
reviewed the averaged Lagrangian method in the context of the cold plasma model, 
and has discussed two covariant methods for varying the background. The problem 
of waves in an arbitrary dielectric was not discussed. Jones (1971) has reviewed the 
use of Hamilton's principle for waves occurring in geophysics and has also discussed 
the use of classical field theory techniques. 

Hamilton's principle is open to the objection that it requires one to postulate the 
form of the Lagrangian density, but it should be remembered that any macroscopic 
theory involves a number of postulates, and Hamilton's principle may be deeper than 
many of these. When one bears in mind that the macroscopic Lagrangian density 
must be an average of the microscopic density, which is known, and imposes Lorentz 
invariance, much of the arbitrariness goes out. We also know some of the Euler­
Lagrange equations a priori, such as Maxwell's equations, and we find that we are 
unambiguously led to a definite form for the total Lagrangian density. Rules for 
forming Lagrangian densities are further discussed by Penfield and Haus (1967), who 
defend Hamilton's principle with the remark that the systematic bookkeeping and 
standardized set of rules for applying the variational principle allow one to derive 
equations of motion in a way that is likely to be free of errors. 

A more serious defect of Hamilton's principle, when applied to a system of non­
linearly interacting fields, is that it cannot handle dissipation. For treatments which 
allow entropy flow between subsystems the reader is referred to the books by Penfield 
and Haus (1967) and de Groot and Suttorp (1972). There has also been considerable 
work on this subject from the standpoint of continuum mechanics (Lianis 1974). 
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In Section 2 below we adapt Noether's theorem and the general symmetrization 
procedure of Belinfante to continuous media and introduce the canonical and physical 
split-up procedures. 

In Section 3 the theory is applied to isotropic dielectrics (as the simplest example), 
and the connection with the Abraham-Minkowski controversy is made. We also 
treat longitudinal and transverse waves in an isotropic dispersive medium through 
a polarization tensor approach, and derive the energy-momentum tensors (and hence 
ponderomotive forces) for these cases. 

The connection with 3-vector formalism is made in Section 4 where we spell out 
the full 3-vector expressions. Although many of these terms disappear in the non­
relativistic limit it is one of the advantages of our general approach that we can see 
just what is being omitted. The connection with the frequency- and wavenumber­
dependent dielectric constant formulation of dispersive electromagnetic waves is also 
made. 

In Section 5 we find the 'dressing' transformation of the physical electromagnetic 
energy-momentum tensor due to the excitation of background motion by a one­
dimensional wavepacket. An evolution equation for a three-dimensional wavepacket 
is also found which takes into account self-focusing and stimulated Brillouin scattering. 

Section 6 contains the adaptation of the previous formalism to the case of a hot 
collisionless plasma. Because we use the Vlasov description, we are still in a sense 
dealing with a continuum description, except that the plasma is now regarded as a 
fluid in phase space. In this case the meaning of the canonical energy-momentum 
tensor is rather clearer, as a Hamiltonian theory for single-particle motion can be 
developed; this we do in Appendix 2. Appendix 1 is devoted to a discussion of 
averaging, in order to clarify the meaning of 'background' in the presence of waves. 

The SI system of electromagnetic units (equivalent to MKS) is used throughout 
this paper. 

2. Relativistic Field Theory for Continua 

(a) Notation and Terminology 

We make the theory manifestly Lorentz covariant by working only with 4-scalars 
(as is the Lagrangian density 2), 4-vectors (such as the 4-position XIL = (ct, x) and 
4-gradient OIL == a/axIL) or 4-tensors. Greek indices run from 0 to 3, Roman from 
1 to 3, the summation convention is assumed and the metric tensor gILV is such that 
gOO = _gl1 = _g22 = _g33 = 1 (see e.g. Landau and Lifshitz (1971) for an 
introduction to this notation). The scalar products aILbIL = aobo -a.b, and aILaIL = 

a~-a2 will be abbreviated a.b and a2 respectively, and the argument list Xo, Xl' X2' 
X3 will be abbreviated by x. 

Although we are dealing here with a continuum description of some material 
(which can be either a solid or a fluid), it is convenient to use the term particle to 
denote an infinitesimal element of the material. Such a particle forms a microsystem, 
which we assume to be characterized completely by its position, velocity and strain 
tensor, the vector whose elements consist of these parameters, together with the time 
at which they were measured, representing a microstate. The set of all microstates 
whose time component equals t is the state of the system at time t. We implicitly 
assume that density, temperature, etc. are related by holonomic constraints to the 
microstate. 
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The path traced out in 4-space by a particle as t goes from - 00 to + 00 is its world 
line, and the unit 4-vector tangent to a world line at x is the local 4-velocity ull(x}. 

(b) llejference States 

Unlike the case in quantum field theory (Pauli 1941), we cannot vary the field 
describing the material arbitrarily at all times. This is because there must be at least 
one time at which the state of the system (the rejference state) is held fixed in order 
that variations in the strain tensor of the material may be defined relative to this 
reference state. However, it is unsatisfactory for a covariant theory to single out a 
special reference frame in which 'time' is to be defined. One could instead define a 
generalized reference state as the set of all the microstates of the system whose 
4-position lies on a space-like hypersurface, but this is found to be inconvenient. This 
is because we wish to describe the system in 4-space, but the map from a general 
region of 4-space to this hypersurface is a projection, and therefore has no inverse 
function. 

In order to retain the convenient feature of 3-space continuum mechanics that 
the map from the current state to the reference state is invertible, we introduce the 
concept of an expanded reference state, which allows microstates with a range of 
time values. For instance, we could designate the union of all the states of the system 
at times - 00 < tr :0::;; to as the expanded reference state. That is, all variations vanish 
prior to to. Since Hamilton's principle really only requires variations which can be 
localized around the current time t (although for a dispersive system we shall assume 
the variations to be slow with respect to the characteristic memory of the system), 
holding the system fixed over a range of times not containing t is perfectly compatible 
with Hamilton's principle. 

To avoid specifying a special frame to define to we introduce the concept of a 
rejference region of 4-space, denoted by tlto. The expanded rejference state associated 
with tlto is the set of all the microstates whose 4-position lies within 9l0 , and designating 
it as a reference state implies that the allowable variations in Hamilton's principle 
vanish within tlto• 

(c) Mappings 

In 3-space continuum mechanics (Eringen 1967) the strain tensor is defined in 
terms of the map from the reference state at t = 0 to the state of the system at the 
current time t (i.e. the time in whose neighbourhood variations are to be taken), 
generated by the motion of the particles during the time interval [0, tl. Because the 
map is one to one we can equivalently use the inverse map from the current state to 
the reference state. This is more convenient because it allows 'Eulerian variations' 
(Dewar 1970) to be used. We shall call this mapping a rejference map. 

To obtain a covariant formulation we introduce a 'pseudotime' parameter -r and 
seek a continuous one-parameter family of expanded reference maps r. from the 
4-space region tlt, in which variations are to be taken, onto a family of expanded 
reference regions 9l0(-r} (disjoint from 9l). If the point x is mapped on the point Xwe 
can write 

XIl = X"(x, -r). (1) 

We require the map to be one to one and differentiable, and we require that any 
point in tlt be connected to its image in 9l0( -r) by a world line. Such a mapping is 
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depicted in Fig. 1. We also require that XO(x, 't') be a monotonically decreasing 
function of 't' in all frames. 

An example of such a map is that provided by sliding every point in ~ back in 
time along the appropriate world line through a distance 't' measured along that 
world line, but there are infinitely many other possibilities. The lack of uniqueness 
ofthe map need not be a worry because we find that XP(x, 't') can always be eliminated 
in favour of physically observable variables. For a general discussion, however, it is 
formally much more convenient to express all observables in terms of XJl(x,'t'), 
because this field can be varied without constraint. The resulting Euler-Lagrange 
equations and conservation relations can always be re-expressed in terms of observ­
ables, and then become unique. 
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Fig. 1. Schematic diagram of the mapping between the reference world region Blo and 
the current region BI. The cylindrical volume elements used in Section 3a are also shown. 

(d) Hamilton's Principle 

For the time being we need only remark that the 4-velocity, proper density and 
strain tensor can all be expressed as functions of XP, apx y and up. Thus the most 
general Lagrangian density we can encounter is 

!i' = !i'(X, ax, u, rt, art) , (2) 

where the tfl(X) are the other fields entering into the problem. Hamilton's principle 
is stated in the form 

fBI ()!i' d4x = 0, (3) 

where XP(x) and tfi(X) are to be varied with 't' held constant and the world lines in 
alo held fixed, XIJ changing as a function of x because the world lines within ~ are 
varied. Changes in functional dependence on x will be denoted by the Eulerian 
variation symbol (), while changes evaluated at the varying 4-position determined by 
XP = const., 't' = const. will be denoted by the Lagrangian variation symbol .d, the 
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relation between the two types of variation being 

~ == b+ /).X.O, (4) 
so 

/).XIi = 0, bXIi = 0 and bXIi = - /).x. OXIi . (5) 

( e) Eulerian Variations 

The variation in ali xv is the obvious result 

boliX" = olibX" = -Oli(/).X.OX"). (6) 

To find the variation in uli, we first note that a world line is traced out by Xli as T 

is varied with Xli fixed. Thus 

uli = -X:(oX- l )/ {(X,.OX- l )2} -t, (7) 

where (oX- l )/ is the inverse of the matrix ali XV and the subscript 1: denotes partial 
differentiation with respect to 1:. Using the facts that /).X/ = 0 and 

/).(oX- l )/ = (oX- l .o /).x)/, (8) 

we can calculate /).uli and hence find 

bUIi = (gliV - uliUV)u • a /).xv - /).x • ou/l . (9) 

(I) Euler-Lagrange Equations 

Substitution of equations (6) and (9) into the variational principle (3) yields the 
Lagrange equations of motion for the background material 

O/lXVoP( 02 ) -OliXV 02 -0 (uP( /lV_ U/luv)02) _0/luv02 = 0 
ooPX v oXv P g ouv ouv ' 

(10) 

which can also be written as a canonical energy-momentum balance equation for the 
background material in the form 

OIl Tb/lV = Ib" , 
where 

T. liV - ::IX 02 v (::I X 02 /l 02) (pv P v) ('0 /lV 
b = u. U a a a /l X a U + Up a a a /l X a - U ouP g - U U - .;;L b g (11) 

is the canonical energy-momentum tensor for the background subsystem and 

IbV = 0bv2 -ov2b , (12) 

is the canonical force density acting on the background subsystem, the symbol Ob 
denoting the total derivative with respect to the background variables, 

0bV == WXp)o~ +OV(opXa)o;/ X +(oVUp)ao , 
p P, a Up 

.(13) 

and the symbol 2 b denoting that part of 2· depending on the background variables 
alone. 
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Variation of the fields I'/i yields the well-known Euler-Lagrange equations 

ap,(a!e fa ap, I'/i) - a!e fal'/I = o. (14) 

(g) Canonical Energy-Momentum Tensors for Fields 

If we associate the 1'/ i in the subspace ik ~ i < iH 1 with the kth subsystem, and 
also associate part of !e with the kth subsystem so that 

!e = !eb+ ~!ek' 
k 

then we can define the canonical balance equation for the kth subsystem to be 

ap, T/v = j;/, (15) 

where the canonical energy-momentum tensor for the kth subsystem is defined to be 

T/V ik+:t- 1 a!e aVl'/i -!e k gp,v. 
i=ik a ap, I'/i 

(16) 

Using equation (14), we find the canonical force density to be 

h V == akv!e -aV!I\. (17) 

The symbol akv is defined analogously to abv as 

ik+l- 1 (a a ) 
akv =.b <a'17i)an. +aV(ap,l'/i)aap, .. 

