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Abstract 

The theory of mode coupling in the radiation from solar type I storms is extended to treat coupling 
when the frequency! is near the plasma frequency!p. It is found that Cohen's coupling ratio 
Q = U/It)4, where It is the transition frequency (f'P It for strong coupling), is to be multiplied 
by a factor (1-!~/ J2)5/2 for QT regions, i.e. coupling is relatively suppressed close to the plasma 
level. The implications on the handedness of solar radio radiation are discussed. The possibility 
of depolarization due to mode coupling is considered briefly. 

1. Introduction 

There is evidence from observational data that coupling between magnetoionic 
modes in the solar corona is more effective than predicted by existing theories with 
'reasonable' choices of parameters. We use the terminology of Cohen (1960), in 
which strong coupling refers to the limiting case where there is no change in the state 
of polarization of radiation due to propagation effects, and weak coupling to the other 
limiting case where waves remain in the same magnetoionic mode (i.e. the polarization 
continuously adjusts to the local polarization for the mode in question). Cohen 
defined a transition frequency It such that for I ~ It (I ~ It) the coupling is strong 
(weak). He estimated that the coupling should be weak for radio waves in the solar 
corona except at so-called QT (quasi-transverse) regions, where the direction of ray 
propagation and the direction of the magnetic field are orthogonal. In practice a 
QT region could be regarded as an interface separating a region where the angle 
between the ray and the magnetic field is acute from a region where it is obtuse. 
A transition frequency could be ascribed (for a given ray) to each such QT region. 
For I ~ It the handedness of the polarization would not change on crossing such a 
QT region but for I ~ It it would reverse, i.e. LH would become RH and vice versa. 
Cohen estimated that It is in the microwave range, It ~ 103 MHz, for QT regions in 
the corona. This would imply that for metre-wave radiation the handedness should 
reverse every time a QT region is crossed. It is this conclusion which is in conflict with 
the observational data. The evidence that either no polarization reversals occur or 
that such reversals are very rare is summarized briefly in Section 4 below; it has 
been discussed in more detail by Melrose (1973). 

Cohen's (1960) formula for the transition frequency is equivalent to 

Ii ~ 5LB/~/Mc, (1) 

where all frequencies are in megahertz and LB is the characteristic distance in kilo­
metres over which the direction of the magnetic field varies (see equation (35) below). 
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For a plasma frequency fp '" 100 MHz and the 'reasonable' estimates of a magnetic 
field of B '" 1 G (fH '" 3 MHz) with a characteristic distance LB '" 105 km, 
equation (1) gives ft '" 103 MHz, as found by Cohen. For It to be much less than 
100 MHz would require very weak (B ~ 1 G) and/or very tangled (LB ~ 105 km) 
magnetic fields. Alternatively, the handedness of metre-wave radiation could be 
preserved on crossing a QT region if equation (1) gave a drastic overestimate of the 
transition frequency (e.g. because of the inapplicability of the assumptions under 
which it was derived). 

In this paper and in the following Part II (Melrose 1974, present issue pp. 43-52) 
certain of the assumptions made in deriving equation (1) are relaxed. The important 
assumptions made by Cohen (1960) were: (i) that the inhomogeneous corona can 
be regarded as smoothly varying and stratified, i.e. all plasma parameters depend 
on only one coordinate, z say; (ii) that there is vertical incidence, i.e. propagation 
along the z axis (because of the development of the theory in connection with the 
ionosphere, 'vertical' incidence has become accepted terminology for normal incidence 
on the stratified medium); and (iii) that the frequencies are high (f ~ f p, fH)' In this 
paper the assumption (iii) is relaxed to allow f ~ fp ~ fH' while in Part II the 
assumption of vertical incidence is relaxed. It is shown that neither assumption causes 
Cohen's estimate oflt to be too high. The possibility that assumption (i) is inapplicable 
is discussed qualitatively in Section 4 below. 

In Section 2 mode coupling is treated following Clemmow and Heading (1954). 
The appropriate generalizations of Cohen's (1960) formulae are derived in Section 3. 
The polarization of metre-wave solar radio bursts is discussed in Section 4. A limita­
tion imposed by coupling between 'upgoing' and 'downgoing' waves is derived in 
Appendix 1. 

