
Aust. J. Phys., 1976, 29, 289-304 

Extended Theory of 
~agnon Sideband Shapes. 11* 
Impure Three-dimensional Antiferromagnets 

D. D. Richardson 

Department of Theoretical Physics, Research School of Physical Sciences, Australian National 
University; present address: Department of Physics, Cavendish Laboratory, Madingley Road, 
Cambridge CB3 OHE, U.K. 

Abstract 

A phenomenological model is given for calculating magnon sideband lineshapes in the absorption 
spectra of antiferromagnetic crystals. The method allows an exact expression for the lineshape to be 
obtained when dispersion within the Brillouin zone of both the exciton energy and the exciton-magnon 
interaction strength is included. The effect of a substitutional spin impurity is calculated exactly, 
and a simple example is given which approximates the effects of an impurity on a magnon sideband 
in the antiferromagnetic perovskite RbMnF3 • It is thought that the ability of the model to predict 
the existence of local modes and resonances justifies the simple form of the model Hamiltonians 
chosen. The pure crystal sideband Iineshape can also be well determined from information on the 
exciton dispersion and the behaviour of the exciton-magnon interaction strength within the Brillouin 
zone. 

1. Introduction 

The model presented in this paper is an extension of the ferromagnetic model 
given in Part I (Richardson 1974; 1976a, present issue pp. 273-88). There have been 
several theories put forward to describe the line shape of a magnon sideband in an 
antiferromagnet (Moriya 1966, 1968; Sell et al. 1967; Tanabe and Gondiara 1967; 
Freeman and Hopfield 1968; Loudon 1968; McClure 1968; Moriya and Inoue 
1968; Parkinson and Loudon 1968; Tanabe et al. 1968; Meltzeret al. 1969; Dietz 
et al. 1970; Misetich et al. 1971; Petrov and Gaididei 1971; Stokowski et al. 1971; 
Bhandari and Falicov 1972; Eremenko et al. 1974; Gaididei and Loktev 1974). 
Some of these theories are very complex. Following my earlier work, I give here a 
model which is simple yet still describes the essential features of the physical 
system and also allows for the description of the effect of a substitutional spin 
impurity on the sideband. The latter effect has been treated by Parkinson (1969a, 
1969b) who discussed in particular the possible appearance of local modes outside 
the sideband due to NiH impurities in RbMnF3 . The work of Parkinson is an 
extension of the magnon sideband calculation of Parkinson and Loudon (1968). 
This model is quite complicated and involves several assumptions to obtain a result, 
and it is difficult to understand the physical implications of the assumptions. The 
model also does not permit any concrete assessment of the possibility of resonance 
modes appearing within the sideband. 

As illustrated in Part I, the present model may be solved exactly within the limita
tions of the Hamiltonians chosen, and therefore allows for direct physical understand-

* Part I, Aust. J. Phys., 1976, 29, 273-88. 
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ing of the results. The phenomenological Hamiltonians are simple but are found to 
give an adequate description of the physical features observed and expected to be 
found in the crystals of interest. It is necessary to consider such simplified forms 
because of the complexity of the theory introduced by both the intrinsic exciton
magnon interaction and the magnon impurity. It can be shown that the Hamiltonians 
used here may be obtained from more rigorous forms by means of a time-averaging 
approximation, as is usually used to handle the Green's functions which arise from 
the more complicated Hamiltonians (Richardson 1976b). It is therefore felt that the 
present model is justifiable on the grounds of similarity to previous models. Also, 
because of the exact nature of the calculation and the form of impurity Hamiltonian 
chosen, it is possible to extend the earlier work to include impurity effects. 

The present paper adapts the ferromagnetic model calculation to the calculation 
for an antiferromagnet, and shows that the previously imposed limitations of 
wavenumber-independent exciton energy and exciton-magnon interaction strength 
are not necessary to obtain an expression for the magnon sideband lineshape. To 
illustrate the effects of an impurity, these conditions are re-imposed and a calculation 
is given of the effect of a substitutional spin impurity with various impurity parameters 
on the simple cubic antiferromagnet (perovskite) RbMnF3. 

