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Abstract 

It is shown that unlike the problem of determining interaction potentials from phase shifts (a problem 
which has no unique solution), the meson source density of It nucleon can be determined completely 
from a knowledge of the reaction matrix for the scattering process. Two main classes of nonlocal 
interactions are discussed and the conditions for a unique solution to exist are obtained. 

Introduction 

The problem of determining interaction potentials given cross section data has 
been examined by many authors, but the method of using reaction matrix parameters 
was first put forward by Cook (1972). The notation of that paper is used here. 

The equation satisfied by the meson interacting with the meson cloud of a nucleon 
is as given by Drell et al. (1956) and also Edwards and Matthews (1957). The 
Schrodinger equation for the problem is 

(~ _ 1(1 + 1) + 2)U (r) = _ CTJ VCr) faJ VCr') U TJ(r') dr' 
d 2 2 q TJ (J) Jo r r _ 

= 8 TJ(r), (1) 

where q2 = (J)2_m2, with q the meson momentum in the laboratory frame and m 
its mass, UTJ is the meson wavefunction, with T the total isotopic spin of the state 
and J the total angular momentum, CTJ is a constant whose value depends upon T 
and J, and VCr) = rdp/dr, with p the meson source density. 

The subscript T J is now dropped for convenience, and the wavefunction defined 
in equation (1) is expanded into the orthogonal set of eigenfunctions 

U(r) = L A;.(q2) UA(r) , (2) 
where A 

A;.(q2) = _~ A (a{(dU) (1-Bal), 
qA-q dr a 

al = R/(1+BR), R = a- 1 L u~/(qi- q2), 
A 

(3a, b,c) 

while the interaction radius a and the boundary condition parameter B are selected 
so that 

(dUA/dr),=a = (B/A) UA(a). (4) 
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The corresponding free meson wave equation is 

(~ _ 1(1+1) +Q2)W(r) = 0, 
dr2 r2 

(5) 

where Q is the free particle momentum, and we use the boundary condition (4) on 
the wavefunction W (r) to define an orthogonal set of wavefunctions Wir). A matrix 
B;'1l is defined by the relationship 

u ir) ~ L B;'1l Wir) 
Il 

and B satisfies 
BBT = I. 

Owing to the form of equation (1), an interaction matrix can be defined as 

V;'1l = (qi-Q;)B;'Il' 
which satisfies 

e = L Aiq2) L V;'1l Wir). 
;. Il 

(6) 

(7) 

(8) 

(9) 

We now investigate the nature of the interaction term e. It is assumed throughout 
this paper that all potentials have a finite range a, so that integration to infinity over r 
may be replaced by integration out to the range a. 

Interaction Term 
By substituting the interaction term (9) into equation (1), and using equations (6) 

and (8), we find that the interaction matrix is a matrix of rank 1 given by 

V;'1l = cr);'~Il/W;., 
where 

();. = f: V(r) U ir) dr and ~Il = f: V(r) WIl(r) dr. 

We also have the discrete energies 

W;. = (q;+m2)t. 

Eliminating V;'1l from equations (8) and (10), we see that 

B;'1l = e();.~jwiq;-Q~). 

However, we also have by way of equation (6) the conditions 

();. = L B;'Il~1l 
Il 

and ~Il = L B;'Il();'· 
;. 

Substituting equation (12) into (13a) and (13b), we get the solutions 

e L ()ilw;.(qi-Q;) = f ll , where fll == (1,1,1, ... , 1), 
;. 

and 
L ~;/(qi - Q;) = w;.le. 
Il 

(10) 

(11a, b) 

(12) 

(13a, b) 
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These equations yield 

oi = L [qi-Q;r1JI'W;.jc and ~; = L [qi-Q;r 1W;./C, (14a, b) 
I' ;. 

where the quantity in square brackets is to be treated as a matrix. Thus exact solutions 
in terms of the momentum eigenvalues alone exist for 0;. and ~I' up to a sign on each. 
Since, however, the matrix (12) must also satisfy the equations 

U ia) = L B;.I' Wia) and Wia) = L B;.I' U ;.(a) , (15) 
I' ;. 

and the Uia) and WI'(a) are known quantities, the matrix B is overdetermined by 
2N degrees of freedom, where B is an N x N matrix. This can be overcome by 
supposing that only part of the spectrum of eigenvalues of q;, has been determined. 
It can be taken into account by leaving an additional row and column of B undeter­
mined, thereby introducing a further 2N - 1 unknowns found by solving equation (2) 
and leaving the constant c to be determined. Thus a knowledge of the phase shifts 
permits a complete solution for the meson source density 

where 

per) = f {V(r')jr'} dr' , 

VCr) = L ~I' Wir). 
I' 

Equation (1) can then be used to find 8. 