2. The Coupled Equations 

In this section coupled equations describing the propagation of magneto ionic 
waves in a stratified medium are written down following Clemmow and Heading 
(1954) (see also e.g. Budden and Clemmow 1957; Budden 1961, Ch. 18; Heading 
1961; Budden 1972). The equations are evaluated explicitly for vertical incidence. 

Method of Clemmow and Heading 
Clemmow and Heading (1954) used a matrix notation in writing the rate of change 

of the components of the field vectors from Maxwell's equations. After choosing the 
coordinate axes such that there is no variation with respect to y and Fourier trans­
formingintimeandindistancealongthexaxis(thatis,a/ay -+ o,a/ax -+ -i(w/c)sint/t, 
a/at -+ iw), they wrote 

e' = -i(w/c)Te. (2) 

Here e is the column matrix with elements Ex, - Ey, Bx and By (Gaussian units are 
used throughout the present paper), T is a 4 x 4 matrix and the prime denotes 
differentiation with respect to z. With the techniques used here and in Part II no 
explicit expression for T is required. The other components, namely Ez and Bz , are 
related algebraically to those retained. 

The characteristic equation 
det(T -ql) = 0, (3) 

where 1 is the unit 4 x 4 matrix, is the Booker quartic equation. Let the four solutions 
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of (3) be written as q = q i' with i = 1, ... ,4, and let the corresponding four character­
istic column matrices be Vi' In both this paper and Part II these solutions are con­
structed from the known results of magnetoionic theory-it is not necessary to solve 
for the qi or Vi explicitly. 

Suppose one has solved for the four characteristic column vectors Vi' Define the 
4 x 4 matrix R such that its ith column is Vi' and then define a new column matrix f by 

f=R- 1 e. (4) 

(The method breaks down ifR is singular, i.e. if any two of the solutions are the same.) 
The original equation (2) becomes 

f' + i(wJc)Qf = _R- 1 R'f, (5) 

Q being the diagonal matrix with elements q1' q2' q3 and q4' The elements of f can 
be interpreted as amplitudes of the four modes. The matrix - R -1 R' in equation (5) 
can then be interpreted as a coupling matrix. 

It is desirable to define a new set of amplitudes so that no autocoupling appears, 
i.e. so that the new coupling matrix has no diagonal elements. This can be achieved 
as follows. Write 

_R- 1 R' = D+r, (6) 

where D is the matrix consisting of the diagonal elements of - R -1 R', introduce a 
new diagonal matrix d which satisfies 

d' = -Dd 
and write 

g = df, 

The coupled equations (6) become 

'Y = drd- 1 . 

g' +i(wJc)Qg = 'Yg. 

Vertical Incidence 

(7) 

(8) 

(9) 

For vertical incidence it is straightforward to write down the four solutions qi 
and the characteristic column matrices Vi' The labelling of the solutions may be 
chosen such that one has 

q1 = flo, q2 = flx' q3 = -flo' q4 = -flx, (lO) 

where fl" with (J = 0 or x is the refractive index for one of the magnetoionic modes. 
The four solutions define four modes which may be labelled oj, xj, o! and x! for 
short, with j m referring to upgoing (downgoing) waves. 

Using the polarization vectors known from magnetoionic theory it is straight­
forward to write down the ratio Ex: - Ey : Bx : By, where the z direction is the direction 
of wave propagation, and so to write down an expression for R. The arbitrary factors 
multiplying each column may be chosen for convenience; a convenient choice gives 

[R. R. R. R. 
-1 -1 -1 -1 

R = I, (11) 
- flo - flx flo flx 

flo Ro flx Rx - flo Ro - flx Rx 
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Where Ra is the ratio E,,/Ey for upgoing waves in the mode (1. When the unit vector 
along the background magnetic field is written 

b = (sin lJ cos cP, sin lJ sin cP, cos lJ) , 

the explicit expression for Ra reads 

Ra = (cos cP Ta -i sin cP)/(sin cP Ta +icos cP), 

(12) 

(13) 

where Ta(ro, lJ) is in the notation used by Melrose and Sy (1972, Appendix J). The 
identities 

RoRt == -1 == R:Rx, (14) 

where the asterisk denotes complex conjugation, follow from To Tx = -1. 
It might be commented that for downgoing waves the ratio E,,/ Ey is formally 

R: and not Ra. However, for downgoing waves the angle between k and B is n-lJ 
rather than lJ, and because Ta(ro, lJ) is an odd function of cos lJ one has 

R:(ro,n-lJ) = RaCro,lJ). 