The paper is set out as follows: in Section 2 the Hamiltonians to be used in the 
model are discussed and the main assumptions made to simplify them are pointed out. 
In Section 3 the calculation of magnon sideband line shape in the optical absorption 
spectrum is given while in Section 4 the phenomenological sideband in RbMnF3 
is given, assuming the exciton energy and exciton-magnon interaction strength to 
be constant throughout the Brillouin zone. Section 5 presents a discussion of the 
effects of a substitutional spin impurity on the sideband calculated in Section 4. 
The paper concludes with a discussion of the comparison of the present results with 
those of the ferromagnet (Richardson 1976a) and gives some possible effects of taking 
a k-dependent form for the exciton-magnon interaction strength. 

2. Hamiltonians of Antiferromagnetic System 

The pure crystal Hamiltonian must have magnon, exciton and exciton-magnon 
components. In general all three energy contributions will be dispersed within the 
Brillouin zone. We therefore take the two-sublattice crystal Hamiltonian as 

(1) 

where the sums over k are over the first Brillouin zone whose unit cell has one atom 
from each sublattice. In equation (1) lI.k, 13k are magnon annihilation operators on 
sublattices A, B, and Ak, Bk are the corresponding exciton operators. The magnon 
energy is 81 (k), the exciton energy is 8ik) and the exciton-magnon interaction strength 
is g(k). It is assumed that the two sublattices are completely degenerate, with no 
exchange of excitations between them. 

The magnon dispersion is given by 

with Yk = Z-l I exp(ik.A), 
[A] 

(2a, b) 
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for the nearest neighbour lattice vectors A, while J and S are the exchange integral 
and spin for the pure crystal, and z is the number of nearest neighbours of a 
magnetic site. 

The wavenumber dependences of 82 and g are functions of the particular crystal 
to be studied and of the symmetry at the atom sites. We shall not consider any 
particular forms for these, though Knox (1963), Loudon (1968) and Callaway (1974) 
gave good reviews of the Frenkel exciton theory, and Parkinson and Loudon (1968) 
and Petrov (1971) have discussed the exciton-magnon interaction in some detail. 
We consider the k dependence of g in Section 6 insofar as it affects the present 
treatment. 

The effects of a substitutional spin impurity on sublattice A are described by the 
spin Hamiltonian (subscripted I for impurity) 

(3) 

where 
etc. (4) 

The sub matrices are given by 

(M1)ij = 2JSz [{ll (k i) 12(kj) 'l'kj +liki)ll(k) 'l'kJ'l' 

+ei1(ki)11(k) +P'l'k,-kjlikMikj)] + JS2pz (;(i,j), (5) 

(M2)ij = 2JSZ[{lI(k i)ll(k) 'l'kj +lik) 12(k) 'l'ki}r 

(6) 
for 

8 = (J'-J)jJ, and P = (J'S'-JS)jJS, 

(7a, b, c) 

where J' and S' are the impurity exchange integral and spin. Submatrices M3 and 
M4 are given by equations (6) and (5) respectively with 11 everywhere replaced by 
12 and vice versa. These latter are used to diagonalize the pure crystal magnon 
Hamiltonian and are 

and (8a, b) 

In the present model we assume that points close to the edge of the Brillouin zone 
contribute most to the regions where the magnon density of states is large. These 
points correspond to small values of'l'k, so that liCk) ~ 0 and l~(k) ~ 1. If we also 
consider that the impurity may lie on either sublattice, so that to first order we may 
replace Ml and M4 by their average, and similarly M2 and M3 by their average, 
then we have 

(9) 

(10) 
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We therefore ignore the off-diagonal submatrices in equation (3) and consider 
the diagonal submatrices as identical" with elements independent of wavenumber, 
i.e. we assume that no excitations are scattered between sublattices by the impurity, 
so that the latter does not remove the two-sublattice degeneracy of the system. 
The magnon part of the total crystal Hamiltonian becomes 

(11) 

where 
(12) 

The magnon sideband will appear in the optical absorption spectrum as a result 
of the collective interaction of excitons and magnons with photons. We now con
sider the Hamiltonian for this interaction, which will be used as a perturbation on the 
crystal (Richardson 1976b). It is assumed here that the parent exciton of the side
band is magnetic dipole in character and the sideband itself is electric dipole. Thus, 
if we neglect the effect of the magnetic component of the applied field, we expect only 
the sideband to appear in the calculated absorption spectrum. 

