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Abstract 

A generalized expression for electromagnetic polarization under level crossing in a single-mode 
gas laser is derived up to the third order in the field strength. This is made possible by the use of the 
probability integral of complex arguments to avoid the Doppler limit approximation. The level 
crossing effect is seen to appear in the third order, and its linewidth is shown to be asymmetric. 
It is also broader than the Lorentzian shape usually obtained under the Doppler limit. The 
dimensionless intensity parameter of the laser field is seen to lose its symmetry about the resonance 
value in the presence of level crossing. This is attributed to incoherence among different transitions. 
Further, the other terms like those describing the two-photon process in the third-order value are 
briefly discussed. 

Introduction 

The phenomenon of level crossing, well known in the investigation of the fine 
structure of the atom (Colegrove et al. 1959; Rose and Carovillano 1961), occurs 
when energy levels overlap within their linewidths. Excitation and hence scattering 
take place coherently, resulting in a change in angular distribution of scattered 
radiation, though the total resonance scattering rate is unaffected. 

More recently, Dumont and Decomps (1968) have given a semiclassical theory 
for the level crossing effect on spontaneous emission in a laser. Luntz et al. (1969) 
observed the level crossing effect in nonlinear absorption in a Stark-tuned CH4 cell 
placed inside a laser cavity. Shimoda (1972) has described theoretically level crossing 
in a two-level system in which both the upper and the lower levels consist of a 
bunch of nearly degenerate levels. His theory brings out the influence of level 
crossing on laser performance, but the usefulness of his work is restricted because 
of the Doppler limit (where the transverse relaxation parameter Yab is assumed to 
be extremely small compared with the Doppler parameter ku). The purpose of this 
paper is to describe the effect of level crossing on the output of a gas laser when 
the Doppler limit is lifted, so that the theory of level crossing is generalized to laser 
operation away from resonance and to any ratio of Yab to ku. 

Formulation of Problem 

We follow Lamb (1964) in formulating the problem. A cavity of length L 
operating at a single frequency is considered. The field inside the cavity is given by 

E(z,t) = E(t) U(z)cos(vt+4» , (1) 
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where the frequency v is nearly equal to the laser output frequency, and U(z) is the 
single normal mode of the cavity and may be taken to be equal to sin (kz). The 
field E(z, t) is a scalar representing plane polarized light. We consider a two-level 
atom, each level consisting of a set of nearly degenerate sublevels, with the upper 
level a having sublevels a, a', ... and the lower levelb having sublevels b, b' , .... 
The major levels are separated by 

Ea -:- Eb = hwab , (2) 

where Wab is the resonant frequency. The state of the system is represented by a den­
sity matrix P which obeys the equation 

ihp = [H,p] , with H = Ho+Hi, 

where H is the total Hamiltonian, Ho is the unperturbed Hamiltonian and Hi is the 
time-dependent perturbation. In the dipole approximation, Hi is given by 

Hi = - (fl'/h) E(z, t), 

where f!J is the dipole moment operator. The matrix for H contains a large number 
of rows and columns, depending on the number of sublevels of the lasing levels. 
For example, the Hamiltonian for an atom whose levels are doubly degenerate has 
the form 

Ea 0 Hab Hab , 

0 Ea, Ha'b Ha'b' 
H=I I, (3) 

Hba Hba , Eb 0 

Hb'a Hb'a' 0 Eb, 

where Hij = -(f!J;)h)E(z, t) is the interaction Hamiltonian between the states i and 
j. We have neglected the interaction Hamiltonians Haa" Hw , ... , assuming them 
to be extremely feeble. 