'-'k ." 1'/. 
(18) 

Since the canonical equations for the background subsystem were given in the previous 
subsection, equation (18) completes the definition of the canonical energy-momentum 
tensors of all subsystems. 

If !e k depends only on the fields associated with the kth subsystem, and has no 
explicit dependence on x, then the force density h acting on the kth subsystem vanishes 
and we call this a closed subsystem, i.e. one which has no interaction with any other 
subsystem. In the more typical and interesting case of interacting subsystems, the 
!e k will depend on fields associated with other subsystems and in fact there will be no 
unique way of defining !e k' although there is usually a most 'natural' way of splitting 
up !e into contributions from different subsystems. 

(h) Translation Invariance 

We now consider the conservation equations which the system as a whole must 
obey. We know from Noether's theorem (Hill 1951) that these are associated with 
the invariance of the equations of motion under symmetry transformations. In fact, 
in both classical and quantum field theories, !e itself is form invariant under time and 
space translations and Lorentz transformations. In our problem we must recognize 
the fact that a constraint has been applied on allowable variations, namely the 
requirement that PAo be held fixed. Thus our first symmetry postulate is that !e (and 
in fact !e band !e k) is invariant under space-time translations of PA and the world 
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lines and fields within 9f. That is, 

Il!£ = 0 
when 

ax" = E'!' and Ill'll = o. 

The condition that equation (19) hold for all s" is 

o"!£ -Ob"!£ - L ot!£ = O. 
k 

541 

(19) 

(20) 

From equations (12), (15) and (17) we see that (20) implies that the total 4-force 
density acting on the system is zero, thus implying the conservation of total canonical 
energy and momentum 

o"T"V = 0, 

where the total canonical energy-momentum tensor is defined by 

(i) Local Lorentz Invariance 

T"Y == Tb"Y + L Ttv. 
k 

(21) 

(22) 

Our second symmetry postlJlate is that !£ is invariant under 'rigid rotation' (in 
4-space) of 9f about the origin, the world lines and fields within gil also being 'rotated'. 
This operation is a Lorentz transformation of 9f, but gIlo is, as always, held fixed. 
We shall call this invariance local Lorentz invariance, this being a stronger assumption 
than the global Lorentz invariance implicit in the 4-vector formulation. We further 
assume that !£ band !£ k are locally Lorentz invariant and translation invariant. 
Stated succinctly, we require 

Il!£ = 0 (23) 
when 

Ilx" = s"Y Xv , Ill'll = tE'!'v I"vI} I'I}, (24) 

where s"v is an arbitrary antisymmetric infinitesimal4-tensor, the matrices I"vlj being 
representations of the infinitesimal operators of the Lorentz group (Pauli 1941). 

Without loss of generality, I"vlj can be assumed antisymmetric in p. and v. The 
condition that equation (23) be satisfied for all s"v is, on using (20), 

( ovI'I' o!£ +ovX ~ _U"O!£) 
'00,,1'11 Poo"Xp oUv a.s. 

~I"v o!£ ~!l (I"V ) oft' - 0 +z I} I'In;- +-zup I} I'Ij !l!l -, uI'I1 uUpl'l1 
(25) 

where the subscript a.s. denotes the antisymmetric part of a tensor. That is, if t"V is 
an arbitrary tensor, 

t=~ .. == t(t"v - tV"). 

Equation (25) is to hold for !£ band ft' k as well, apd is a restriction on allowable 
constitutive relations. This aspect will be discussed further in Section 3a. In this 
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section we demonstrate that equation (25) has the consequences (i) that angular 
momentum is conserved and (ii) that the energy-momentum tensor is symmetrizable. 

The first consequence (i) follows directly from Noether's theorem (Hill 1951) 
which yields 

opMPPV = 0, 
where 

MPPV == -xP TPV +xv TPP -(oft'/oop'1JlfJr/j. 

(26) 

(27) 

It is easily verified that equation (26) follows from equations (11), (16), (21), (22), 
(25) and (27). Jones (1971) has interpreted the last term in equation (27) as the 'spin' 
of the fields '11> but for the purposes of the present paper we limit ourselves to inter­
preting the energy-momentum tensor. 

(j) Symmetrization 

The second consequence (ii) above of equation (25) follows directly from applica­
tion of the method of Belinfante (see Pauli 1941). We define a modified energy-
momentum tensor 

oPV = TPV +opjPPV, (28) 
where 

j PPV l( aft' IPV aft' /PV aft' /PP ) == -z -- IJ '1j--- Ij '1j--- Ii 1'/j • 
o~~ o~~ o~~ 

(29) 

In view of the anti symmetry of PPv with respect to p and J.l, Opv obeys the same 
conservation equation as TPv, namely 

OpOPV = o. (30) 

After some algebra it can be shown that the modified angular momentum tensor 

mPPV = _ xP OPV + XV OPP (31) 

obeys the conservation equation 
opmPPV = 0, (32) 

whence it follows that Opv is a symmetric tensor. It can be shown that Opv is uniquely 
determined by requiring symmetry (Pauli 1941). 

(k) Physical Split-up 

As with the total canonical energy-momentum TPV, we can split ()pv into con­
tributions from the various subsystems. There seem to be two natural conventions 
for effecting this split-up. The first we call, following Dewar (1970), the physical 
split-up. We define the physical energy-momentum tensor for the kth subsystem by 

O pv - !IX Oft'k V (!I X Oft'k ,.Oft'k) (pv P v) ft'k!lv 
k = U.u aoopXa U + Up aoopXa -u ouP 9 -u u + OO/l'1l u '11 

-ft'k9PV +op/tPPv, (33) 
where 

I"Ppv- l( aft'" IPV Oft'k [pv Oft'k [pP ) 
J" = -z OOp'11 Ij '1j - OOp'1l Ij '1j - OOv'11 Ij '1j , (34) 
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and similarly for ()/. and fbPP,', simply by replacing the subscript k with b. The 
subsystems exchange energy and momentum according to the equations 

Op, ()bP,' = ¢b', Op, ()/. = ¢k' , (35) 

with the physical force density ¢k' acting on the kth subsystem given by 

,f,.' = o.X 0 ( o!l\ ) -o'X o!l\ -0 ( P,( 'P_ • P)O.Pk) _0' O.Pk 'f'k - P P, a a x pax p, u g u u ;'l P up ou 
" P P vU P 

+ O'I}iOp,(:.Pk ) -0'1}' o.Pk 
vOp,I}i • 01}; , 

(36) 

where we have used equation (20). From equations (10) and (14) it is readily verified 
that the physical forces acting on the system as a whole sum to zero. 

We term ¢b' the ponderomotive 4-force density, as it giv~s the force acting on the 
average motion of the material. Note that Ob'" and 0'" will always be symmetric, but 
that 0/' need not necessarily be so if there are several interacting subsystems. The 
advantage of the physical breakup is that the background energy-momentum tensor 
has a very natural form since it is unmodified by the existence of other fields-all 
interactions are contained in the ponderomotive force. On the other hand, the 
canonical forms for the other subsystems seem more 'natural', except for the absence 
of the symmetrizing term. 

(I) Modified Canonical Split-up 

The above reasoning leads us to introduce a second way of splitting up the 
symmetric energy-momentum tensor ()P,', which we can the modified canonical 
split-up. Suppose the matrices IfJ have a block diagonal form corresponding to the 
fact that the fields '1; in the kth subspace ik ;:;;; i < ik+ 1 transform only amongst 
themselves. (That is, the subspace k corresponds to one or more irreducible represen­
tations of the Lorentz group.) Then we can decompose fPP,v into a sum of tensors 
g,f'P,' defined by 

ik+l-l ik+l-l ( 0.P 0.P O.P) pp,. _ 1 P' "V "P 
gk = -2.~ .L 00 I},Iii I}j - 00 I},Iii '1j - 00 n,Iii I}j . 

'='k J=ik P, • P • V'" 

(37) 

This decomposition is distinct from that defined by equations (24). 
As with the strict canonical split-up we associate the fields in the kth subspace 

with the kth subsystem. Thus we define the modified canonical energy-momentum 
tensor for the kth subsystem by 

ik+l-l 0.P 
S/' == .~ ~O'I}i -.Pkg"V +opg,f'P,'. 

'='k p,I}. 
(38) 

We define the modified canonical energy-momentum tensor for the background to be 
the same as the canonical energy-momentum tensor: 

O.P ( 0.P O.P) ( ) SbP,' == TbP,' = u.oX,,--uv + opX,,-- -uP,- gP'-uPuv -.Pbg"'. (39) 
oOp,X" oOp,X" ouP 
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Although none of the subsystem tensors are in general symmetric, they sum to the 
symmetric tensor 

SbllY + L SkllY = ()IlY. 
k 

Since S/Y differs from T/Y by a 4-divergenceless term, the balance equation 

°IlSkIlY = j,/ 

applies, withfkY given by equation (17). 

3. Constitutive Relations and their Consequences 

(a) Dependence on Background Variables 

(40) 

(41) 

All constitutive equations must obey the two symmetry postulates expressed by 
equations (20) and (25). The first is trivially satisfied simply by demanding that !l' 
have no explicit dependence on Xll. The second, however, restricts the allowable 
dependence of !l' on the deformation 4-tensor OIlXY, because X Y is a scalar, not a 
vector, under the local Lorentz transformation (24) (i.e. its components are invariant). 
Also, 

11 0llXY = Fl'a 0a XY , (42) 

so that Oil X Y is a vector rather than a tensor under local Lorentz transformation, and 
similarly for higher derivatives. Furthermore, a vector all(X) depending only on the 
initial state is also a scalar under local Lorentz transformations. Thus the only way 
the deformation 4-'tensor' can appear in !l' is through the combinations 

OIlXaaa(X) and OIlXaOyxa. (43) 

We shall not enumerate all the ways a scalar It' can be formed from these elements, 
but shall instead consider as a simple example the construction of the background 
Lagrangian density for an isotropic fluid. 