The form of the perturbation Hamiltonian has been discussed widely in . the 
literature, with good descriptions being given by Loudon (1968), Petrov (1971) 
and Petrov and Gaididei (1971). The most general form for the crystal field 
Hamiltonian is 

(13) 

where He is the hermitian conjugate of the first term, and the effective value of P 
is given by 

PE =.J2 L TI(k)(_)Il+lIIl B;(k,f)b;(-k). (14) 
k,/l 

Here, the sum over /1 is over the two sublattices, with the III given by equations (8a) 
and (8b), while B(k,!) is an exciton annihilation operator for the fth excited state 
and b(k) is a magnon annihilation operator. We may determine TI(k) from the 
symmetry of the ion site .. It is related to the dipolar moment of the transition of the 
pair of magnetic ions from opposite sublattices which is induced by the applied elec
tric field E of frequency OJ (Eremenko et al. 1974). Values of TI(k) have been given 
for several crystals (Tanabe et al. 1965; Gondiara and Tanabe 1966; Loudon 1968; 
Parkinson and Loudon 1968; Meltzer et al. 1969). 

In the present model, we assume TI to be independent of wavenumber (though 
this is not essential) and consider only one excited orbital state. Since the form of 
equation (14) is the same whether one chooses the indirect exchange mechanism of 
Tanabe et al. (1965) or the direct dipole-quadrupole coupling of Halley and Silvera 
(1965) for the exciton-magnon part of the perturbation, we need not concern ourselv~s 
in the present phenomenological model with the details of the exact nature of the 
interaction of the crystal with t):1e radiation. 

We choose the perturbation Hamiltonian as 

Yt'p = IL(at At +ak Ak+f3t Bt +f3k Bk) , (15) 
k 

with the symbols having the same meaning as in equation (1). The interaction energy 
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I is taken to be independent of wavenumber but time-dependent, including the time 
dependence of the applied electric field. We have assumed that the perturbation 
will not transfer. excitations between sublattices, so the field will not remove the 
two-sublattice degeneracy. 

3. Theory of Magnon Sideband Lineshape 

In previous papers, Richardson (1974, 1976a) was able to diagonalize the impure 
crystal Hamiltonian by a two-stage process because the submatrices of the matrix 
representation of the Hamiltonian were shown to commute with each other. When 
we assume a k-dependence of the exciton energy 82 and the exciton-magnon inter
action strength g, the submatrices no longer commute and the diagonalization must 
be done completely in one step. 

The Hamiltonian to be diagonalized is that of the impure antiferromagnet dis
cussed in the previous section: 

(16) 

The secular equation for the eigenvalues of equation (16) may be obtained from row 
operations on the matrix representation of Yf. The result is 

(17) 

When y = 0, the first three terms of this product lead to the pure crystal density 
of states. If we write 

= TI [(A-A6)(A-Ao)]2, (18) 
k 

where 
(19) 

then it will be seen that there are two branches in the pure crystal spectrum: one 
for values of A equal to A6 and the other for A equal to Ao. The expression (19) 
is identical in form to the ferromagnetic crystal result in the absence of an impurity 
(Richardson 1976b). Note, however, that each eigenvalue is doubly degenerate 
(from equation 18) as a result of the two-sublattice degeneracy. 

The effect of the impurity on the crystal density of states will be given from the 
determinant 

(20) 
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Richardson (1976a) combined the expression for the eigenvalues of the magnon 
part of the crystal Hamiltonian with that for the eigenvalues of the total 
Hamiltonian to obtain an expression similar to equation (20) but with A. replaced by 
A. ±, which is a function of the eigenvalues of the magnon part of the Hamiltonian. 
For simplicity in the present work we define a parameter A which, in the limit of 112 

and g being k-independent, becomes the magnon eigenvalue; i.e. from equation 
(20) we define 

(21) 

Conversely we have 
(22) 

where 

Xk(A) = {llik)-A}/2g(k) and (23a, b) 

We are therefore able to describe all 2N values of A. in terms of the N values of A by 
means of equation (22). 