This identity has been used in the third and fourth columns of the matrix (11), as 
has the corresponding identity 

JlaC ro, n - lJ) = JlaC ro, lJ) 
for the refractive indices. 

The calculation of R' and of R -1 is straightforward. The nondiagonal elements 
of - R -1 R', that is, the elements of r, read 

r12 = r _ Jlo+Jlx R' 34 _ --- x 

2Jlo R -R ' x 0 

r 14 = r 32 = Jlo-Jlx R~ 
2Jlo R -R ' x 0 

r13 = r31 = Jl~/2Jlo, 

r 21 = r 4 - Jlo+Jlx R' 3 _ -- 0 

2Jlx R -R ; o x 

(ISa) 

1'41 = r 23 = Jlx-Jlo R~ 
2Jlx R -R ; o x 

(ISb) 

r 24 = r 42 = Jl~/2Jlx· (1Sc) 

Here the elements are grouped according to those which describe the following three 
classes of coupling: (a) between unlike parallel modes, oj and xj or ot and xt; 
(b) between unlike antiparallel modes, oj and xt or ot and xj; and (c) between like 
antiparallel modes, oj and ot or xj and xt. Class (a) is the one of interest here. 
Class (c) is associated with reflection (see Appendix 1). 

The elements of the coupling matrix "f in equation (9) are given by 

11] = (ddd)rlj (i, j = 1, ... ,4 not summed), (16) 
with 

(f R' dZ) 
d1 = d~ = Jl!exp Roo-Rx' (f R' dz ) 

d2 = d: = Jl~exp Rxx- Ro ' (17) 

If the downgoing waves are now ignored by defining g3 = g4 = 0, equation (9) 
becomes 

[g:] +i(ro/C)[Jlo 0] [go] = [0 Xx] [go] , 
gx 0 Jlx gx Xo 0 gx 

(18) 
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with 
x" = H(l1o+l1x)/(l1oI1Jt }t/I", (19) 

where 

R' (J R' +R') t/lo = R :'R exp dz R X _Ro , 
o x x 0 

(20a) 

R' (J R'+R') t/lx = R _xR exp dz R O _Rx 
x 0 0 x 

(20b) 

are the coupling parameters introduced by Cohen (1960). The coupling parameters 
(19) or (20) can be shown to satisfy . 

x: = -Xx> t/I: = - t/lx· (21) 

3. Transition Frequency 

The coupled equations (18) are now used to evaluate a coupling ratio Q and a 
transition frequency It for arbitrary I > Ip (with the following proviso, however); 
this generalizes the analogous result derived by Cohen (1960) for I ~ Ip'/H. The 
proviso is that only waves above the cutoff frequency of the x-mode at X = 1 - Y 
(where X = I~/P and Y = IHI!) are of interest for the coupling considered here. 
For IH ~ Ip this cutoff occurs at Ip + tiH. Only frequencies I > Ip + tlH ~ IH are 
considered. . 