Since It' b is to be a scalar, it suffices to evaluate it in the local rest frame of the 
medium. In this frame the kinetic energy vanishes and It' b is just the negative of the 
total internal energy density, including the rest energy, as 

!l'b = -p'(x)c2 -8'(P') , (44) 

where to be consistent with the assumption of scalar pressure we have assumed 8', 
the proper internal energy density with rest energy subtracted, to be a function only 
of p', the proper density. By 'proper' we mean evaluated in the local rest frame, and 
this we indicate with a prime. We evaluate p'(x) by a geometric argument similar to 
that used for flux conservation in hydromagnetics (Newcomb 1962). Suppose dUll is 
an element of area on a spacelike hypersurface cutting gJ and dIll is its image under 
the mapping equation (1). Then mass conservation requires 

p'(x)u.du = p'(X) U.dI, (45) 

where UIl, the 4-velocity at XIl, is given by 

Ull = U.OXIl {(U.OX)2} -t. (46) 
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A cylindrical volume element of side dX" maps into a cylindrical volume element 
of side dx", the ratio of the volumes dX. elI I dx • dO' being the Jacobian, det(8," XII) 
(see Fig. 1). Since this holds for all dx", we have 

dO'" = 8"XYdXy/det(8,"XII). (47) 

Substituting equation (47) into (45) we find 

p'(x) = det(8," XII) {(u.8X)2} -t p'(X). (48) 

If !l' depends on 8" X Y only through p' (as in an isotropic fluid) then we can use 
equation (48) to simplify some of the equations of the previous section, since 

8p' Y 8p' 
88 X 8 Xp -u"- = p'g"Y 

" p 8uy , 

8p' = o. 
u.8Xa88"Xa 

(49) 

For example, the physical energy-momentum tensor corresponding to equation (44) 
is from (33) 

()b"Y = (p' c2 + 8')u"uY - P '(g"Y - u"uY) , (50) 

where the proper pressure P' is defined by 

P' == p' 88'18p' -8'. (51) 

Equation (50) is the expected form for the energy-momentum tensor of a continuous 
system (Landau and Lifshitz 1971). 

(b) Low Frequency Electromagnetic Field 

The slowly varying parts of the electric and magnetic fields E and B are contained 
in the anti symmetric tensor 

B"" == 8"AY -8YA", (52) 

where A" is the 4-vector potentia1. In the absence of dispersion, !l' depends on A" 
through A" and B"Y only, the Euler-Lagrange equations (14) resulting from taking 
111 = A" being the covariant Maxwell equation 

8"H"Y = J Y , 

where 
H"Y == -28!l'18B"y, r == -8!l'18Ay, 

(53) 

(54) 

r being the 4-current carried by free charges. The canonical energy-momentum 
density (16) and force density (17) are given by 

T:;' = _H"a 8YAa -!l'emg"Y, Ie:" = -!Hpa 8YB pa -8Y!l'em· (55) 

Provided we work in Lorentz gauge, or some other relativistically invariant gauge, 
the 4-potential A" is a 4-vector. Thus the infinitesimal operators for the electro­
magnetic subspace are represented by 

I"ypa = g"pgYa -gypg"a· (56) 
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From equation (25) the constraint of local Lorentz invariance requires that 

( Hilt! B II +avx aIi'em _uJJaIi'em -JJJ All) = 0 
em tt tt aa X au em , 

JJ tt II a.s. 
(57) 

where we have taken Ii' em to be that part of Ii' depending only on AJJ and the back­
ground variables, and H:;'(J:m> to be that part of HJJlI(JJJ) contributed by Ii'em. 

Using equations (34), (54) and (56) we find 

j.PJJlI - HJJP A" (58) em - em • 

Thus from equation (33) the physical energy-momentum tensor for the electro­
magnetic subsystem is 

()JJlI = U ax aIi'em u" + (a x aIi'em _UJJaIi'em) (gPlI_UPUll) 
em • tt aaJJxtt P tt aaJJxtt aUp 

+H::'B/ -Ii'emgJJlI -(apH!'::)A". (59) 

From equation (57) it is easily seen that (}::.. is a symmetric tensor when there is no 
free current. Because of this it is tempting to identify (}~:.. as the general form of the 
Abraham electromagnetic energy-momentum tensor. As we shall see, however, this is 
not quite correct. Nevertheless, the modified canonical energy-momentum tensor, 
defined by equation (38), is given by 

S:;' == HJJP BP" -Ii'emgJJlI, (60) 

and we shall now show that this is identical with the Minkowski electromagnetic 
energy-momentum tensor. 

(c) Linear Isotropic Case 

Piezoelectric effects are represented by a term in Ii' em linear in B JJlI while the linear 
dielectric, magnetic and magnetoelectric response is represented by a quadratic term 
and the nonlinear response is represented by higher order terms. We shall consider 
only a linear uncharged, insulating isotropic fluid, for which (see Section 4c below) 

Ii'em = tJLo 1{«/.t')-1_ S')BP Bp +t(JL')-lBPtt B ttp} , (61) 

where s'(P') and JL'(p') are the proper dielectric permittivity and proper magnetic 
permeability respectively, relative to the vacuum values So and JLo, and 

BJJ == BJJlIu". (62) 

Consider the case where only the background and low frequency electromagnetic 
subsystems are present, i.e. 

Ii' = Ii'b + Ii'em. (63) 

Then the canonical background energy-momentum tensor is, from equations (11) 
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and (49), 

Tb"· = (p' c2 + c!')u"u· 

- [P' -!J.lo 1{ (/-0- 1 - S')lnp' BP Bp -H (J.t,)-1 )Inp' BP .,.B'" p}](g". -U"UV) 

+!J.lo 1( S' - {J.t,)-1 )u"Bp BP~ (g~. - uV), (64) 

where the subscript Inp' denotes p' %p'. From equations (54) we find 

H"· = J.lo 1{({J.t,)-1_ s') (u"B V -uVB") + {J.t,)-1 B"V}, (65) 

where 2 em can be written 
2em = tBP.,.Htlp. (66) 

The modified canonical electromagnetic energy-momentum tensor is, by equations 
(60) and (66), 

S::' = H"pBPv -tBP.,.Htlpg"v. (67) 

Comparison with equation (301) of Pauli (1941) confirms that the present equation 
(67) is indeed (to within a sign convention) the Minkowski form of the electromagnetic 
energy-momentum tensor. The interaction 4-force density acting on the canonical 
background subsystem is most easily obtained from the conservation equation (21), 

it: -J."'m -o"S::'. (68) 

The two subsystems are clearly coupled by any inhomogeneity in the background, 
thus illustrating the futility of discussing the 'true' form of the electromagnetic 
energy-momentum tensor in isolation from the background. Even worse, the 
canonical energy-momentum tensor for the background, equation (64), contains terms 
quadratic in the electromagnetic field. At first sight this appears unphysical (hence the 
designation 'physical' for (Jb"V), especially as it leads to an asymmetric tensor, but it is 
really no more unphysical than the fact that a term qA appears in the canonical 
momentum of a particle in an electromagnetic field. One can carry this analogy 
further using 'oscillation centre' canonical transformation theory (Dewar 1973, 1976). 

The physical energy-momentum tensor for the background, (Jb"v, is unchanged, 
and given by equation (50). From equations (49), (59), (65) and (66) we find the 
physical energy~momentum tensor for the electromagnetic subsystem to be 

(J:;' = (JA"v +tp'(oHPtl/op')B"'p(g"V_u"UV), (69) 

where (JA"v is the Abraham energy-momentum tensor (equation (303) of Pauli 1958) 
for an isotropic medium, given by 

(J "V = H" BPv -~HP B'" g"V -(s'I/'-I)u"flV 
A- p 4t1p t'" , (70) 

flV being the 'Ruhstrahlvektor' 

flV == (uVHtI~ +u"'H~v +u~HVtI)B.,.u~. (71) 
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Since O~;;, is symmetric in the rest frame, it is symmetric in all frames. The pondero­
motive force is easily obtained from the conservation equation (30) as 

¢bV -¢!m -o"O~;;'. (72) 

Thus our resolution of the famous controversy is as follows: The Minkowski 
form is correct provided the canonical energy-momentum tensor is used for the 
background subsystem; the Abraham form is not quite correct when the physical 
energy-momentum tensor for the background subsystem is used, but may be corrected 
by the addition of a tensor which accounts for electrostrictive and magnetostrictive 
effects. It will be seen in Section 4c below that this correction term corresponds to the 
Helmholtz form of the ponderomotive force (Robinson 1975). 

(d) High Frequency Electromagnetic Field 

Consider the high frequency electromagnetic field to be due to the passage of a 
nearly monochromatic wave train, described by 

00 

Al:r = L' a~ exp(inO) , (73) 
n= -00 

where a~(x) is the slowly varying complex amplitude of the nth harmonic of the wave 
4-potential and O(x) is the phase of the wave. At this stage we make no assumption 
regarding the linearity of the response, so harmonics will in general be present. 
However, we assume that the amplitudes of the higher harmonics can be expressed in 
terms of that of the fundamental a't == a". Also associated with the wave is the slowly 
varying wave 4-vector k"(x) defined (Dougherty 1970) as the 4-gradient of 0, that is 

kIt == -0"0. (74) 

Within the WKB approximation, Ii' is a function only of X", o"Xv, a", a"* and kIt. 
Following Whitham (1965) we assume local averaging to have been applied to Ii' 
(which has negligible effect on the action integral), so that Ii' is independent of O. 

The Euler-Lagrange equations (14) corresponding to '1; = a", a"* are the 'wave 
equations' 

oIi'joa"* = oIi'joa" = 0, (75) 

which besides giving the dispersion relation for the wave also determine its polariza­
tion. The Euler-Lagrange equation from variation of 0 is the continuity equation for 
wave action 

o"N" = 0, (76) 
where 

N" == oIi'jok" (77) 

is the wave action current (see Section 4d). From equations (16) and (17) we find 
the canonical energy-momentum tensor and force density for the wave subsystem to be 

Tw"V = N"kv -Ii' wg"V, fw" = NVo"kv -o"Ii'w, (78a, b) 

where Ii' w is that part of Ii' depending on kIt and a". Since gwP"V vanishes, equation 
(78a) also gives the modified canonical tensor Sw"v. 
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We now show that equations (78) are consistent with equations (55) for non­
dispersive waves. In this case the only k fJ dependence in .!l' w comes from 

BfJV = L in(kVafJ-kfJa1exp(inO). (79) 
n 

Then, since .!l' w is the averaged electromagnetic Lagrangian, 

.!l' w = <.!l' em> , (80) 

we have, to lowest order in the WKB approximation, 

N fJ = <O.!l' em ~> = <H fJtI OA) 
oBptI okfJ oOtl ' 

(81) 

where the angle brackets denote local time and space averaging. It is then easily 
seen that 

TwfJV = <T:;'>. (82) 

However, we saw that T:;' differs from the Minkowski tensor Sf;' only by the addition 
of op(HfJP A1. To lowest order in the WKB approximation this averages to zero, and 
hence 

TwPY = <S:;'>. (83) 

We have thus established that, for nondispersive waves, the wave energy-momentum 
tensor (78a) is equal to the averaged Minkowski energy-momentum tensor. For 
dispersive waves we adopt equation (78a) as the definition of the Minkowski tensor. 
It is interesting to note that this equation is consistent with the remark by Peierls 
(1976) that the Minkowski tensor corresponds to assigning pseudomomentum hk to 
the wave. 