If we define the vectors 

1 1 1 
N! X k(J'1) + Yk(A) 1l1(k j)-A' 

(24a) 

(24b) 

where 

(25) 

then it is readily shown that the matrix of eigenvectors is 

~+ 0 Ri :, l Rl 

0 ~+ 0 
R= 

Rl 
~+ 0 R2" ~j' 

(26) 
R2 

0 ~+ 6 R2 R2" 

where Rr and Rf are matrices with vectors Rr and Rf as columns respectively. 
The diagonal form of the crystal Hamiltonian is therefore 

where the A. (±) correspond to the two sets of values of A. shown explicitly in equation 
(22), and 

(If> ) _ 1 " (CLk,Pk) 1 " (Ak,Bk) 
A,XA - N1-t [YiA)-XiA)][lll(k)-A] + N1-t Ill(k)-A' (28) 

(PA,QA) = - ~ L (CLk,Pk) + ~ L (Ak,Bk) . 
NA k [YiA)+XiA)][1l1(k)-A] NA k Ill(k)-A (29) 
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It can be shown that all these operators satisfy boson commutation rules and commute 
with each other. 

The perturbation Hamiltonian (equation 15), when written in terms of the 
operators clJ, X, lJ' and Q becomes 

(30) 
where 

(31) 

In equation (31) the first and second ± superscripts to F refer to the first and second 
square brackets on the right-hand side of the equation respectively. 

It is shown in the Appendix that .1f p (equation 30) may be simplified to the form: 

.1fp = -1 L [Ft +(A, A)( clJ1 clJ1 +clJ A clJ A + x1 x1 + XAXA) 
A 

+{Ft-(A,A) +F;+(A,A)}(clJ1l[11 +clJA l[IA +x1 Q1 +XAQA) 

+F;-(A,A)(l[I1lJ'1 + lJ'A l[IA +Q1 Q1 +QAQA)]' (32) 

with Ft+, Ft - +F;+ and F;- given by equations (A2), (A8) and (A6) respectively. 
The optical absorption of the system is now obtained from the nonzero Green's 
functions of the operator pairs shown in equation (32) (Richardson 1976a). The 
relevant Green's functions are 

(33) 

(34) 

(35) 

where we use the notation of equation (27). 
The optical absorption of the system is obtained from the imaginary parts of 

equations (33)-(35). In particular, the magnon sideband lineshape is given from 
equations (32), (35) and (A8) as 

O(co) ~ 

-co ~ [{ ~ XiA) HflA)}j { ~ (Yk~kxJ A Hi(A)r { ~ (Yk~kxJ A Hi(A)rr 
(36) 

where we have defined 
(37) 
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for convenience. The other two Green's functions (equations 33 and 34) give the 
two-magnon and two-exciton absorptions. 

In principle, at least, the sums in equation (36) may be done, and the result will be 
that the magnon sideband lineshape is a modified impure crystal density of states. 
Because of the complicated evaluation required, however, it is thought to be adequate 
to give an example of the case when e2 and g' are independent of k, as this will point 
out the essential features of the sideband and its changes when an impurity is 
present. For this situation, equation (36) may be simplified to 

a(w) ~ -w I {X(A)/Y(A)}2b(hw- e2-A) 

~ -4nw f {X(e)/Y(e)Y b(hw-e2 -e) gee) de 

~ -4nw{X(hw-e2)/Y(hw-e2W g(hW- e2), (38) 

where A is now the eigenvalue of the magnon part of the Hamiltonian (as pointed 
out above) and X(A) and YeA) are independent of wavenumber. 