Coupling Ratio 

Following Budden (1952) and Cohen (1960), one can conveniently introduce the 
amplitudes 

U" = g"exP(iw/2C) J dz (110 + I1x») . (22) 

Then equation (18) becomes 

[u~] = [- (iwJ2c)AI1 . ,Xx ] [Uo] , 

u~ Xo (lw/2c)AI1 ux 

(23) 

with 
All = 110 -l1x . (24) 

The coupling ratio can then be defined as 

Q = I Xo Xx/(w ApJ2c)2lt . (25) 

The physical significance of Q can be illustrated as follows. (An alternative physical 
description of the coupling has been given recently by Titheridge (1971), who con­
sidered only the case of a real coupling coefficient, i.e. a. = 0 in equation (27b) below.) 
Firstly note that equation (23) with the properties (21) implies 

1 Uo 12 + 1 Ux 12 = const., (26) 

which has an obvious interpretation as expressing energy conservation. Let AfjJ be 
the phase difference between uo and ux and write 

p = 1 uo 1/(1 uo 12 + lux 12)t , Xo = aexpia.. (27a, b) 
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Then equation (23) gives 
p' = -(1- p2yta cos(A4> + ex) , (28a) 

w l-2p2 
A4>' = - --All + 2.1asin(A4>+ex). 

C p(l-p) 
(28b) 

For a ~ twAlllc, that is, for Q ~ 1, the phase difference between the two waves 
changes much more rapidly than their relative amplitude. This is Faraday rotation. 
For p = 1 initially, the ratio I UX III UO I oscillates with an amplitude of order Q. Thus 
to lowest order in Q the two modes propagate independently. 

On the other hand, for a ~ w AIlI c, that is, for Q ~ 1, one can neglect the term 
involving All in equation (28b) and integrate to find 

p(1- p2yt sin(A4> + ex) = const., 

where ex = const. has been assumed for simplicity. With equation (26) this implies 

I u± 12 = const., u ± = Uo ± iux exp( - iex) , 

which also follows directly from equation (23) with All = O. These conservation 
laws imply that the initial polarization is preserved. 

Evaluation of Q 
The explicit evaluation of Q is indicated in Appendix 2. The result is 

Q = ~ (llo+llx)2 l-X - y2+Xy2cos2 8(T:-l)2 

w (Ilollxyt Xy2 sin2 8 T;+1 

{ T2 (Y' X' )2}t 
X (4)')2+ (T3~1)2 Y + l-X +(2cot8 + tan 8)8' . (29) 

For Y ~ 1- X and X ~ lone can justify the following approximation in (29), 

{(p,o + Ilx)2/(llollxyt}(l- X - y2 + Xy2 cos2 8) ~ 4(1- X)3/2 . (30) 

Further simplification occurs in the QL (quasi-longitudinal) and QT limits. The 
QL (QT) limit applies for 8 ~ 80 (8 ~ 80 ) for 0 ~ 8 ~ tn with 80 given by 

sin280 = 2y-2[{(I-X)4+ y2(1_X)2}t_(l_X)2]. (31a) 

For Y ~ 1- X equation (31a) simplifies to 

cos 80 ~ Y12(l- X). (31b) 

Even at Y = 1 - X equation (31 b) is adequate for semiquantitative purposes (e.g. 
at Y = 1- X equation (31b) gives cos 80 = O· 5 whereas (31a) gives cos 80 = -.)2 -1 = 
0·414; for Y < 1- X the errors are smaller than this). 

In the QL limit one sets I TI = 1 in equation (29) except in the factor T2 -1, 
which is rewritten using the quadratic equation that T satisfies (see Appendix 2). 
One finds 

'" c tan28 { ,2 l(Y' X' )2}t 
Q '" OJ Y(l_ Y\t (4)) + 4 Y + 1-X +(2cot8 +tan8)8' . (32) 
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In the QT limit one has 

To = - Ysin2 0/(1-X)cosO = _T;t. (33) 

In this case equation (29) with the approximation (30) reduces to 

,..., 4c (1- X) 5/2 {( I 2 Y' cot 0 X' cot 0) 2 (f!J')2 y2 sin2 9}t 
Q ,..., - 3' 3 0 (1 + 2 cot 0) + -Y- + I X + 2' 

wXY sm 0 - (I-X) 
(34) 

The limiting cases (32) and (34) overlap for 0 ~ 00 , 

The results derived by Cohen (1960) are reproduced by replacing the factors 
(1- X)-t and (1- X)5/2 in equations (32) and (34) respectively by unity. (Cohen 
has an unimportant error in the power of sin 0 in his counterpart of equation (34).) 