Since aP is a 4-vector and 0 a scalar, local Lorentz invariance from equations (25) 
and (56) implies 

(H fJtI B Y + N fJkY + oVX f).!l' w fJ f).!l' w) 
w tI tlof)X-u --

P tI oUv a.s. 

i( po.!l'w _avO.!l'w) = 0, (84) 
-~ a f)av f)ap 

where HwfJtl is that part of HPtI contributed by .!l' w (assuming the low frequency 
electromagnetic field to influence the dispersive properties of the high frequency field). 
The physical energy-momentum tensor for the wave subsystem is, from equations 
(33) and (34), 

o.!l' ( f).!l' o.!l' ) ( ) o fJY = U oX __ w_uv + 0 X __ W __ ufJ_W gPV-upuY 
W • tlf)o X P tlf)f) X !l P P tI fJ tI uU 

+ HwfJtI B/ + N fJkY -.!l' wgpv • (85) 

From equations (75) and (84) this is seen to be a symmetric tensor. 
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(e) General Linear Case 

To treat the linear response of the system in a general covariant fashion we adopt 
the rank-2 polarization tensor description of quantum electrodynamics. This has 
been expounded by Melrose (1973) and is far simpler than the rank-4 susceptibility 
tensor description used by O'Dell (1970) and O'Sullivan and Derfler (1973). The 
polarization tensor rx'''(k) is defined as the linear response function for the high 
frequency current J{J taking the 4-vector potential A~f as the driving term, 

J{J == rx''vAhf. (86) 
Thus the wave equation is 

(k2g''v -k"kv +Jlorx"v)aV = o. (87) 

Now we know that the vacuum contribution to It' w from equations (61) and (79) is 

!Jlo1(BCfuBhfp) = Jlo 1(1k.al 2 -k2a*.a). (88) 

When it is considered that the wave Lagrangian density must be derivable, at least in 
principle, from the exact microscopic Lagrangian density, it is clear that the effect 
of polarization of the material must be to provide an additional term to be added to 
equation (88). This extra term must yield equation (87), and its complex conjugate, 
on use of (75). The following Lagrangian density fulfills these requirements, provided 
rx"v is a hermitian matrix (nondissipative case): 

It'w = Jlo 1(1k.al 2 -k2a*.a) -a;rxPuau. (89) 

The requirement that It' w be gauge invariant implies that the conditions 

kprxPu = rxPuku = 0 (90) 

be satisfied by rx"v. These conditions are met automatically in the representation 

,,_ (" ~) lIP (u kUUv) rxv-so gp- k.u u gv- k.u . (91) 

By virtue of the conditions (90), the wave equations (87) are not linearly independent 
and the determinant of the coefficient matrix vanishes identically. This trivial 
singularity can be removed, without affecting the component of a" orthogonal to k", 
by adding k"kv to the matrix. The general covariant dispersion relation is therefore 

det(k2gP u + Jlo rxP u) = O. (92) 

Note that equations (87) and (89) imply It' w = O. Thus the Minkowski tensor for 
a linear dispersive wave is 

Tw"v = N"kv , (93) 
where 

N" = Jlo 1(k.aa"* +k.a*a" -2k"a* .a) -a;(orxPu/ok,,)if. (94) 

(f) Linear Isotropic Case 

In an isotropic dielectric fluid with no DC fields, II" v is completely determined 
(up to terms proportional to u" or uV, which do not contribute to rx"v) by two scalar 
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functions II,(k.u, k2; pi) and IIt(k.u, k2; p'), measuring the longitudinal and 
transverse responses respectively: 

II" - II, k"k. _ II ( " k"k.) 
• - (k.U)2_k2 t g • + (k.U)2_k2 . 

(95) 

Substitution of equation (95) into (91) yields 

2 " (II,-IIt)k"k.u {(k.u)2IIt-k2II,}k2u"u. 
C Iloa. • = (k.U)2_k2 - {(k.U)2_k2}(k.u)2 

-II "+ (k.u)2IIt-k2II, k"u.+u"k. 
tg • (k.U)2_k2 k.u· 

(96) 

We now seek the eigenvectors of the wave equation (87). First we observe that 

(k2g". -k"k. + Ilo a.".)u· 

= - {I -II,/c2(k. u)2}(k2g". -k"k.)u·. 

Thus longitudinal waves obey the dispersion relation 

1 -II,(k.u, k2)/c2(k.u)2 = 0 

and have the polarization vectors 

u" +A,k", 

where AI is arbitrary, depending on the gauge. 
To find the transverse wave solutions, define two vectors 't'1,2" by 

k.'t', = u.'t', = 0, 't'r. 't'} = -~'}. 
Then 

(k2g". -k"k. +lloa.".)'t'Y = (k2-IIt/c2}r:". 

Thus the transverse waves· have the dispersion relation 

1 -IIt(k.u, k2)/c2k2 = 0 

and the polarization vectors 

't'1,2" +A1,2 k", 

where A1 and A2 are arbitrary. 
Expand a" in terms of these normal modes as 

a" = a,u" +a1 't'1" +a2 't'2" +Ak". 

Then the wave Lagrangian density reduces to the sum of 

ie, == 1li)1{(k. U)2 -k2}{1 -II,/c2(k. U)2} I a,\2 
and 

.!l't == 1li)1k2(I-IIt/c2k2)latI2, 
where 

lat l2 == lad2+la2 12. 

(97) 

(98) 

(99) 

(100) 

(101) 

(102) 

(103) 

(104) 

(105) 

(106) 
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The longitudinal and transverse wave action currents, as defined by equation (77), are 
therefore 

Nt=(k.u)2-k2(2k.uu,,_~OIllk"_J:. oill u,,)laI12 (107) 
(k.U)2 c2 ok2 c2 o(k.u) flo' 

N" = (2k,,_20Ilt k" _ ollt u,,)lat I2 (108) 
t c2ok2 c2o(k.u) flo' 

where use has been made of the dispersion relations (98) and (102). The Minkowski 
tensors then follow directly from equation (93). In general neither is symmetric, 
although that for the transverse wave is symmetric if Ilt is not a function of k. u. 

From equations (49) and (85), the physical energy-momentum tensors for longi­
tudinal and transverse waves are found to be 

() "V _ I 12(k.u)2_ k 2{ IOIlI ( "V "v) 2 oill k"kv 
I - -80 al P - g -u u + -

(k.U)2 Op' ok2 

-k.UU"UV (2c2k.u- o(~~~»)}, (109) 

() "V = 8 I a 12{2(c2 - OIlt)k"kv _p' OIlt(g"v -u"uv) - k. u ollt u"uv}. (110) 
tOt ok2 Op' o(k.u) 

The ponderomotive force is therefore 

lPbV = -o,,()r or -o,,()r. (111) 

(g) Cold Plasma 

The preceding formalism is readily adaptable to a plasma made up of beams of 
particles of various species (labelled by the subscript s). Each of the beams may be 
regarded as a continuum with reference position X., 4-velocity u.", proper charge 
density q. n; and proper mass density m. n;, where n; is the proper number density of 
species s. The Lagrangian is a linear superposition of the contributions from the 
various species. The background Lagrangian density is (cf. equation 44) 

ro _ '" I 2 
,;z; b - - /..J rna n. c , (112) 

• 
and the electromagnetic Lagrangian density for a plasma with no strong low frequency 
(or DC) field is 

2em = -c L q.n~u •• A. (113) 
a 

The electromagnetic contribution differs from equation (61) in that we have neglected 
terms quadratic in the DC field but have included a term in A", which, by equation (53), 
correctly gives the 4-current density. 

The wave contribution can easily be derived from first principles by perturbation 
expansion, but in the spirit of the phenomenological approach of this section we 
simply observe that the isotropic polarization tensor must apply for each species. 
Comparison of the known dispersion relations for longitudinal and transverse waves 
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in a cold plasma (Stix 1962) with equations (98) and (102) reveals that 

2 n, .• = nt •• = Wp •• , 

where w~ .• is the proper plasma frequency of species s, given by 

W~ .• == n;q;/60m •. 

SS3 

(114) 

(115) 

These relations are verified in Section 4d. The wave Lagrangian density has therefore 
the particularly simple form 

ro '" 2 (I' U/ kp) (p kPU •• ).. 
.z,w = L.. 60 Wp •• g P--k-- g '--k- al'a . . .~.~ 

(116) 

4. Three-vector Expressions 

In the preceding sections we have used 4-vector notation in the interest of elegance 
and economy. However, most practical calculations are done in 3-vector notation 
and so in this section we provide a bridge between the two formalisms in order to 
facilitate the utilization of our general results, and to assist in their physical inter­
pretation. 

(a) Matrix Notation 

The relation between 3-vector notation and 4-vector notation is most easily 
visualized through a partitioned matrix notation in which an arbitrary contravariant 
4-vector a!' is represented by a column vector 

~ -[:] (117) 

and a covariant 4-vector a!, by a row vector 

a!, = lao, -a], (118) 

where a = aiel> the el being the orthonormal basis vectors of the 3-space reference 
frame. In equation (117) a is a column vector and in equation (118) a is a row vector. 
As is usual in vector notation we do not distinguish notationally between 3-row and 
3-column quantities but allow the context to determine which is meant. Examples are 

~ = [J [
C-1 0/ot] 

01' = 
-v 

(119a) 

and 
X,, = [ct, -x]. 01' = [c- 1 0/ot, V]. (119b) 

The velocity is given by 

u' = [,:J UI' = [')I, -')IV/c] , (120) 

where 
')I == (l-v2/c2rt. 
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Mixed tensors will be represented by a 4 x 4 matrix partitioned into a 1 x 1 block 
in the upper left-hand corner, a 3 x 1 block in the lower left-hand corner, a 3 x 3 block 
in the lower right-hand corner, and a 1 x 3 block in the upper right-hand corner. 
Thus, if a". is an arbitrary 4-tensor 

[ 
000 

a" = 

• aiOej 

~a~j.ej •• ] • 

-aijeiej 

(121) 

In dyadic notation ei is a column vector when on the left and a row vector when on 
the right. In this representation the metric tensor gil. is the unit 4 x 4 matrix. 

Consider the equation obeyed by the physical energy-momentum tensor of some 
subsystem 

O"O". = cP •• 

If we denote the components of Oil. and cP" as 

[ 
W : -cG ] [C- 1P] 

Oil. = "c-~S ~ ~T'" cPo = _/' 

then equation (122) can be written 

[
C--1(ow/ot+"V.S)] = [P/c1. 
-(oG/ot + "V. T) -.r./ 

(122) 

(123a, b) 

(124) 

The interpretations of the symbols are now clear: W is the physical energy density 
of the subsystem, S the physical energy flux, G the physical momentum density, 
T the physical stress tensor,fthe physical force density acting on the subsystem and 
P the physical power input to the subsystem. 

(b) Background Subsystem 

Substitution of equation (120) in (50) yields 

Ob/. = [ .. ~'~2 ~8'. :V~~'~~2)~~ 
(p'c2 +8' +p')y2V/C 

_(p,c2 +8' +p')y2V/C ] 

-P'I-(p'c2 +8' +p')y2VV/C2 ' 
(125) 

where I is the unit dyadic. By comparing with equation (123a) we can easily read off 
the expressions for Wb, Sb, Gb and Tb. The proper density p' obeys the continuity 
equation 

o,.(p'ull) = 0, (126) 
which becomes 

o(p'y)/ot + "V. (P'yv) = O. (127) 

In nonrelativistic work it is undesirable to include the rest mass energy in Wb and Sb, 
and this may be removed, in any given frame, by subtracting the tensor p' c2u"go " from 
Ob/'" By virtue of equation (126) the 4-divergence of this term vanishes, so the force 
balance equation (122) remains unaffected, although the modified tensor is no longer 
symmetric. The effect on Wb and Sb is to change the expression p'c2y2 to p'c2y(y-1). 