The function gee) in equation (38) is the impure crystal magnon density of 
states, given by 

gee) = go(e) _n- 1 Im( d~(e)/de), (39) 

where go(e) is the pure crystal magnon density of states, and the second term 
represents the change of density of states due to the impurity. From equations (20) 
and (21), we now have 

Also, equation (23a) becomes 

so that we have 
X(A) = (e2 - A)/2g, 

(X(hw-e 2))2 
Y(nw- e2) 

(40) 

(41) 

Now, as the sideband is located just on the high-energy side of e2, and since 
e2 ~ g, it follows that the ratio in equation (41) is in general very close to unity. 
Thus the magnon sideband line shape is very accurately represented by the magnon 
density of states (equation 39). 

4. Magnon Sideband in a Pure Perovskite Crystal 

Many antiferromagnetic insulators have been found to exhibit magnon sideband 
behaviour. A good review of the observations of such crystals is given by Sell (1968) 
and also by Eremenko and Belyaeva (1969), and studies continue up to the present. 
The two most popular crystals for these studies are MnF 2 and RbMnF 3, the 
latter of which is considered here. 

The crystal RbMnF3 has a perovskite structure as shown in Fig. 1, with each 
magnetic ion at the corners of a simple cubic lattice. The lattice parameter is 
a = 4· 26 A (Stokowski et al. 1971), the crystal being very highly isotropic, with a 
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negligible anisotropy field (Elliott et af. 1968). The magnetic properties of the 
Mn2+ ion are well summarized by Fujiwara et af. (1972) and Richards and Brya 
(1974). Fujiwara et af. also discussed the temperature dependence of magnon 
sidebands. The Neel temperature for this crystal is 83 K. 

0 
0 

~ a 

~ 

®Rb+ 

0 

• 

0 

o F-

0 
0 

• Mn2+ 

Fig. 1. Unit cell of the perovskite 
RbMnF3 • The Rb+ ions appear at the 
cube vertices, Mn2 + ions at the body 
centre of the cube, and F- ions at the 
centre of the cube faces. The 
magnetic Mn2 + ions form a simple cubic 
structure with lattice parameter IX. 

Richards and Brya (1974) gave the value of the nearest neighbour exchange 
integral in RbMnF 3 as 2J = 4·7 cm -1 with an uncertainty of ± 0 -25 cm -1 at 
300 K, a value which agrees well with the results of many other authors. As has 
been pointed out (e.g. by Srivastava and Stevenson 1972) the next nearest neighbour 
exchange integral is 0 ± 0 ·14 cm -1 (for 2J2) and hence is negligible. The anisotropy 
field is also negligible. Using the value of 2J given, we may obtain the maximum 
magnon energy from the expression for the perovskite magnon dispersion of 

where 
80 = 12JS. (42) 

For a ground state spin of 5/2 this gives a value for 80 of 71 cm-1, with the limits on 
2J giving a range from 67 to 74 cm- 1. Hence one would expect the magnon sideband 
cutoff to have a value near this, though Srivastava and Stevenson (1972) pointed out 
that the uncertainty in the next nearest neighbour exchange integral 2J2 of ± 0·14 
cm -1 could allow 80 to lie within the range 55 to 89 cm - \ which would account for 
the variation in the value of the cutoff observed for various transitions in RbMnF3 
with a ground state spin of 5/2. 

From equation (38) the predicted magnol'l sideband shape for a transition in 
RbMnF 3 will be given very closely by the pure crystal magnon density of states. 
The latter is shown in Fig. 2 for the range normalized to the interval [0,1]. Note 
the cusp point at .J(8/9) due to the symmetry point X of the first Brillouin zone, and 
the divergence at the high energy end of the band due to the symmetry points Land 
W in the Brillouin zone (Eremenko et af. 1974). 

From Fig. 2 we would expect the magnon sideband to have its peak at the cutoff 
point, and to have a width which is approximately {1-.J(8/9)}th of the distance 
between the parent exciton· frequency and the cutoff frequency. This sort of 
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behaviour has been measured (e.g. Stevenson 1966) for the 6 A1y(6 S) ~ 4Ey(4G) 
transition, which has also been studied in some detail by Srivastava and Stevenson 
(1972) and Eremenko et al. (1974). 

10 

5 

o 0·5 

A 

L,W 

1·0 

Fig. 2. Plot of the pure crystal 
magnon density of states as a func
tion of the frequency A, normalized 
to the range [0,1], for an antiferro
magnetic perovskite crystal. The 
calculated lineshape is a very good 
approximation to this curve. 