In the QL limit, coupling is ineffective for radio waves in the corona. Although 
for 1- X ~ 1 equation (32) predicts that Q becomes large like (1- X)-3/2, large 
Q in this case does not imply strong coupling. As shown in Appendix 1, coupling 
between upgoing and downgoing waves in this limit is more important than coupling 
between the different modes. Heading (1961) and Budden (1972) pointed out that 
large coupling parameters need not imply effective coupling, and their comments are 
appropriate to the coupling in a QL region for 1- X ~ 1. 

In the QT limit, the factor (1- X)5/2 in equation (34) implies that the coupling 
becomes less effective as the plasma frequency is approached. 

Transition Frequency 

Following Cohen (1960) the transition frequency can be defined by assuming that 
the term in equation (34) involving 

10'1 = Lit (35) 

dominates and by then writing 

Q = (1- X)5/2 /4//i , (36) 

with ft given by equation (1). For / ~ /p equation (36) implies Q = 1 at / = ft. 
However, for/close to/p the factor (1_/~/P)5/2 causes Q to depend on/in a more 
complicated way. 

Suppose we seek the conditions under which ft is equal to rx/p with rx (> 0) some 
predetermined constant. (For example, radio waves generated at the plasma frequency 
may encounter a QT region before the level at which the plasma frequency is half 
that at the initial level. If there is to be no reversal of polarization ft must be less 
than 2/p in this case.) Using equations (1) and (36) we find that the conditionft :s:;; rx/p 

implies 

with 
/J :s:;; g(rx)/~/LB 

g(rx) = (rx2_1)5/2/5rx. 

A plot of g(rx) is given in Fig. 1. 

(37) 

(38) 

The inequality (37) would place an upper limit on the magnetic field strength or 
an upper limit on LB if it could be argued that no polarization reversal occurs on 
crossing a QT region at a frequency close to the plasma frequency. 
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Fig. 1. Plot of g(ll) = fJLBIf; 
as a function of It! f p , with the 
frequencies fH and fp in 
megahertz and LB in kilometres, 
which gives Q = 1. The regions 
of strong (Q > 1) and weak 
(Q < 1) coupling are indicated. 

In this section the polarization of metre-wave solar noise storm radiation is dis­
cussed briefly. Evidence in favour of a depolarizing agent acting in the corona is 
indicated. Mode coupling is then discussed with this evidence in mind. 

Polarization of Type I Storms 

The motivation for the present investigation involved a discrepancy between theory 
and observation relating to the polarization of type I solar radio storms (Melrose 
1973). The discrepancy can be summarized as follows. 

(1) If weak coupling obtains in a storm centre situated in a bipolar magnetic field 
it would be predicted that (i) the two feet of the bipolar region would be polarized 
in the same sense (Piddington and Minnett 1951) contrary to observation, and (ii) 
this sense should reverse at CMP (central meridian passage) (Martyn 1946; 
Piddington and Minnett 1951; Takakura 1961; Zhelezniakov 1970, p. 131) again 
contrary to observation. Thus the coupling would appear to be strong. 

(2) The identification of the emission as ordinary mode from the dominant spot 
(Payne-Scott and Little 1951) presupposes that mode coupling is strong at every 
QT region between the source and Earth. 

(3) On the other hand, the proposal by Cohen (1961) that polarization reversals in 
microwave bursts could be explained in terms of mode coupling with!t '" 103 MHz 
would suggest thatft is well above the observed frequencies for type I storms (which 
come from active regions as do the microwave bursts), i.e. that the coupling should 
be weak in QT regions above storm centres for metre-wave radiation. 

The thought behind the present investigation was that if mode coupling were 
stronger for f ::::::; fp than would be estimated by extrapolating from the case f ~ f p, 
then one could hope to resolve the above discrepancy between Cohen's (1961) theory 
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and the observation of metre-wave radiation. The result of the present investigation 
is that mode coupling for I ~ fr, is weaker than would have been estimated from the 
casel ~ Ip. Various possible ways in which the above discrepancy might be resolved 
have been discussed by Melrose (1973). 