Energy-Momentum Tensors for Dispersive Waves 555 

(c) Low Frequency Electromagnetic Field 

The 4-vector potential and 4-current are given by 

[c -1~] [cal 
AI' = A ' JI' = J ' (128a, b) 

where ~ and A are the scalar and vector potentials and a and J the charge and current 
densities. From equations (52) and (128), BI'. is found to be given in terms of the 
electric field E and magnetic induction B by 

B I' = [ .. ~. 
• c- 1E 

.~-~~ .. ]. 
-IxB 

(129) 

Following Minkowski (see e.g. Penfield and Haus 1967) we define D and H in a 
material medium by 

H'. = [ .. c: ~::·A· (130) 

Thus the modified canonical energy-momentum tensor (60) can be written 

I' _ •••••••• [ 
E.D -!Rem 

Sem Y - c- 1ExH D~~cBir-~:~;~~jI .. ]. (131) 

We arrived at equation (61) in Section 3c for the linear isotropic case by requiring 
. that in the local rest frame it have the form 

!R~m = !Jl.o 1(s'E,2/C2 -B,2/Jl.'). (132) 

In the local rest frame, u~ = [1, 0] and therefore 

c-2E,2 u' B'I' B'P u" I' P y , c-2E,2_B,2 = !B'''pB'PI'' (133) 

Since !Rem is to be a scalar we generalize equation (132) to an arbitrary frame simply 
by deleting the primes from !R~m' u'l' and B'I' y' In order to verify (132) we calculate 
Hl'y from equation (65) and compare it with equation (130) to find the expressions 
for D and H in a linear isotropic medium moving with velocity v, 

D = So s'E +y2so( S' _{J1.')-l)VX (B -c-2vxE), 

H = (Jl.oJl.,)-lB +y2so( S' _{J1.')-l)V x (E +v xB). 

(134a) 

(134b) 

In the rest frame, when v = 0, these expressions reduce to So s'E and B/Jl.oJl.' as 
expected, thus verifying equation (132). Note that equation (66) can be written 

!Rem = 1(E.D -B.H). (135) 
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The 'Ruhstrahlvektor' DV is given by 

[
g. VIC] 

DV = ("llcJl.oJl.') 9 , (136) 

where 

9 == (y- 21+c-2vv).{ExB+(vxB)xB+c-2(vxE)xE} +c- 2vv.ExB. (137) 

Thus the components of the Abraham tensor (equation 70) are 

WA = t( 80 8'E2 + (Jl.oJl.,)-1 B2) - y480( 8' _{J1.,)-1 )[(1 +C-2V2)V.Ex B 

-!(l +C- 2V2)(V x B)2 -!(3-C- 2V2)(C-1V X E)2], (138a) 

SA = C2GA = {J1.0Jl.')-1 Ex B + y480( 8' _{J1.')-1 )[(1-c-2v2)Ex {v x (E +v x B)} 

-v{(1 + C- 2V2)V .Ex B -(v x B)2 -c-2(v X E)2}], (138b) 

TA = -H 80 8'E 2 +{J1.0Jl.,)-1 B2)1 - 80 8'EE -(J1.oJl.,)-lBB 

- y280( 8' _(J1.')-1)[ {v .Ex B +!(v x B)2 -!c-2(v x E)2}1 

+(vxB)E +E(vxB) +V2(c- 2EE -BB) -(c- 2E2+B2)vv 

+v. B(Bv+ vB) + y2c-2VV{2v .Ex B -(v x B)2 -c-2(v X E)2}]. 

(138c) 

The symmetry is now manifest, and also we can verify that (JAil v is traceless since 

WA = Tr(T~. (139) 

Evaluating the final term of the physical energy-momentum tensor for the electro­
magnetic subsystem, equation (69), we find 

Wem = WA -tP'(E. aD -B. oH\ y2v2 

op' of}) c2 ' 
(l40a) 

2 ~,( aD oH'\ 2 
Sem = C Gem = SA --,;p E. op' -B. oli}y v, (l40b) 

Tem = TA -!P'(E. ~D -B. OH)(I+ y2VV) 
up' op' c2 ' 

(14Oc) 

The ponderomotive force density 

Jb = -fem = -". Tem -oGemlot (141) 

is seen, in a medium in which v is smaIl, to reduce to the well-known expression 
(Robinson 1975) 

Ii - ~ E 2 n, ~ H 2't"'7' 0(c- 2ExH) + o(DxB) 
b - --,;80 v8 --,;Jl.o vJl. - at at 

( 08' a ') +'1 !80E2p' Op' +!Jl.oH2p' o~, • (142) 
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(d) High Frequency Electromagnetic Field 

The wave 4-vector (74) expressed in terms of the frequency wand wave vector k 
defined by 

w == -oO/ot, k == '10, (143) 
is 

k' ~ [ru~l (144) 

whence we have k2 = (w/c)2_k2. The nth harmonic has the complex amplitudes en 
and hn of the electric and magnetic fields respectively given by 

en = ni(wa,,-kifyn), hn = nikxan, 

where ifyn and an are defined by 

[
C-

1ifynl anIL = . 
an 

The action density N (Whitham 1965) and group velocity Vg' defined by 

N = o.P 
- ow' Vg == - ~~/~:, 

are related to the action current 4-vector (77) by 

NIL = [Ncl. 
NVg 

Thus equation (76) can be written 

aN/at + '1. (Nvg) = o. 

The canonical wave energy-momentum tensor (Minkowski tensor) is thus 

T.'. ~ [.~:::: ~(N.;::k~~I).l. 
We recall that .Pw vanishes for linear waves. 

(145a, b) 

(146) 

(147a, b) 

(148) 

(149) 

(150) 

In relating the polarization tensor (x./L. to the dielectric constant and magnetic 
permeability we run into the problem that Dhf and Hhf are not uniquely defined in a 
dispersive medium. (In fact they are not uniquely defined in any moving medium.) 
We shall adopt the standard convention used in plasma physics, and define D and H 
by the relations 

Hhf = Bhrl Jlo , '1 X Hhf = oDhrlot. 
Then 

Dhf = 80 E(k, w). Ehf , 

where the dielectric tensor E is defined by 

E == I +i(80W)-la , 

(15Ia, b) 

(152) 

(153) 
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G (k, w) being the high frequency conductivity tensor. Note, however, that if equation 
(151a) is to hold in all frames of reference, the Minkowski transformation laws for 
D and H do not apply, since they mix E and B. In other words H'''y defined by 
equations (130) and (151) is not a true 4-tensor. This is one reason we prefer to work 
with the 4-vector potential and the polarization tensor a",. 

From equations (86) and (153) we can show 

[ -n.G.n n.G] 
a", = iw .. : .... , 

-G.n G 

(154) 

where n == ck/w. Note that equation (154) satisfies the requirements (90). We can 
rewrite equation (154) in the form 

a", = iW["O ~ n .. ] [ .. 0 ~ 0 .. ] [ .. 0 ~ 0 .. ]. 
o : I 0 : G -n: I 

(155) 

In the rest frame, the factorization (155) is identical with that in equation (91). Thus, 
in the rest frame, 

[
A:J1] 

II", = iw.. : .. , 
-J1: G 

where A and J1 are arbitrary. 
If the medium is isotropic in the rest frame then 

G = O',kk/k.k +O't(I -kk/k.k). 

Comparison of equation (156) with (95) reveals that 

II, = -iwO',/Bo, lIt = -iwO't/Bo· 

For instance, in a cold plasma with no external field 

. 2/ 0', = O't = 1BoWp W 

and therefore 
Il, lIt w;, 

thus verifying equation (114). 

(156) 

(157) 

(158) 

(159) 

(160) 

Substitution of equation (104) into (145a) shows that the electric field e, of a 
longitudinal wave and the field et of a transverse wave are given by 

e, = -iwa,(n -yv/c), et = iwat(I -nv/c). t, (161) 

where n == ck/w, as above, and t is a vector orthogonal to n -vic and normalized 
so that 

(t)2_(t.V/C)2 = I. 
Thus 

er.e, = w2Ia,\2(n2 -yc-1n.v + y2c-2V2) , 

et .et = w21 at l2{1 -2c-1v.tt.n +(1 +n2)(c-1v.t)2}. 

(162) 

(163a) 

(163b) 
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Since I al1 2 and I at 12 are invariants and er. el and et. et are not, it is useful to define 
new invariants equal to the average electric field energy in the rest frame, 

We == eoe'* .e', 

where e' is the proper electric field. Thus 

I ad 2 = We,deo e2 1 k'1 2 , lat l2 = We ,t/eow '2, 

where 
w' == ek. u = y( w - k • v) , Ik'i == {(k.U)2_k2}t 

are the proper frequency and wave vector magnitude respectively. 

(164) 

(165) 

(166) 

The proper longitudinal and transverse dielectric constants are, by equations (153), 
(157) and (158), given by 

e;O k'l, w') = 1 -Ili/w,2, e;O k'l, w') = 1 -Ilt/w'2. (167) 

Thus the action densities defined by equation (147a) are, from equations (107) and 
(108), 

N _ yWe,1 a(w'2e~) (yw' -W)W.,I ael 
I - W,2 aw' + e2 jk'1 al k'l' (168) 

N = yWe,t a(w,2e;). (w' -w) (_1_ ae; _ 2) 
t W,2 + aw' + y e2 1 k' I al k' I W,2' 

(169) 

In the rest frame these reduce to known expressions (Tsytovich 1970). 
The physical energy-momentum tensors (109) and (110) have the components 

w. = w: {y2 a(elw,2) _(W2 _ 2)~ ~_y2V2p' ael } 
I e,l W' aw' W,2 y e21 k' I al k' I e2 ap' ,. 

(170a) 

s 2 G w: Y V el w e w 2 w el 2, el { 2 a(' '2) (2k )'2 a' a '} 
I = e I = e,1 W' aW' - W,2 -y v e2 1 k' I al k' I -y Vp ap' , (170b) 

{ y2VV a( el W,2) (e2 kk y2VV) W,2 ae; ( y2VV)' ae; } . 
TI = w: 1- - ---- ----- 1+- p-

e., e2w' aw' W,2 e2 e2 1 k' I al k' I e2 ap" 
(170c) 

_ {(W2 2)( W,2 ae;) y2 a(e;w'2) y2v2p'ae;} ff,-W: t --y 2----- +- ----
e, w,2 e2 1 k' I al k' I w' aW' e2 ap" 

(l71a) 

S = e2G = w: {(e2kw _ 2V)(2-~ ae; ) + y2v a(e;w'2) _ 2V ,ae;} (l71b) 
t t e,t w,2 y e2 1 k' I al k' I w' aW' y Pap' , 

Tt = w: t{(e2kk _ y2VV) (2-~ ae; ) + y2vv a(e; W,2) _ p' ae; (1+ y2VV)}. (l71c) 
e, W,2 e2 e2 1 k' I al k'i e2w' aw' ap' e2 

It is an interesting exercise to compare equations (170) and (171) with their non­
dispersive analogues, equations (140), in the rest frame. One finds that in the case of 
no spatial dispersion (e independent of k) one can derive the momentum density and 
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stress tensor, and thus the ponderomotive force, simply by averaging the nondispersive 
result and replacing a' by a;(w) or a;(w) as appropriate. This is not valid when there 
is spatial dispersion. 