In reality we must include next nearest neighbours in the magnon dispersion 
equation (42) and this will remove the logarithmic singularity at the upper edge of the 
band, making the result more physically reasonable. As pointed out in the 
Conclusions (below) the effect of a k-dependent exciton-magnon interaction 
strength g(k) which is large near the edge of the Brillouin zone will also contribute to 
the removal of the singularity. Also, if the symmetry of the two-ion site involved in 
the exciton-magnon interaction is more rigorously accounted for then the cusp point 
at A = .)(8/9) due to the point X in the Brillouin zone will be removed (Parkinson 
and Loudon 1968). 

5. Effect of Impurity on a Sideband in Perovskite 

The analysis of the effects of an impurity on a magnon sideband in the present 
case is very similar to that for the ferromagnet (Richardson 1976a). In particular, 
it is necessary for the following condition to hold for there to be local modes outside 
the band: 

1 +yR(A) = 0, (43) 

for A lying outside the band. In equation (43) R(A) is the Hilbert transform of the 
density of states g(A) which is nonzero only for the in-band region of the spectrum. 
A resonance will appear within the band if (Richardson 1976a) 

I +yR(A) = ° (A = Ao inside the band), 

r = [2n:go(A)/R'(A)]A=Ao < 0, 

Irr~l. 

(44a) 

(44b) 

(44c) 

We now consider a particular example: Johnson et al. (1966) have reported on the 
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effects of Ni2+ impurities on the emission spectra of MnF2 , KMnF3 and RbMnF3. 
Unfortunately the spectrum taken in emission is complicated because of the 
possibility of different coupling of the excitons and magnons with each other and with 
the radiation field. Therefore it is likely that the model Hamiltonians we have 
chosen specifically to study absorption effects may not describe the situation very 
well. This is confirmed by the occurrence of sidebands lower in energy than the parent 
excitons, and for energies of separation much larger than eo :::::; 70 cm -1 in the case of 
RbMnF3, as expected. The sidebands at lower energy than the parent are probably 
highly temperature-dependent 'hot bands' (Sell 1968). We therefore conclude that we 
are unable to describe the phenomena observed by Johnson et al. with the present 
model calculations. It should be noted, however, that their value for the impurity
host exchange integral 1', given in terms of the pure crystal value J, was 

1'jJ=3·5 (45) 

for Ni2+ in a host of Mn2+ ions. Since from equation (9), y is approximated by 

y:::::; 2JSze = 2JSz(1'jJ-l), (46) 

we see that y is positive, with a value of 2·5 eo for eo, and that we have the magnon 
dispersion energy given by equation (42) for the perovskite structure. 

-\ o 

Fig. 3. Plot of the real part R(A) of the 
lattice Green's function for a perovskite 
structure crystal such as RbMnF3 • 

The energy has been normalized so 
that the pure absorption band lies 
between 0 and 1. 

In Fig. 3 we present the curve of R(A) for the perovskite structure which has the 
magnetic ions arranged antiferromagnetically on a simple cubic lattice. This curve 
is the Hilbert transform of the pure crystal density of states go (A) shown in Fig. 2. 
Following the discussion of Richardson (1976a), as summarized above, a local mode 
will occur whenever y is positive, or for y negative and sufficiently large that 

0< -ljy < R 1 • (47) 

For y positive the local mode is on the high energy side of the band, while for 
condition (47) it lies on the low energy side. 

There is also the possibility of resonant modes appearing for the range 

(48) 
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since in this range equation (44a) is satisfied. For resonance modes to occur the 
conditions (44b) and (44c) must be met for y satisfying (48). The second of these 
conditions will apply if A is greater than the cusp point of Fig. 3 at ..)(8/9). We 
must thus examine the criterion (44c) for 

1·0 > A > ..)(8/9) (49) 
and y satisfying (48). 