(16) 

(17) 

It may be true that as N -+ 00, equations (13) and (15) are not inconsistent and 
the matrix B is not overdetermined in this limit. From a practical point of view, one 
can usually determine only a few of the components of Uia) from the fitted reaction 
matrix poles, while the infinity of undetermined poles contributes a roughly constant 
background contribution to each element of the matrix. The above device of including 
one extra row and column of B).I' and one extra U;., such that 

N+1 N+1 
L Ui(a) = L W;(a) , 

;'=1 1'=1 

in effect approximates this infinity of unknown residues, i.e. we then have 

00 00 

UN+1(a)~ L.B~~)Wia) and WN + 1(a) ~ L B~~)Uia), 
)'=N+1 I'=N+1 

where B~~) is the exact transformation matrix. Such a device ensures that the 
approximate finite B).I' is an orthogonal matrix. 

Nonlocal Potentials 

The static meson-field-theory interaction described by equation (1) represents the 
extreme case of a separable nonlocal interaction of the form 

() = f: VCr, r') U(r) dr' , (18) 
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where VCr, r') is the nonlocal potential. Recently, Bagchi and Mulligan (1974) have 
discussed various types of nonlocal interactions, including the separable form of 
type (a). 

Separable Potentials of Type (a) 

Separable potentials of type (a) have the form 

M 

VCr, r') = L Y,.(r) Y,.(r'). (19) 
,,=1 

From equations (10) and (11) we see that such a potential leads to an interaction 
matrix of the form 

M fa fa V;'1t = L Vir) Wir) dr y"(r') U ;.Cr') dr' 
,,=1 0 0 

= L ,,,itO,,;.. (20) 

" 
Thus V;'1t is a matrix of rank M, and there are 2NM variables to be determined. 
Equations (13) and (15) still hold, however, and so remove 4N degrees of freedom, 
leaving 2N(M-2) unknowns. Evidently, for M = 2 an exact solution exists but for 
M > 2 no unique solution can be found. 

Separable Potentials of Type (b) 

The nonlocal potentials of type (b) are not symmetric under interchange of rand 
r'. A special class of this type has the form 

V(r,r') = V(r')Z(r-r'). (21) 

Using a double orthonormal expansion of Z{r-r'), we obtain 

VCr, r') = VCr') L ayp U vCr') U p(r), (22) 
yp 

where the ayp are a set of constants to be determined. Substituting equation (22) into 
the expression for VAIt' we obtain 

V;'1t = L fa VCr') Wir') UvCr') dr' fa ayp Up{r) U ;.Cr) dr 
~Jo Jo 

that is, we have 

= Lay;. fa VCr') Wir') Uy{r') dr', 
v Jo 

V =aV', where V' == f: VCr') Wir') U vCr') dr' . 

(23) 

There are thus N 2 unknown components of a and N 2 unknown components of V', 
while there are 2N constraints. However, we can absorb the constants a into V' and 
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this leaves us with N 2 - 2N spare degrees of freedom. The problem can therefore 
be solved only if N ~ 2, that is, for potentials of the type 

V(r,r') = a1 Up(r) VCr') Uir') +a2 UaCr) VCr') U,(r') , (24) 

for any p, v, (f and (. 
The local limit is obtained from equation (22) by the conditions a -+ I, the unit 

matrix, as N -+ 00, in which case there is an infinity of components of V, and the 
closure theorem 

00 

L Uv(r) Uver') -+ b(r-r') (25) 
v=l 

may be applied to give 
VCr, r') -+ VCr') b(r - r') . (26) 

The local limit therefore represents a case not attainable by a finite sum of the form 
(22). Even if we approximate the summation (25) by a finite sum to N terms, there 
are N 2 - 2N spare degrees of freedom and no unique solution exists for N > 2. 

The curious feature about the local form (26) is that if we approximate the local 
potential by a series of step functions, as done by Cook (1973), then we obtain 

p 

VCr, r') = L V .. O(r-r .. ) O(r .. +1 -r .. )b(r-r'). (27) 
.. =1 

In this case a unique solution exists for the components of the vector V .. , provided 
that we have P ~ N. For P > N, no unique solution exists, which is consistent with 
the above findings. It should be noted that it is nonsymmetric separable potentials 
of the type (21) which can produce a local limit, and not symmetric potentials of 
the type (19). 

Conclusions 

Unlike the problem of determining local interaction potentials, the static meson 
source density can be determined exactly from a knowledge of the reaction matrix. 
The resulting equations are linear and can be solved using modern electronic computers 
to yield a unique value for the meson source density. More general classes of non local 
potentials have been considered above and conditions for the existence of unique 
solutions have been given. The local limit proves to be a case in which no unique 
solution exists. 
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