5. Wavepackets 

(a) One-dimensional Wave packets 

The results of the previous sections do not have immediate experimental 
significance since they say nothing about how the wave is generated or absorbed. 
This is a complicated subject, but a simple thought experiment sheds some light on 
the physics involved. We suppose that the wave arrives in the region of interest, which 
is initially uniform and stationary, as a wavepacket and propagates through the 
region without changing the shape of its envelope. For this it is necessary that the 
pulse be broad enough for dispersive spreading to be negligible during the transit 
time. Furthermore, we suppose the medium to be unchanged after the wavepacket 
has departed, and for this it is necessary that the wavepacket be finite in only one 
direction in order to avoid setting up a Cerenkov-like wake (Peierls 1976). 

Fig.2. Three vectors associated with 
a wavepacket: 
k, the wave vector; 

V, v., the group velocity; 

q, a vector normal to the contours of 
constant intensity. 

We therefore assume the contours of constant a* • a to be parallel planes with unit 
normal q = q/I q I, as depicted in Fig. 2. The analysis is simple in 3-dimensional 
notation only if we work in the rest frame of the unperturbed medium. However, 
the analysis is simple in an arbitrary frame if we employ the 4-dimensional formalism 
of Section 3, and this we choose to do. 

Because q and Vg cannot be parallel in all frames we allow them to make an 
arbitrary angle with each other, and with k. The one-dimensional propagation of the 
wavepacket can be summarized by forming a 4-vector qfJ such that a* • a (and hence 
NfJ) depends only on '" == q. x. By integrating the action conservation equation (76) 
from'" = ± 00 to q. x we see that qfJ is orthogonal to the action current NfJ, 

q.N= O. (172) 
From equation (148) this implies 

qo = q.vg/c. (173) 

The normalization of q is arbitrary. 
As the average energy-momentum tensor must also be a function of '" alone, 

integration of the conservation equation (30) implies 

qfJ~(}fJY = 0, (174) 
where 

~(}fJY( q. x) == (}fJY( q. x) - (}fJY(± 00) • (175) 
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Equations (123a), (173) and (174) imply 

q.bS = q.VgbW. (176) 

In a frame in which q, Vg and oS are parallel, equation (176) and the symmetry of 
()IlV led Burt and Peierls (1973) to the inescapable conclusion that the perturbed 
momentum density and the perturbed energy density of the system obey the relation 

loGI = vg OW/c2 • (177) 

However, 0 W is not simply given by equation (l7la) (Haus 1969; Klima and 
Petrzilka 1973; Peierls 1976), but includes the contribution 0 Wb from the perturba­
tion in the background due to the ponderomotive force. As the assumption of 
symmetric ()bllV implies that the rest energy is to be retained, as in equation (125), 
o Wb is not negligible and we must therefore integrate the equation of motion for 
the background. 

(b) Linear Isotropic Dispersive Medium 

From the continuity equation (126) the perturbation op' in the background proper 
density due to the passage of the wave is given by 

op'/p' = -(q.ou)/(q.u), (178) 

neglecting second-order terms. Linearizing equation (50) and using (174) and (178) 
we find 

qllO()bllV = Poc2q.u{OUV +C;qlq.ou/c2(q.u)2} = -qp. ()wIlV , (179) 
where' 

qf == (glly -ulluy)qy, 

and the sound speed C. and effective mass density Po are defined by 

C; == (p'/po)ap'/ap', Po == p' +(19" +P')/c2. (180) 

Since oull is clearly proportional to We, which is assumed small for the linear 
theory to apply, we are amply justified in the linearizations leading to equation (179). 
Furthermore, we can neglect perturbations in the background quantities in evaluating 
the right-hand side of (179). 

Contracting equation (179) with qy we find 

2 i': __ ()IlY/ D poc q.uu - qll w qv q.u .. 
where 

D. == 1 +C;qJ./c2(q.U)2 

(181) 

(182) 

is the sound wave dispersion function (that is, D. = 0 means that qll is the wave 
4-vector for a sound wave). Equation (181) can now be fed back into (179) to find 
ouY , which in turn is fed back into O()bIlV • Adding ()wllV we can then manipulate the 
total perturbed energy-momentum tensor into the form 

O()IlV = Qllp{()wPa -C;q,,()w"p qpgPa/c2(q.u)2D.}Q/, (183) 
where 

Qily == glly -uIlq.lq.u. 
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The form (183) makes manifest how the background medium 'dresses' the wave 
energy-momentum tensor in a wavepacket. 

In the case of a transverse wave (e.g. a laser pulse), substitution of equation (110) 
into (183) yields 

MY' = II I a 12QIl {2(c 2 _ 8IIt) kPk _ L 8IIt P _ C; kl.' ql. ~ p}Q" (184) 
v 0 t P 8k2" D 8 I 9 " 2 D 8(k u) g" v' sp cq.u s • 

where we have used equations (108) and (172). Evaluating the result (184) in the 
rest frame of the unperturbed medium, replacing II t with the transverse dielectric 
constant from equations (167) and taking the Oi components of [)()IlV/C, we obtain the 
momentum density G in the wave packet as 

G_W[(2C2 1 8et )k1k l qp 8llt 
- e w 2 -m 81kl TV~- q.vg Ds 8p 

qC; I k I { 1 8(et w2 ) w2 8llt 2}] 
+ q.VgwlVglDs - waw+ c2lkl8lkl- , (185) 

with 

Ds = 1 - C;I q2//(q. Vg)2 . 

Using equations (108) and (148) we can also write (185) in the form 

G = Nk- Weqp 8et + qC; Nw (C2l ki -1) 
q.vgDs 8p q.Vgc2Ds wlvgl . 

(186) 

If q is parallel to Vg and I Vg I ;:$ c, then the terms proportional to C; are of order 
C;/c2 relative to the other terms and may be neglected. In this case Ds ~ l. For 
instance, in a nondispersive medium we have 

G ~ nWe(2n2 _ p 8ll) = nWr(I_ J!...- 8ll) 
c 8p c 2n2 8p , 

(187) 

where Wt = 2n2 We is the wave energy density, equation (17Ia). Without the electro­
strictive contribution, this result would be the so-called Minkowski result 
Nk = <D x B). With the correction term, the result is in agreement with Robinson's 
(1975) assertion that the momentum travelling with a short wide wavepacket is 
(1 + (I./2e +/3/2/1) times the Minkowski result, with (I. and /3 the electrostrictive and 
magnetostrictive coefficients respectively (with /3 = 0 in our case). 

If q is almost perpendicular to vg, however, we can make Ds arbitrarily small and 
upset the relative ordering of the terms. In this case the electrostrictive term dominates, 
and is still of order C;/c2 larger than the final term in equation (185). Thus this term 
may be neglected in all ranges of q (except in a relativistic gas). The resonance at 
Ds = 0 corresponds to fulfilment of the wand k matching conditions for decay of the 
electromagnetic wave into an acoustic wave and another electromagnetic wave close 
to the original in wand k. This phenomenon, stimulated Brillouin scattering (Kroll 
1965), clearly tends to invalidate the assumption that the wave profile is unchanged, 
and requires a more sophisticated treatment. This will be sketched out in Section 5d. 
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For q even closer to the perpendicular than required for the acoustic resonance, 
I Ds I begins to increase again and approaches infinity as q. Vg --+ O. In this limit the 
electrostrictive contribution vanishes and the momentum reduces to the Minkowski 
result Nk. This is also in accord with Robinson's (1975) assertion that the momentum 
of a long thin wavepacket is the Minkowski result. 

(c) Cold Plasma 

Variation of AI' in equation (113) gives the charge neutrality constraint for a 
plasma composed of particles of charge es as 

L esn~u/ = o. (188) 

In linearized form this states, using equations (178) and (183), that 

Lesn~Q/VDusv = O. (189) 

Each individual species obeys the equation of motion (cf. equation 11) 

a {(n' of£' gl' _ u I' of£' ) (gpv _ U p U v) _ f£' gl'v} 
I' S;o, P S;o P s s bs uns uUs 

= oVn' of£' + oVu p of£' _ OV f£' (190) 
S;o, S;op b .. 

uns uUs 

where f£' b. is the contribution of species s to the background Lagrangian density. 
Linearizing and integrating we find 

ms n~ Du/ = - (es n. AI' + n~ of£' ws L _ of£' ws) 
on~ q. US OUSI' 1.. 

(191) 

The general procedure is to feed equation (191) into (189) and solve for AI', thus 
coupling the wavepacket to the low frequency electromagnetic modes of the plasma. 
However, we shall be content here with an important special case where this is not 
necessary. 

Ifwe suppose the plasma to have only two species (ions and electrons) which have 
equal velocities and charge densities in the unperturbed state, then equation (189) 
becomes 

ejniQI'.(DujV-Du:) = O. (192) 

Since Dut and Du/ can have no component parallel to ul', the unique solution of 
equation (192) is 

Dut Du/. (193) 

Thus, in this special case only, the plasma behaves as a single fluid and we may apply 
the results of the previous subsection. Using equation (114) in (184) we have 

Del'. = Boc2k2IatI2(2kl'kv/k2 -Ql'pQ/), (194) 

where we have used the dispersion relation (102) and the fact, following equations 
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(108) and (172), that 
q.k = O. (195) 

Using the results of Section 4d we can show that equation (194) is in complete agree­
ment with the results of Klima and Petrzilka (1973), despite their statement that their 
results cannot be obtained by the averaged Lagrangian method. 

(d) Three-dimensional Wavepackets 

To treat three-dimensional wavepackets we Fourier analyse the wave envelope. 
In this case q" becomes the wave 4-vector of a Fourier component of the envelope 

801 at 12 = J (~:~4FqeXp( -iq .x). (196) 

Note that, by virtue of equation (172), Fq includes a factor o(q. N). 
Since the derivation of the perturbed energy-momentum tensor in the preceding 

subsections was based on linearization in 1 at 12 , the perturbed energy-momentum 
tensor of a three-dimensional wavepacket is found by linear superposition, 

00" = -q-exp(-iq.x)F Q" 2 c2 __ t kPk _ L _tgP Q <I J d4 {( all) 'all} 
v (2nt q P ok2 <I D. op' <I v' 

(197) 

where we have dropped the C;/c2 term for the reasons previously stated, and D. is to 
be given by equation (182) with an infinitesimal positive imaginary part to be added 
to q. u for reasons of causality. 