OL-________ ~ ________ ~~ 

0'3 0'4 0'5 

Fig. 4. Plot of numerical calculations 
of possible resonant mode lifetimes 
I r- 1 I as a function of I y I/eo for the 
perovskite crystal and for I' and A 
satisfying the conditions (48) and (49) 
respectively. The range of Y/eo satisfy
ing the condition (48) is 
-0·32 ~ y/eo ~ -2·7. The range 
shown is where the lifetime is largest. 
Data for y ;S -0·4 are highly inaccurate. 

The lifetimes 1 [,-11 for possible resonance modes of the perovskite structure 
are plotted in Fig. 4. The largest lifetime is found to occur for -1/y very close to 
R2 , but the lifetime of about 2·1 is not sufficiently larger than unity for the resonance 
to be observable, though the lifetime for this structure is longer than that for the 
ferromagnetic f.c.c. structure. Another complication in this case is the greater 
proximity of points of possible resonance to the divergence of the density of states 
at the band edge (Fig. 2) which will make any other close maximum in the density of 
states difficult to resolve. 

We may therefore summarize the expected effects of a substitutional spin 
impurity on a perovskite structure crystal like RbMnF3 as follows: Local modes will 
occur for y positive, and for negative values of y sufficiently large to satisfy the 
condition (47).* When local modes exist there will be only small, and probably 
unobservable, changes to the in-band region of the spectrum. For the Ni2 + impurity 
studied by Johnson et al. (1966) there will be a local mode at an energy of ~0'71 
times the bandwidth higher than the top of the band in the absorption spectrum. 

In the region of the spectrum satisfied by the condition (49) and for y satisfying 
the condition (48), the possibility of the appearance of resonance modes was explored 
and it was found that, although the lifetime of states in this region is longer than that 
for the ferromagnetic f.c.c. structure studied by Richardson (1976a), the lifetimes are 
not sufficiently long for a resonance to become observable. Hence for all values of 
y such that 

(50) 

* The condition that I' is negative may be fulfilled if the impurity couples ferromagnetically to the 
host crystal, though in this case interband scattering of magnons may not be negligible and it may 
not be reasonable to ignore the effect of the off-diagonal submatrices lYh and :1M3 of equation (3). 
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it is· expected that the impurity will not have any observable effect on the magnon 
sideband lineshape. 

Parkinson (1969a, 1969b) also studied impurity effects on the magnon sidebands 
of RbMnF3 and concluded that local modes (for So symmetry modes localized on 
the impurity) will occur above the band for 8 > 0, that is, in our case for y > 0 
(equation 46) apart from any effect of anisotropy fields (small in RbMnF3)' He 
did not mention any condition for the appearance of local modes below the band, 
however. Parkinson (l969b) discussed resonance modes within the band but did not 
give any strong arguments for their existence, or otherwise. It would thus appear 
that the present simple model is capable of explaining many of the impurity phenomena 
discussed by Parkinson (1969a, 1969b) with his more sophisticated 'model, but also 
permits a discussion of the existence of resonant modes within the band in a semi
qualitative manner. 

6. Conclusions 

This paper has presented a model calculation of a magnon sideband in an 
antiferromagnetic crystal, and discussed the effect that a substitutional spin impurity 
will have on it. The calculation is based on an earlier model of a ferromagnetic crystal 
(Richardson 1974, 1976a). The drastic approximations -which are implicit in the 
forms of the Hamiltonians used are necessary for one to be able to obtain a solution 
to the problem when both exciton-magnon interaction and magnon-impurity effects 
are considered. The form for the exciton-magnon interaction may be justified 
from more rigorous four-operator forms when one realizes that Green's functions 
calculated from the latter must be approximated usually by extraction of an equal
time average from the Grt<en's function, reducing it to a form with two operators. 
It can be shown that the same resultant form can be obtained from a phenomenological 
two-operator form (Richardson 1976b), though the analysis is not given here. It has 
been shown by Richardson (l976b) that a more exact form for the impurity 
Hamiltonian may be treated rigorously within the framework, but a simpler model 
was used. here in order to discuss the physical effects of impurities on magnon 
sidebands without mathematical complexity. 