At this stage, the relaxation parameters Yab, Yaa" Yw, Ya and Yb are introduced 
phenomenologically to account for the damping of the corresponding levels when the 
perturbation is switched off. The equations of motion for different elements of the 
density matrix are given by 

Pab = -(Yab +iwab)Pab -{iE(z, t)/h}(L Paa,fl'a'b - L fl'ab'Pb'b)' (4a) 
0' b' 

Paa' = -(Yaa' +iwaa')Paa' -{iE(z, t)/h}(~ pabf!Jba , - ~ fl'abPba.)' (4b) 

Pw = -(Yw +iww)Pbb' -{iE(z, t)/h}(~ pbafl'ab' - ~ f!JbaPab.) ' (4c) 

Paa = -YaPaa-{iE(Z,t)/h}(~Pabfl'ba-7;'fl'abPba), (4d) 

Pbb = -YbPbb-{iE(Z,t)/h}(~Pbaf!Jab- ~f!JbaPab)' (4e) 
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In the zeroth order, we have 

p~~)(a, zo, to, v, t) = exp{ - yit- to)}, (5a) 

p~~) = p~~) = p~~? = 0, (5b) 

Pb~)(b, zo, to, v, t) = exp{ - Yb(t - to)} , (5c) 

Thus the equation of motion for Pab in the first order is given by 

, (1) ( ') (1) {'E( )/L} mJ (P(O) (0») Pab + Yab+W)abPab = - 1 z,t rt iTab aa -Pbb ' (6) 

As this does not show any level crossing effects, we need not discuss them further 
in this approximation, 

Calculation of Third-order Polarization 

In the iterative procedure, the equation of motion for the third-order off-diagonal 
element is given by 

p~~) +(Yab +iwab)P~~) = - {iE(z, t)jh}(L p~) f!Ja'b - L [!Jab' Pb7t) . (7) 
a' b' 

The solution for p~~), .. , can be obtained from 

'(2) ( ') (2) _ {'E( )jL} "{ (1) mJ mJ (1)} Paa'+ Yaa,+lWaa'Paa' - - 1 z,t rt L... Pab iTba'-iTabPba' (8) 
b 

by substituting the expression for p~~), obtained from equation (6), to give 

p~~)(zo, to, z, v, t) 

- L {f!Jab f!Jba ,jh2} rr dt' r dt" E(z, t') E(z, t") 
b lto Jto 

xexp{(Yab +iwab)(t"-t') + (Yaa' +iwaa,)(t'-t)} 

ft ft' 
- L {f!Jabf!Jba.Jh2} dt' dt ff 

b to to 

x [exp{Yito-t")} -exp{Yb(to-t")}l 

xexp{(Ya'b -iwa'b)(t"-t') + (Yaa' +iwaa,)(t'-t)} 

x [exp{ya-{to-t")} -exp{Yb(to-t")}l, (9) 

These expressions are for the atoms excited at the space-time point Zo, to, We 
are considering the effects at the space-time point z, t, The relation between these 
two space-time points is given by 

z = zo+v(t-to), (10) 
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where v is the velocity of the atom. The value of p~~} from equations (7) and (9) is 

p~~}(Zo,to,Z.v,t) = -ih- 1 (t dt' E(z,t') 
Jto 

x (L p~~} &'a'b - L &' ab' p~~~)exp{(Yab +iwab)(t' - to)}. 
a' b' 

The summation over zo, to gives 

p~~)(Z, v, t) = -ih- 1 ft dto (t dt' E(z, t') 
- 00 Jto 

X (L p~} &'a'b - L &'ab,p~~~)exp{(Yab +iwab)(t'-to)}. (11) 
at b' 

To account for the excitation of atoms to the lasing levels, the rate of excitation 
A..(zo, to, v) of atoms to the state IX per unit time and unit volume is introduced. 
Assuming A,,(zo, to, v) to be a slowly varying function of zoo to, we may replace it 
by A..(z, t, v). Thus, after substitution of equations (9) and (1) into (11), and 
changing the order of integration as follows: 

ft it it' it" ft ft' ft> ft'" dto dt' dt" dt ", ~ dt' dt " dt'" dto, 
- 00 to to to - 00 - 00 - 00 - co 

with 
'1:' = t-t', 

equation (11) becomes 

p~)(z, v, t) 