We also calculate the perturbation in lIt due to the presence of the wave: 

oil = 0 ,alIt + k ~ alIt 
, Pop' .uU ok.u 

= _ J d4q eXP(-iq.X)Fq{ 2( ,OIlt )2 -2 k ,all, all, 
(2nt Poc2(q.u)2D. ql. P op' q.u l.·ql.P op' ok.u 

+ ((q. u)2D.- C.2(q~; kl.)2)(o~~r}. (198) 

This perturbation can lead to self-focusing or modulational instability of the envelope, 
but since it is proportional to the square of the wave amplitude we must, to be con­
sistent, include the effect of nonlinearity in the dielectric response as well. 

In order to limit the growth rate of modulational instabilities at large q it is also 
necessary to include dispersive spreading of the wavepacket, and to do this we change 
the meaning of at slightly by making it the complex amplitude with respect to a 
carrier wave with fixed k" = kg. That is, we take 0 = - ko • x in equation (73) and 
allow a" = at t" to take up all the variation in the phase due to inhomogeneities. 
In fact, in an isotropic medium, we may take 7:" to be real and quite unambiguously 
assume at to carry all the phase variation. 

The carrier wave 4-vector k" will be assumed to be the solution to the nonlinear 
dispersion relation for an unmodulated wave with some reference amplitude ao (which 
may be zero). We assume the nonlinear dispersion relation to be the obvious 
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generalization of equation (102) 

c2k~ = IltCko' u, k~) + 1 aO 12 Ilnl(kO' U, k~). (199) 

This equation must also apply for a wave with different a and k, so, following 
Karpman and Krushkal' (1969), we multiply (199) on the right by a (= at), replace 
ao by a and kOIL by kOIL +iiY' and Taylor expand the linear terms to second order in OIL, 
to find 

i(2c2kIL - O;:t) 0ILa = -t(O~2~k) 0ILo.a + Ilnl(ko)(1 a 12_1 ao 12)a +(jIlta, (200) 
IL 0 IL v 0 

(jIlt being given by equation (198), with Fq determined by 

Fq = f d4 xexp(iq.x)eola t I2 , (201) 

In the frame moving at the linear group velocity of the carrier wave, equation 
(200) is a nonlinear SchrOdinger equation for the wave amplitude. This equation 
should describe self-focusing, modulational instability and stimulated Brillouin 
scattering. Although the above derivation is rather heuristic, a similar treatment 
(Dewar 1972b) has been verified by reductive perturbation theory (Ichikawa et al. 
1973). 

6. Collisionless Plasma 

(a) Hot Plasma 

Since the plasma case is the simplest one where a microscopic derivation of the 
energy-momentum tensor is possible, it is of considerable interest in a general 
discussion. However, one cannot characterize a plasma with a continuous distribution 
of velocities (hot plasma) in the same way as one does a fluid, so we consider here a 
microscopic derivation based on the covariant distribution function. We assume 
there to be no strong DC fields, although the methods of O'Sullivan and Derfler 
(1973) would probably make this case tractable as well. 

(b) Covariant Vlasov Equation 

We work in an 8-dimensional phase space whose position coordinate we denote 
by Xi = (XIL,pIL), i = 1,2, ... , 8. In this space the particles appear as an ensemble of 
world lines, as depicted in Fig. 3. Let us denote the average density vector for world 
lines by 

cfJ i = FaCX) dXdds, (202) 

where F(X) is a scalar quantity and ds is the distance along a world line in 4-space; 
FaCX) is in fact the covariant distribution function introduced by Goto (1958) and 
Klimontovich (1960). Here (J is the species label, which will henceforth be implicit. 
The normalization is such that the current vector (128b) is given by 

]!L(x) = ~ec f d4pF(x,p)u IL , (203) 
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so that F(x,p) is related to the 3-space distribution function/(x,p, t) in a given frame 
by 

F(x,p) =/(x,p,t)(j(pO-mcy)/y. (204) 

There is a direct analogy between the world line density fPi and the magnetic line 
density B. The analogue of V . B = 0 is the covariant Vlasov equation 

t afPi = ui1 aF + ~ (dpi1 F) = 0 
i=l aXi axi1 api1 ds . 

Xi 

Xo 

pfL 

Fig. 3. World lines in 8-dimensional phase space. The 8-vector cJ>, is the line 
density vector. 

(c) Hamilton's Principle 

(205) 

We further exploit the analogy between fPi and B in order to find the change in F 
when the world lines are perturbed (or, indeed, when phase space is subjected to 
any one-to-one mapping). Let the point (xi1,pi1) go to (xi1t ,pi1t), 

xi1t(X) = xi1 + ~i1(X), pi1t(X) = pi1 + ni1(X) . (206a, b) 

Then, just as for B in ideal hydromagnetics (Newcomb 1962), we find the new vector 

8 

fPt = L (Ln- 1(aXnaXj )fPj , (207a) 
j=l 

where 
LJt == det(aXitjaX). (207b) 

Comparing with equation (202) we see that this implies 

Ft(Xt) = (LJt)-lF(X)ds t jds, (208) 
where 

ds t = (dx ti1 dx;)t = {I +2u.Ds~ +(Ds~)2}tds, (209) 
with 

a dpi1 a D ==ui1 _+ __ . 
s axi1 ds apl1 

We suppose that the Lagrangian density for a system of fields 1]i and particles with 



Energy-Momentum Tensors for Dispersive Waves 567 

distribution function F(X) is given by 

2 =~ f d4 pF(X)R(p,,,,o,,) +2'(x,,,, 0,,). (210) 

Comparing with Low's (1958) Lagrangian we see that R is related to the ordinary 
particle Lagrangian L by R = yL. Variation of the particle trajectories may be 
effected by setting ~I' = (jxl' in equations (206) which implies 

(j fd8XFR = f d8XF {(d(jS/dS)R+(jR}. (211) 

The resulting covariant Lagrange equation is 

D.{(gI'V-ul'uv-yoR/ouV +uI'R}-0I'R = O. (212) 

By setting R = yL one may verify that this equation gives the usual Lagrange 
equations plus an energy equation. Equation (212) can also be cast in Hamiltonian 
form as 

D.xl' = oK/oPI" D.PI' = -oK/oxl" 

where the canonical 4-momentum is defined by 

PI' == -(gl'v -ul'uv)oRjouv -ul'R 

and the covariant Hamiltonian is 

K == !(P.u +R). 

For the derivation of the Hamiltonian see Appendix 2. 

(d) Energy-Momentum Tensors 

(213) 

(214) 

(215) 

The canonical energy-momentum tensors for the field subsystems k are as defined 
by equation (16). A similar argument to that employed to derive equation (82) in 
Section 3 may be used to show that the canonical energy-momentum tensor Tkl'v 
defined with the average Lagrangian density 2 is the average of the exact energy­
momentum tensor TZl'v defined with the exact Lagrangian density 2t. 

The energy-momentum tensor for the background plasma defined by the average 
world lines is 

Tbl'V = ~ f d4pF(ul'pv+RgI'V) -2bgI'V, (216) 

where pv is the canonical momentum defined by equation (214). Using equations 
(205) and (212) we can show that the 4-force density acting on the canonical back­
ground system is 

IbV = ~ f d4 pRovF -ov2b· (217) 

Since R is assumed to depend on xl' only through the fields,,;, it is seen immediately 
that the force densities sum to zero and the conservation equation (21) is satisfied. 



568 R. L. Dewar 

The physical energy-momentum densities are defined by (cf. equation 33) 

(J/'V = L fd4p F(U/.lPkV +Rkg/.lV) + :::.Ov1'fi -2kg/.lV +op!//.IV , (218) 
a Il·U 

where the partial momenta are 

p/, == -(g/.lv -ifuv)oRk/ouv -u/.lRk. 

Xi 

,.. 

Xo 

Fig. 4. Representation of the world line xpt(st) as a motion along the oscillation 
centre world line xU(s) plus an oscillatory displacement ';P(s). 

(e) Linear Wave Response 

We now distinguish between the fast and slow scales of the wave and its envelope. 
We identify the displacement e/.l(x,p) in equation (206a) with the oscillatory part of a 
particle's world line and x/.l(s) with the smoothed-out oscillation centre (Dewar 1973, 
1976) world line, as indicated in Fig. 4. It is natural to require that e/.l(x,p) average 
to zero, i.e. 

<e/.l(X) = O. (219) 

For a relativistic plasma we have the exact particle and field Lagrangians (Landau 
and Lifshitz 1971) 

Rt = -me2 -eeut .At, 2't = -!J.lo1(ovA; -0/.lADWAt/.l-o/.lAtV). (220) 

The superscript dagger is used to denote exact quantities, the averaged quantities 
appearing without the dagger. We now use equations (206) and (207b), expand up 
to second order in e/.l and apply local space-time averaging to obtain 

2 = ~ f d4p F(X)< -me2 -eeu.At -!me2Dse/.l(g/.lv -u/.lu y ) D. c;y 

- ee Ds e/.l A; - eeu/.leV oA;/oxV) + 2' . (221) 



Energy-Momentum Tensors for Dispersive Waves 569 

Now set 
~Il = ,Il exp(iO) + C.c. , A til = All + all exp(iO) + C.c. , (222) 

where ~1l(X) and all(x) are slowly varying amplitudes and O(x) is the wave phase 
(cf. equation 73). Substituting equations (222) in (221), varying ,Il and eliminating it 
in terms of all, we find 

where 

!£ = ~ f d4p F(X)( -me2 -eeu.A + me2il*. il) 

-a!(k2gllv -kllkv)aVjllo, 

illl == -(ejme){gllv-klluv/(k.u)}av. 

Thus the Lagrangian for the oscillation-centre motion is 

R = - me2 - eeu • A + me2il* • il . 

(223) 

(224) 

(225) 

The last term is quadratic in the wave amplitude and gives the radiation force on the 
particles. Equation (223) may be rearranged in the form (cf. equations 89 and 113) 

.P = Ld4pF(X)(-me2-eeu.A) 
(J 

- a!{ k2gllv - kllkv + 110 ry..llvCk)}aVjllo, 

where (cf. equations 91, 95 and 114) 

e2 f ( ullk ) ( kPu ) tXllvCk)=-~m d4pFgIlP-k.: gPv-k.~ 

is the polarization tensor. 
Variation of All yields the constraint (cf. equation 188) 

~ee f d4pFu il = O. 

This implies average charge neutrality in all frames. 

(226) 

(227) 

(228) 

Variation of the oscillation-centre motion leads to equation (212) with R given by 
(225). Thus dulljds is implicitly determined and equation (205) may be used to find F. 

The physical wave energy-momentum tensor (218) is found to be 

OwllV = ~ me2 f d4 p F (illl* ilv + ilv* illl - il* • il uIlUV) 

+k2Ilo 1(gIlVa*.a -all* aV _av* all -2a*.a kllkVjk2). (229) 

This result may also be obtained directly by averaging the exact energy-momentum 
tensor. 