Apart from the twofold degeneracy introduced by the two sublattices, comparison 
of the expression (38) for the sideband derived here (with 82 and g both k-independent) 
with that for the ferromagnet (Richardson 1976a) shows that the form of the 
expressions is identical (apartfrom the factor of two) though, of course, the densities 
of states will differ in the two· cases. 

Apart from the factor shown in equation (41), which is very nearly constant 
throughout the bandwidth of the sideband for a given value of the exciton'-magnon 
interaction strength g, the pure crystal sideband lineshape is given by the pure magnon 
density of states (illustrated for the perovskite crystal in Fig. 2). A ~omparison of 
this shape with the experimental data of Stevenson (1966) on RbMnF3 shows 
qualitative similarity. The shape is also very similar to calculated sideband shapes 
when there is no exciton-magnon interaction, because of the weak dependence of the 
line shape on g when g is taken as constant throughout the Brillouin zone in the 
present case (e.g. Eremenko et al. 1967; Parkinson and Loudon 1968). 

In Part I we speculated that inclusion, of a k-dependence of the exciton-magnon 
interaCtion strength g could have a significant effect on the sideband lineshape, as 
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found by Parkinson and Loudon (1968), provided g(k) was large near the edge of the 
band. We have here been able to derive the exact antiferromagnetic expression for 
the magnon sideband lineshape with k-dependent g. By inspection of the result (36), 
it is expected that the factors Xk and Yk will make a significant contribution to the 
lineshape since, if g(k) is large near the edge of the band, the assumption that 
Xk = Yk may no longer be valid. In fact Yk may be larger than Xk , so that the 
lineshape will be diminished near the edge of the band and have a maximum within 
the band, as found by Parkinson and Loudon (1968). 

The present calculation also makes it possible to take into account the dispersion 
of the excitons within the Brillouin zone. Although this is usually much smaller than 
the magnon dispersion, there is no reason to expect that the effect is not observable 
in some cases. Meltzer et al. (1969), for example, found that they could obtain a more 
satisfactory comparison between the observed and theoretical lineshape for MnF 2 

if they assumed some exciton dispersion, although they neglected the effect of an 
exciton-magnon interaction in their calculation. 
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Appendix 

303 

The simplification of equation (30) is achieved as follows. We begin by considering 
the first term of this equation. We wish to evaluate 

(AI) 

making use of equation (31). When A = A' equation (AI) becomes 

using equation (25) for N;. 
When A #- A' we have 

= 0, (A3) 

since the two sums are identical. This is made clear, for example, when X and Y 
are independent of k, by making use of the secular equation. Therefore we have the 
result 

L F; +(A, A') = (j(A, A') L F; +(A, A). (A4) 
k k 

The third term of equation (30) may be simplified along the same lines as the 
first to give 

L Fi: -(A, A') = c5(A, A') L Fi: -(A, A), (A5) 
k k 

where 

tFi:-(A,A) = ~ (Xk~ yJA (el(k~-Ar/ ~ (X~~kYJA (el(k~-Ar (A6) 
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The second term of equation (30) gives 

L {Ft-(A,A') +F;+(A,A')} 
k 

When A = A' we have 

"{ +_ _+ ,,1 2Xk(A) ( 1 )2 
7: Fk (A,A) +Fk (A,A)) = 7: N1 N"A Xi(A)- Yi(A) Bl(k)-A 

~ XiA)(Bl(k~-Ar 
(A8) 

When A =1= A' we may use the arguments that lead to the vanishing of the first term 
of equation (30) to show that the sum (A8) is zero. Therefore we have the result 

L {Ft -(A"A') +F; +(A, A')} = J(A, A') L {Ft -(A, A) +F; +(A, A)}. (A9) 
k k 

For the particular example discussed in the text, where X and Yare independent 
of k, the results (A4), (A5) and (A9) reduce to 

L Ft +(A, A') = { -1/2Y(A)} J(A, A'), (A4a) 
k 

L F;-(A,A') = {-1/2Y(A)}J(A,A'), (A5a) 
k 

L {Ft-(A,A') +F;+(A,A')} = -{X(A)/Y(A)}J(A,A'). (A9a) 
k 

The results (A4), (A5) and (A9) are readily used to write ff p in the form shown in 
equation (32). 
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