'1:" = t'-t" and 

= L L i&'ab'&'b'a'&'a'bh-3 E3 ('Xl d'1:' (00 d'1:" (00 d'1:'" 
a' b' Jo Jo Jo 

'1:"' = t" - t'" , 

(12) 

X U(z-V'1:') U(z-v('1:' +'1:"») U(z-v('1:' +'1:" + '1:"'») cos(vt' +cf»cos(vt" +cf»cos(vt"' +cf» 

X {(Aa Y; 1 - Ab' y;,I) exp( -(Yab' +iwab')'1:'" - (Yaa' + iwaa ,)'1:" -(Yab +iwab)'1:') 

, +(Aa,y;.1 '-Ab,y;,I)exp( -(Ya'b' -iWa'b')'1:"' -(Yaa' +iwaa ,)'1:" -(Yab +iwab)'1:') 

+ (Aa' y;,1 -Ab y;l)exp( -(Ya'b +iwa'b)'1:'" -(Yw +iwb'b)'1:" -(Yab + iwab)'1:') 

+ (Aa' y;,1 - Ab' y;.l) exp( -(Ya'b' -iwa'b')'1:'" -(Yw +iwb'b)'1:" - (Yab +iwab)'1:')}. 

The polarization P of the medium at z, t is given by 

f+OO 

P(z, t) = L L {&'abPba(Z, v, t) +t?I'baPab(z, v, t)} dv. 
a b -00 

The Fourier component of the polarization is 

P(t) = 2L -1 fOL P(Z, t) sin(kz) dz . 

(13) 

(14) 

(15) 
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We separate the time dependence of A .. by means of 

Aiz, v, t) = Aiz, t) W(v) , (16) 

where W(v) is the velocity distribution function for the lasing atoms. We take 
W(v) to be Maxwellian, i.e. 

W(v) = n- t u- 1 exp( _V2/U 2) , (17) 

where u is the speed parameter given by u2 = 2kB T / M, with T the temperature of 
the medium. The product of the U's and sin(kz) from equation (15) give different 
cosine functions. We pick the term cos(kvCr'-r"')) from among them, as this 
is the only one having a peak within the limits of integration. In the rotating­
wave approximation, we get the third-order polarization as 

p(3)(Z, t) = L: L: L: L: i'q;ba&ab'~b'a'&'a'b E3 exp( -i(vt+c/>)) 
a a' b b' 32h ntu 

( f + 00 exp( - V2/U 2) dv f + 00 exp( - V2/U 2) dv 
X A -00 {Yab + i(wab-v)Y + (kV)2 +B -00 {Yab,+i(wab,-v)}2+(kv)2 

f +OO exp( _V2/U 2) dv f+oo exp( _V2/U 2) dv ) 
+C . 2 2+D 2 2' 

-00 {Ya'b+i(Wa'b-V)} +(kv) -00 {Ya'b,+i(wa'b'-V)} +(kv) 

(18) 
The coefficients A, B, C and D in terms of 

N .. p = L -1 fOL N .. p(z) dz, with N .. p = A"/Yrt-Ap/YP' (19) 

are given by 

A = {Yab +i(wab- v)} 

{ 1 Nab' 
X Yaa' +iwaa , Yab' +i(wab,-V) +Yab +i(wab-v) 

Na'b' (1 1) 
+ Ya'b' -i(wa'b'-V) +Yab +i(wab- v) Yaa' +iwaa' + Yw +iwb'b 

+ 'Ybb' +iwb'b Ya'b +i(Wa'b- V) +Yab +i(Wab- V) 
Na'b } 1 

(20a) 

B = Nab' Yab' +i(wab,-V) 
Yaa' +iwaa , Yab' +i(Wab'-V) +Yab +i(wab- v) , 

(20b) 

C Na'b Ya'b+ i(Wa'b- V) 

Yw +iwb'b Ya'b +i(Wa'b- V) +Yab +i(wab- v), 
(20c) 

Na'b'{Ya'b' -i(wa'b'-V)} (1 1) 
D =. . . + . . 