It might also be commented that the argument in point (3) above could be used 
against Cohen's (1961) interpretation of the polarization reversals for microwave 
bursts (the argument being that ft:s;; 100 MHz is implied from the observed properties 
of type I storms). Recent observations of microwave bursts tend to favour other 
explanations of the polarization reversal (see e.g. Enome et al. 1969; Tanaka and 
Enome 1970; Naito and Takakura 1973). 

Depolarization 

There is evidence for depolarization of metre-wave radiation due to propagation 
effects. Noise storms and type I bursts near the limb appear to come from higher 
in the corona and to be less polarized than those near the central meridian (Morimoto 
and Kai 1961; Le Squeren 1963). Suzuki (1961) suggested that the decrease in the 
degree of polarization as the limb is approached is due to effects of mode coupling. 

A strong case can be made in favour of a depolarizing agent acting on type II 
bursts. The absence of significant polarization (Komesaroff 1958; Stewart 1966) 
would imply B < 10-2 G if the emission mechanism were the same as in type III 
bursts (Melrose and Sy 1972). On the other hand, if the exciting agency is a hydro­
magnetic shock with a Mach number of 2-3 (Smith 1971), the statistical analysis by 
Weiss (1965) implies typical field strengths B '" 1 G. These assumptions regarding 
the nature of the emission mechanism and of the exciting agency would be com­
patible only if the observed radiation had been depolarized. 

A similar, but less convincing, case can be made in favour of depolarization of 
type III bursts. 

Depolarization due to Mode Coupling 

The possibility that mode coupling might lead to depolarization, as was suggested 
by Suzuki (1961), does not seem to have been discussed in detail. One cause of 
depolarization was pointed out by Zhelezniakov and Zlotnik (1963). They showed 
that radiation initially 100% polarized in one mode becomes partially linearly polarized 
on crossing a QT region. The degree of linear polarization r l they derived is given by 

rl = 2{e- 2"(1-e- 2")}t, (39) 
with 

215 = n/2Q. 

Differential Faraday rotation can depolarize this linear component. The amount of 
depolarization which results depends on the magnitude of Q ex: (fIfJ4. Zhelezniakov 
and Zlotnik presented a plot of rl as a function ofl/ ft. Some numerical values showing 
the extremes of the frequency range It :s;; ft :s;; 12 over which rl exceeds a given value, 
WIth ft redefined such that equation (39) gives rl = 1 at I = ft, are set out below. 

'1 
il/ft 
illft 

1·0 0·9 0·8 

1·00 0·86 0·81 

1·00 1·20 1·33 

0·7 0·6 0·5 

0·77 0·74 0·71 

1·46 1·60 1·78 

0·4 0·3 0·2 0·1 

0·68 0·65 0·62 0·58 

2·00 2·34 2·87 4·08 

From these values one infers, for example, that a reduction in the degree of polariza-
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tion by a factor greater than 2 (= ri -1 and thus requiring r, = -!-) occurs over a 
frequency range 0·7 It < I < 1·8 ft, that is, over a bandwidth of order ft. 

There is an indication that depolarization occurs close to the plasma level, e.g. in 
type II bursts and type I bursts near the limb. To have effective mode coupling at a 
QT region close to the plasma level requires 

5LB IJ < I;, (40) 

. where IH and Ip are in megahertz and LB is in kilometres. If the condition (40) is 
satisfied there exists a region with Q ~ 1 near the plasma level (see Fig. 1). Because 
the QT approximation applies over a relatively large range of angles for X ~ 1 
(see equation (31a)), and because Q '" 1 implies substantial depolarization, such 
regions could be effective in depolarizing radiation emitted near the plasma frequency. 

Furthermore, it would not be necessary for the angle between k and B to pass 
through -!n for the coupling to be important; the terms involving (1/ and X' in 
equation (34) can also be important for X ~ 1 (but 1- X must not be so small that 
the inequality (A4) of Appendix 1 is violated). In particular, large amplitude Alfven 
waves, which lead to twists in the magnetic field lines (i.e. cp' =1= 0), could cause some 
coupling between magnetoionic modes close to the plasma level. Such an effect, 
along with effects of other random variations in the properties of the medium, are 
outside the scope of the theory used here. The suggestion that certain types of 
randomness in the medium might lead to effective mode coupling does not seem to 
have been considered. 