(f) Wavepackets 

As an application of the preceding theory we treat the one-dimensional wavepacket 
problem of Section 5. Linearizing equation (205), and using equations (212) or (213), 
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we find the perturbation in the oscillation centre distribution function as 

me2 JF = - ~{(gllv_UIV)8JR +UIlJR)Fo} 
8ull 8uv 

( 1l8JR 5:R)F qll(8Fo/8ull)JR + u - -u 0+ ., 
8ull q. U +10 

(230) 

where J denotes the difference between a quantity in the presence of the wave and in 
its absence. Using JR = me2 ii*.ii-eeu.A in equation (230), to evaluate the per­
turbation in the background physical energy-momentum tensor, and adding equation 
(229) we find 

Mr = ~ me2 J d4p F{ iill* iiv - ~:~ (u ll iiv* + UV iill*) - kk·.iiu* (UlliiV +uv iill) } 

+ L Jd4p ulluvqP(8F/8uP).JR +O'IlV, 
(I q.u +10 

(231) 

where B'IlV is the last term in equation (229) and All is to be found from equations 
(228) and (230), which give 

J kF all.(q)AV = I ee d4 p (uIlUV* +ull* UV)_V_ 
(I k.u 

_ ii* • ii ull q • (8F /8u) 
q.u +iO . 

(232) 

The resonance at q. u = 0 corresponds to particles having a velocity component in 
resonance with the group velocity, that is, to nonlinear Landau damping (Dewar 
1972b). The presence of the polarization tensor in equation (232) also means that 
ion acoustic resonance can occur, in a similar manner to that described in Section 5. 
It can be verified that taking delta function distribution functions in equations (231) 
and (232) reproduces the cold plasma results of Section 5. 

7. Discussion 

We have seen that the present variation model provides a unifying description of 
dispersive waves in all three states of matter, with minimal specific assumptions about 
the material in question. The covariant reference map method introduced in Section 2 
is believed to be a technical innovation in the calculus of variations which allows one 
to take over in a very direct manner the techniques of classical relativistic field theory 
and to apply them to continuum mechanics, thus exposing the essential unity of 
physics. Equations (33)-(36) and equations (17) and (38)-(41) provide two very 
general, if rather abstract, bases for assigning energy and momentum to subsystems. 
Special emphasis has been placed on the non-uniqueness of this splitting-up procedure, 
as it is particularly striking when we add the essentially novel element of the paper, 
namely the presence of a dispersive wave. As a 'bonus' this framework has allowed 
us to cast new light on the old Abraham-Minkowski controversy. 

Because this work bears on several branches of physics normally regarded as 
disparate: field theory, the physics of magnetic and dielectric materials and plasma 
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physics; it has been considered appropriate to include some fairly specific working 
of representative special cases. Thus we have examined the isotropic fluid case, both 
with essentially DC fields and with a high frequency field, and have looked at both 
hot and cold plasmas. This juxtaposition of examples has been pedagogically 
rewarding, though it has led to this being rather a long paper. 

The new results in 3-vector form, are essentially embodied in equations (168)-(171). 
A large amount of new material in covariant form has also been included. The 
covariant treatment of linear dispersive waves in Sections 3e-3g is rather novel and, 
although this makes the results rather inaccessible to the average reader, it is noted 
that covariant methods have recently been used in such fields as relativistic electron 
beam technology. Also Section 4a spells out very specifically how to 'translate' the 
results to 3-vector form. 

In Section 5 we have taken a fresh look at the wavepacket problem and have shown 
how the general covariant result (183) agrees with previous more specialized deriva­
tions. We have also derived a new covariant generalization of the nonlinear 
SchrOdinger equation (200) for treating the modulational stability of wavetrains. 

The present variational method has allowed us to cover a vast territory fairly 
superficially. For the treatment of specific problems in depth it must be admitted 
that the method has some serious limitations, the most serious of which being the 
restriction to nondissipative systems. Thus, for instance, the treatment of a collision­
less plasma in Section 6 is seriously hampered by the inability to treat Landau 
damping. However, just as Lagrangian theory historically paved the way for the 
more powerful Hamiltonian mechanics, it is hoped that the canonical transformation 
methods currently being developed (Dewar 1976) will greatly extend the scope of the 
general theory of the interaction between waves and matter. 
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Appendix 1 

Except in Section 6 we have adopted a phenomenological approach, and have not 
been much concerned with the relation between the microscopic fluctuating 
Lagrangian density (or energy-momentum tensor) and the averaged macroscopic 
quantity. Also we have worked only to lowest order in a WKB expansion. In the 
following we consider the rudiments of a formal theory of averaging which represents 
a considerable extension and simplification over the author's previous attempt in this 
direction (Dewar 1970), and helps to place the preceding work in a deeper perspective. 

Inherent in the discussion is the assumption that there are two time and length 
scales, which would be represented, in the stretched coordinate method, by a fast 
oscillatory scale x" and a slow scale ex", where e is the WKB expansion parameter. 
However, we shall not explicitly exhibit the dependence on these scales; if something 
depends only on the slow scale we shall indicate this by calling it slowly varying. 

As in previous discussion (Dewar 1970), we shall appeal to the Riemann-Lebesgue 
lemma to justify our assumption that, corresponding to a function Jf(x) varying on 
both the fast and slow scales, there exists a slowly varying function J(x) = <Jt(x) 
such that 

I J'(x) cf>(x) d4x "'" I f(x) cf>(x) d4x (AI) 

for all slowly varying test functions cf>(x), where the tilde denotes asymptotic equality 
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to arbitrary order in the 8 expansion. The functionf(x) is called the local average of 
ft(x), and is unique to all orders in 8. 

If cjJ(x) is slowly varying then so is 0" cjJ(x), which is therefore a valid test function 
in equation (AI). Using this test function and integrating by parts (assuming cjJ 
sufficiently localized to vanish near the boundaries), we prove the following lemma. 

Lemma 1. Averaging and differentiation commute to all orders in 8; that is, 

(o"tt(x» ,.., o,,(ft(x» = o"f(x). (A2) 

Thus, for example, if Tt". obeys a conservation equation then so does its average T"·. 

As a further example suppose we wish to average the mass current cptut" and rest 
mass energy-momentum tensor c2p t ut "ut • in the presence of a wavelike disturbance 
e"(x) averaging to zero (cf. Fig. 4). We might also want the average ofthe correspond­
ing Lagrangian density - p t c2 • 

The exact and average world lines are connected by a mapping of the form of 
equation (1) in Section 2, with X" corresponding to the exact position xt", 

x t" = x"+e". (A3) 

Admittedly the interpretation of X" has changed, and the regions fffI and ffflt are no 
longer disjoint, but equations (46) and (48) of Section 3 remain valid, and become 

ut"(x+e) = (u" +u.oe"){(uU +u.oe~(uu +u.oeu)} -t, 

pt(x+e) = {(UU +u.oeU)(uu +u.oeu)}tp'(x)/det(olXxp), 

(A4) 

(AS) 

where all implicit dependences are on x". There is no need to solve for ut"(x) and 
pt(x), nor to expand the determinant, as we may use the following theorem. 

Theorem 

where 

(tt(x» ,.., (A(x)ft(x+e» -o,.<e"A(x)tt(x+e» 

+ (l/2!)0,,0.(e"eVA(x)f'(x+ e» - ... , 
A(x) == ·det(olXxp). 

(A6) 

(A7) 

Clearly, each successive term is 0(8) smaller than the preceding one. To prove the 
theorem, label the dummy integration variable in equation (AI) with a dagger. Now 
change variables from x' to x, using equations (A3) and (A 7), and Taylor expand 
cjJ(x+e) to obtain 

f d4x Jt(x) cjJ(x) 

= f d4x A(x)/,(x + e){cjJ(x) +e .0cjJ(x) +(1/2!)ee:oocjJ + ... }. (A8) 

Integration by parts of the terms on the right-hand side, and use of Lemma 1 above, 
proves the theorem. 
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Use of the theorem and equations (A4) and (A8), in that order, shows that to 
lowest order in the WKB expansion 

(pt) ,..., ({ (uc7 + u. a¢c7)(Uc7 + U. a¢c7)}t)p' , (A9) 

(ptutll) ,..., pi ull , (AlO) 

(ptutllutV) ,..., «ull + u. a¢Il)(uV +u. a¢V){(uc7 +u. a¢c7)(Uc7 +u. a¢c7)} -t)p' , (All) 

where we have used the following lemma. 

Lemma 2. If g is slowly varying, then 

(It g) ,..., (/t)g (A12) 
to all orders in e. 

Lemma 2 follows by replacing ¢ by g¢ in equation (AI). We can also use the 
continuity relation (126) of Section 4 and Lemma 1 to show 

(pi U • a¢ll) ,..., a c7(p' uc7 ¢Il) . (A 13) 

This term arises in equation (AlO) but has been omitted because it is O(e) smaller than 
the leading term. 

These results can be used, for instance, in obtaining a microscopic derivation of 
the cold plasma Lagrangian density, but here we simply use them to point out the 
physical meaning of the background proper density pi and background 4-velocity ull. 
From equation (A9), pi is clearly not the average of the exact density pt. Rather ull 
is the unit vector in the direction of (ptutll), and pi is the magnitude of this vector. 

Appendix 2 

As the covariant Lagrange equations of motion (212) in Section 6 are unusual, the 
derivation of the covariant Hamiltonian (215) is not covered in the standard textbooks, 
and accordingly the derivation is presented here. 

First note that the canonical 4-momentum 

pll = _(gllv -ulluv)aR/auv -ullR 

is closely related to the standard canonical 4-momentum. Specifically, using 

with 

we can readily show that 

R = yL(v,x, t) 

y = uo, v = cu/uo, 

pll = [v. (aL/av) -Lj. 

caL/av 

(A 14) 

(A1S) 

(AI6) 

(A17) 

Thus P Il differs by a factor of c from the standard definition. This is because we use 
the interval cy dt as our 'time' interval. The equivalence between equations (212), 
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which we rewrite as 
dPIl/ds = -oR/axil' (AI8) 

and the standard Lagrange equations is now apparent. Also it can be shown that 
equation (AI8) automatically conserves the normalization 

u2 = I 

for all physical motions. Contracting equation (AI4) with Ull we find 

u.P+R = o. 

Also, by rearranging equation (AI4) and using (A20), we have 

oR/oull = _(gll<''''UIlUV)Pv +u" u. (oR/au). 

From equations (A18), (A20) and (A21) we obtain 

(A19) 

(A20) 

(A21) 

dR = -dx.(dP/ds) -P.du +{u.(oR/ou) -R}u.du (A22) 

for all differential displacements away from a physical motion. The last term in 
equation (A22) can be eliminated by using the relation following from (A14) and 
(A19), namely 

u.dP = {u.(oR/ou) -R}u.du -dx.(oR/ox) , 
and we find 

dR = -2dx.(dP/ds) +u.dP -P.du. 

By use of equation (A24) it is then apparent that 

d{!(P.du +R)} = u.dP -(dP/ds).dx 

(A23) 

(A24) 

(A2S) 

for all displacements away from a physical motion. Referring now to equation (212), 
we see that the left-hand side of (A2S) is just 

dK= (oK/oP).dP+(oK/ox).dx. (A26) 

Equating the coefficients of the differentials in equations (A2S) and (A26) proves the 
Hamiltonian equations of motion (213). 
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