Ya'b' -1(Wa'b'-V) +Yab +1(Wab-V) Yaa' +IWaa , Yw + lWb'b 
(20d) 



670 B. K.Mohanty and N. Nayak 

The crossed levels should satisfy the usual selection rules, that is, Il.m = I or 2, 
where m is the magnetic quantum number of the sublevels and Il.m is· the difference 
in the magnetic quantum numbers of the crossing levels. In the present notation, 
the condition for level crossing (for two sublevels in each level) can be represented 
as: 

Ea = Ea and Eb = Eb,; (2Ia) 

Ea -1= Ea, and Eb = Eb,; (2Ib) 

Ea = Ea, and Eb :F Eb, . (2Ic) 

Under the condition a = a' and h = h', equation (18) reduces to the form of Lamb's 
(1964) expression (Mohanty and Nayak, to be published). As the relaxation param­
eters are independent of sublevels in. many cases, we assume the relations 

"100' Ya'a = "la' "la' 

Ybb' Yb'b Yb' Yb' 

"lab' Ya'b = Ya'b' "lab' 

(22a) 

(22b) 

(22c) 

On keeping the terms in equation (18) which obey the selection rules (21), we obtain 
after some rearrangements 

p(3)(t) = L il&labI2l21i-3E3exp{ -i(vt+t!»}{Lo+L2a+L2b+Lox+Lax+Lbx} +C.c. 
a,b 

(23) 

where c.c. denotes the complex conjugate. The various L terms appearing in 
equation (23) are: 

Lo = 1 &lab 12 Nab[2y- 1 lab +"1-1 y';i/{Yab +i(wab-v)}lab 

+"1-1 Y';;/{Yab -i(wab-v)}lat] , (24a) 

L 2a = 1 &la'b 12 Na'b "I;; 1 {2Yab +i(wa'b+ wab- 2v)}-1 

X [{Yab +i(wab-v)}lab + {"lab +i(wa'b-v)}la'b] ' (24b) 

L2b = 1 &lab' 12 Nab' y.;-1{2Yab +i(wab+ wab,-2v)}-1 

X [{"lab +i(wab.;;...v)}lab + {"lab +i(wab,-v)}lab'] ' (24c) 

Lox = Nab{1 &'a'b 12 (Ya + iWa'b)-1 + 1 &lab' 12 (Yb + iWb'b)-1} , (24d) 

L = 1 &I 12 N -1( Ya+Yb +iwoo, ) 
aX a'b a'b Yb ("I a + iwoo ,){2Yab + i( Wab - Wa'b)} 

X [{ "lab +i(wab - v)}lab + {"lab -i(wa'b - v)}la~b]' (24e) 

L - I/OJ 12N- -1( Ya+Yb +iwb'b ) 
bX - ;;r ab' ab' Ya . . (Yb +lWb'b){2Yab +l(Wab-Wab,)} 

X [{"lab + i(Wab - v)}lab + {"lab - i(Wab' - v)}la~'] , (24f) 
where 

-1 _ l( - 1 + - 1) "I - ~ Ya Yb . 
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The quantities Iij and Ii~ are defined as 

and 

1 f+oo exp(-v2Ju 2)dv 
Iij = ntu -00 Yij +i(wij-v)}2 + (kv( 

_ nt Yij -i(Wij-v)2 {U(x,y) +iV(x,y)} 
- ku ylJ +(wij-v) 

* 1 f+oo exp( -V2JU 2) dv 
Ii} = ntu -00 Yij -i(wij+v)}2 + (kV)2 

= nt Yij +i(wij-v) {U( ) +'V( )} 
k 2 2 X, Y 1 X, Y , 

u Yij +(wij-v) 

(25a) 

(25b) 

where x = (v-wij)/ku, y = yu/ku, and U and V are the real and imaginary parts 
of the complex probability integral whose numerical values are widely tabulated 
(Faddeyeva and Terent'ev 1961). . 
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Fig. 1. Comparison of the present 
expression (full curve) for the real 
part of Lax as a function of waa,/ku 
with the expression (dashed curve) 
obtained by Shimoda (1972). (See text 
for assumptions.) 