5. Conclusions 

The results of the present investigation can be summarized as follows. 
(1) When the condition I ~ Ip is relaxed Cohen's (1960) coupling ratio Q is to be 

replaced by p,5Q in a QT region and by p,-lQ in a QL region, where p, = (1-li/12)t 
is the refractive index (fp ~ IH is assumed). 

(2) The enhanced coupling for p, ~ 0, i.e. near the plasma level, in a QL region 
is partly spurious because reflection effects cannot be ignored for p, ~ o. 

(3) There is no unambiguous evidence of polarization reversals due to propagation 
effects for metre-wave radiation. If radiation at a frequency I = !X/p, where Ip is the 
local plasma frequency, encounters a QT region this observation implies that LB IJ /12 
is less than the value give by the curve in Fig. 1; for example, fori ~ 2/p = 100 MHz 
this would imply B3 LB < 300 G3 km. 

(4) Depolarization can occur in a QT region near the plasma level provided that 
the frequency ft as given by equation (1) is much less than/p. 

The conditions under which a QT region low in the corona would cause no reversal 
of the handedness of radiation passing through it are quite restrictive. One would 
expect to observe occasional reversals in handedness caused by propagation effects, 
as was suggested by Martyn (1946), Piddington and Minnett (1951) and Zhelezniakov 
(1970, p. 372). 

Another effect which may be observable relates to ~he suggestion that the lower 
degree of polarization of type I bursts near the limb might be due to mode coupling 
(Suzuki 1961). The mechanism by which mode coupling can cause depolarization 
is through a partial conversion of circular into linear polarization. With a sufficiently 
narrow bandwidth the linear polarization may be observable. 
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Appendix 1. Coupling between Upgoing and Downgoing Waves 

Suppose that waves in only one mode, oj say, are present initially. For coupling 
between oj and xj to be effective requires not only Q > 1 but also that Q be greater 
than the analogous coupling ratio QR between oj and o!. QR can be estimated as 
follows. Ignore x-mode waves in equation (9) by setting g2 = g4 = 0 to find 

[g:] = [-(~m/C)Jlo 
g3 Jlo/2Jlo 

Jl~/2Jlo ] [g 1] 
(im/c)/1o g3 

By analogy with the definition (25) of Q one can define QR by 

QR = C I Jl~ 1/2/1; m . 

(Al) 

(A2) 

The analogous coupling ratio between xj and x! is obtained by replacing 0 by x in 
equation (A2). 

For Y ~ 1 equation (A2) reduces to 

QR ~ C I X' 1/4m(1- X)3/2 • (A3) 
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The neglect of the coupling between upgoing and downgoing waves is justified for 

Q ~ c 1 X' 1/400(1- X)3/2 . (A4) 

Appendix 2. Evaluation of Q 

In the evaluation of Q (see equation (25» the following results have been used: 
from Melrose and Sy (1972, equations (A12) and (Al3», 

IA 1 _1,u;-,u;1 - T;+1 Xy2sin20. (AS) 
,u - ,uo+,ux - (,uo+,ux)II~2-11 1-X-y2+Xy2cos20' 

from equations (14), (19) and (20), 

1 XoXx 1 = (,u.i+ ,ux)2 1 R~R:' 1 
,uo,ux " . - .,-,; 

from equation (13), 

IR~12 _ (cp')2(T;_1)2+IT~12. 
(1 + 1 R" 12)2 - (T,,2+ 1)2 ' 

and finally, from the relation (Melrose and Sy 1972, equation (A9» 

2 ( Ysin2 0 ). 
T" + (1-X)cosO T,,-1 = 0, 

the result 

, - "" n T (T2 -1)(1 Y sin2 0 )' 
T" - T;+1 (1-X)cos.O 

= T..(T;-I)(Y' + ~ +(2cotO + tan 0)0') . 
'2+1 Y I-X 
" 

(A6) 

(A7) 

(AS) 

(A9) 
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