The term LD shows a Lamb dip at transition frequencies Wab , Wa'b'.... The 
halfwidths of these transition lines are not affected by level crossing. The term 
LDx represents the effect of level crossing on the Lamb dip. The terms Lax and Lbx 
show level crossing between the levels a and a' and between band b' respectively. 
The real part of Lax is plotted (full curve) against waa.fya in Fig. 1, where we have 
assumed that Yab = Ya = Yb holds so as to simplify the plotting. We have also 
assumed that Yab/ku = 0·1 and (v-wab)/ku = 0·1. It can be seen that the line is 
noticeably asymmetric about Waa' = O. The halfwidth of 2·08 Ya is broader than that 
of the Shimoda (1972) line shape (dashed curve in Fig. 1) which is symmetric about 
the Waa' = 0 line. The expression for Lax reduces to Shimoda's result at the Doppler 
limit very near to resonance. Finally, the term L 2a represents a two-photon transi­
tion of frequency t(wab+Wa'b)' It may be emphasized here that the present results 
are free from any approximations except for those encountered in the numerical 
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evaluation of Iij' and so the present theory is more general than Shimoda's, and is 
free from the Doppler limit restriction in particular. 

Discussion 

For a laser operating in the vicinity of the transition frequency Wab' the two terms 
L2a and L2b representing the two-photon transition need not be considered, as they 
are of no importance. The terms Lax and LbX have the same sign. As a result, they 
have the same effect on the intensity parameter and their contributions to it accord­
inglyadd. So, for simplicity, we take only the upper lasing level a to be degenerate, 

0'4 

0·3 

.ft 
0·2 

-0,.4 -0,2 0 0·2 0;4 

(v-wab)/ku 

Fig. 2. Dependence of the 
dimensionless intensity parameter J 
on (v-co.b)/ku for CO •• ' = O· 5),. (full 
curve) and CO •• ' = 0·1 JIG (dashed curve). 
(See text for assumptions.) 

that is, we assume h = h'. Further, as the dipole moment operators are nearly 
equal to each other, we assume that &Jab = &J~'b = &Ja'a = ... = &J. For convenience, 
the transverse relaxation term Yab is taken equal to !( Ya + Yb)' Under these 
conditions, the amplitude equation (Lamb 1964) E = rxE-PE3 becomes at steady 
state E2 = rx/P, where 

rx = -!VQ-1{1 -NabU(x,y)/U(O,y)} 
and 

p = VQ-1 L &J2{32h2 U(O, y) Ya Yb}-l 
a 

x {Nab{1 +(V-Wab)2 y.;b2}-lkuy;'/ 

X (4{Yab(ku)-1 U(x,y) -(v-wab)(ku)-l V(x,y)} 

+2(V-Wab)y.;b1{(V-Wab)(ku)-1 U(x,y) +Yab(ku)-l V(x,y)}) 

+Na,il +W;" y.;-2)-1 

X ({U(x,y) + U(x',y)} +Waa ' y.;-l{V(X,y) - V(x',y)}) 

+2Nab U(x,y) 

N- {I ( )2 -2}-lk -1 + ab + V-Wab Yab UYab 

([ -1{1 ( -1)2}-1 -1] X Yb Yab + Waa' Ya + Ya Yab 

X {Yab(ku)-l U(X,y) -(V-wab)(ku)-l V(X,y)} 

+(1 +W;a' y.;-2)-1 (Waa' Yb)(Ya Yab)-l 

X {(V-wab)(ku)-l U(X,y) +Yab(ku)-l V(x,y)})}. 
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The dimensionless intensity parameter J is given by 

J = t([7JE)2/h2YaYb 

= 8{U(x,y) -N;,/ U(O,y)}/,1, (26a) 

where the denominator ,I is given by 

,I = ku y;,,1{l + (V-COab)2Y,;i,z} -1 [4{ Yab(ku)-l U(x,y) -(v- coab)(ku)-l V(x,y)} 

+2(v-COab)Y;b1{(V-COab)(ku)-1 U(x,y) + Yab(ku)-l V(x,y)}] 

+ Na'b N;;/(1 +co;a' y;;2)-1 

x [U(x,y) +U(x',y) +coaa ,y;l{V(x,y) - V(x',y)}] 

+2U(x,y) +ku y;,,t{l + (V- Wab)2y;',z} -1 

[{ -1(1 2 -2)-1 -1} 
X YbYab +COaa'Ya +YaYab 

x {Yab(ku)-l U(X,y) -(V-coab)(ku)-l V(X,y)} 

+ (COaa ' Yb Y;; 1 y;,,1)(1 + CO;a' y;;2)-1 

X {(V-coab)(ku)-l U(X,y) + Yab(ku)-l V(X,y)}] , (26b) 

with x' = x -COa,aCkU)-l. It should be noted that the expression for J (equations 
(26)) does not reduce to the generalized Lamb (1964) expression on substitution of 
a = a' and b = b', as all the terms are not included. The value of J, which is a 
result of an iteration calculation, is valid for Na'b < 2 and Nab < 2 (Mohanty and 
Nayak, to be published). 

The variation of J with detuning, namely J(v-coab)/ku) for COaa' = 0·5 Ya (full 
curve) and COaa' = 0·1 Ya (dashed curve), with the relation Ya = 10 Yb' is shown in 
Fig. 2. We have also assumed that kU/Yab = 10, Nab = 1·5 and Na'b = 1·4. The 
linewidth is seen to increase with increasing COaa' as expected. One striking feature 
is that the lineshape becomes asymmetric about the resonance line. This is a 
consequence of incoherence between different transitions owing to the finite 
width of the upper lasing level. The existence of this incoherence is clear from the 
form of the equations (26) and can also be demonstrated through a correlation 
analysis of the field E (z, t). It is consistent with the facts that the output of a gas laser 
is coherent and the lineshape is symmetric about the resonance line only when 
both levels are nondegenerate. For degeneracy in any of the levels, the field is more 
chaotic, and its fluctuations have a higher average value due to the nonlinearity of 
the medium (Shen 1969). Thus the peak value for J increases as COaa' increases, 
which is demonstrated in Fig. 2. 

The lineshapes for the two-photon transition terms L 2a and L 2b are not pure 
Lorentzians, as can be seen from equations (24b) and (24c). These lines are 
broader than a Lorentzian line. In the Doppler limit (y ~ 1) very near to resonance, 
L 2a becomes symmetric and is given by 

L 2a = 1 [7Ja'b 12 Na'b y;12nt(ku)-1/{2Yab +i(coa'b+coab-2v)} , (27) 

which is the same as Shimoda's (1972) result. 
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If we take collisions between the atoms into account then, for the physically 
realizable condition Ya ~ Yb' the level crossing term Lax becomes 

Lax = 1 f!IIa'b 12 Na'b y;lnt(ku)-l{U(x,y)+ U(x',y)}/(2Yab +iwaa ,) , (28) 

which shows that collisions broaden the line shape for Lax. The same effect is seen 
in L 2a and L 2b• Here again we note that our results reduce to those of Shimoda 
(1972) very near resonance under the Doppler limit. 
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