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Ab8tract 

The method of molecular dynamics has been applied with the Barker-Bobetic 
pair potentia.l for a.rgon interactions to calculate the self-diffusion coefficients of 
liquid and dense gaseous argon. These self-diffusion coefficients are compared with 
experimental values and with values obtained from the Lennard-J ones potential. 
There are significant differences between the calculated and experimental values 
at high densities. 

1. INTRODUCTION 

Non-equilibrium statistical mechanics, unlike equilibrium statistical mechanics, 
still contains a number of conceptual problems. Although many attempts have been 
made to place it on a rigorous footing (Prigogine 1962), the development of the 
subject to a stage where reliable numerical estimates of transport coefficients in 
dense fluids can be made is still in progress. At one time many attempts were made to 
develop theories based on the BBGKY hierarchy of integral equations for non­
equilibrium distribution functions (Irving and Kirkwood 1950; H. S. Green 1952). 
However, the work of Cohen and others (Ernst, Haines, and Dorfman 1969) has re­
moved much of the interest from this approach. Similarly the work of Kirkwood 
(1946), who based a theory of transport in dense fluids on concepts derived from 
Brownian motion theory, has l'ecently been shown to lead to nonphysical results 
(Fisher and Watts 1972). Another approach to a theory of transport was developed 
from Kirkwood's theory by Rice and AlInatt (1961) and Allnatt and Rice (1961) and 
initially this theory appeared to give excellent results (Rice and Gray 1965). However, 
a number of problems associated with the application of this theory indicated that it 
was not as good as the initial examinations suggested (Collings 1967) and recent work 
using exact distribution functions for the hard-sphere modified Lennard-Jones poten­
tial has confirmed this (Collings, Watts, and Woolf 1971). The result is that a large 
number of approaches to a theory of transport in dense fluids have proven to be 
inadequate. 

A more promising approach to a theory of transport is the autocorrelation 
function method (Kubo 1959). In this method the non-equilibrium distribution 
function is assumed to be close to its equilibrium value, the deviation from equi­
librium being due to a small perturbation on the Hamiltonian of the system. This 
perturbation may result from the application of external conservative forces (e.g. 
electrical or magnetic fields) or from internal nonconservative "thermodynamic" 
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forces such as the chemical potential gradient responsible for mass diffusion. The 
non-equilibrium distribution function is then expanded as a power seri~s in the 
perturbation, and terms beyond those linear in this perturbation are ignored 
(McLennan 1959). In principle this approach is equivalent to the macroscopic non­
equilibrium thermodynamics of Onsager (1931a, 1931b). When the (approximate) 
non-equilibrium distribution function is used to determine the average value of some 
microscopic flux, it is found that the first-order term gives the appropriate transport 
coefficient. In fact, just as in non-equilibrium thermodynamics (Fitts 1962), a linear 
relation is found between fluxes and their conjugate forces and the appropriate 
coefficients satisfy the Onsager reciprocal relations (McLennan 1959). This approach 
was developed by several workers including M. S. Green (1952, 1954), Kubo (1957), 
and Mori (1958). The end result is that transport coefficients may be related to time 
integrals of certain autocorrelation functions Cij(t) through 

(1) 

where rij is a particular transport coefficient and Ji(O) and Jj(t) are two quantities 
which can be related to the appropriate fluxes (i) and (j). The average, which is 
designated by angle brackets, is calculated by using an equilibrium distribution 
function to determine the positions and momenta. 

Although expressions of the form (1) have been given for many different trans­
port coefficients (Zwanzig 1965) only rather limited computations using them have 
been reported, since the application of these formulae requires a knowledge of the 
behaviour of the system over some period of time. The positions and momenta of a 
model system may be generated by solving Newton's equations of motion starting 
from some convenient initial state, i.e. by the method of molecular dynamics 
(Wainwright and Alder 1958). Mter discarding a suitable number of configurations 
to ensure that the system is in equilibrium, the autocorrelation function Cij(t) is then 
obtained as a time average over the equilibrium ensemble. The required transport 
coefficient may then be obtained by numerical integration. This method has previously 
been used to obtain the self-diffusion coefficient of both the hard-sphere fluid (Alder 
and Wainwright 1969) and the Lennard-Jones fluid (Rahman 1964; Bruin 1969; 
Levesque and Verlet 1971). In addition the shear and bulk viscosities have been 
studied by Wainwright (1964) and Alder, Gass, and Wainwright (1970) for hard­
spheres, while Bruin (1969) has also reported the viscosities and thermal conductivity 
of the Lennard-J ones fluid near the critical region. In the case of the self-diffusion 
coefficient the Lennard-Jones results were in reasonable agreement with the experi­
mental values for argon in the gaseous phase, and in some regions of the liquid phase. 
Bruin's results for the viscosities and thermal conductivity were also in reasonable 
agreement with the corresponding results for argon, whilst the hard-sphere results 
(Wainwright 1964; Alder, Gass, and Wainwright 1970) were in qualitative agreement 
with those calculated using the Enskog theory (Chapman and Cowling 1953). How­
ever, no extensive calculations of the two viscosities and thermal conductivity have 
been reported for the liquid region. 
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The problem of accurately representing the interatomic interactions in a 
system of argon atoms has been studied for many years. Proba.bly the most accurate 
representation obtained to date is a combination of a two-body potential and a 
three-body potential developed during the past few years by Barker and co"workers 
(Barker and Pompe 1968; Bobetic and Barker 1970; Barker, Fisher, and Watts 
1971). This combination was originally used to calculate the second and third virial 
coefficients and the gas-phase transport data for argon (Barker and Pompe 1968). 
After being refined so that it reproduced many of the zero-kelvin properties of solid 
argon (Bobetic and Barker 1970), it was finally adjusted so that one potential function 
would reproduce all the gas, liquid, and low-temperature solid data of argon (Barker, 
Fisher, and Watts 1971). As part of this program, extensive molecular dynamics 
calculations were carried out for the liquid phase by Barker, Fisher, and Watts using 
the Barker-Bobetic potential (Bobetic and Barker 1970) .. In the present work the 
data generated during that study have been used to calculate the transport properties 
of liquid argon (Mills 1971). 

II. NUMERICAL GENERATION 

As stated in the Introduction we have used the Barker-Bobetic potential to 
model the argon interactions. This potential is a combination of a pair potential 
involving a number of parameters and the Axilrod-Teller (1943) triplet potential. 
The pair potential is of the form 

(2) 

where r = RjRmin, R being the distance between the centres of the atoms and Rmin 

the separation of the atoms at the minimum in the potential, and the coefficients At 
(i = 0, ... ,5), E, and /X are parameters fitted to various experimental properties of 
the gas and low-temperature solid (Bobetic and Barker 1970). The parameters 06, 

Os, and 0 10 give the first three terms in the long-range multipole expansion of the 
potential energy (Leonard 1968). This potential has given excellent results for the 
gas and solid data (Bobetic and Barker 1970; Barker, Bobetic, and Pompe 1971) 
and good results for the thermodynamic properties of the liquid (Barker, Fisher, 
and Watts 1971). 

The molecular dynamics calculations were carried out for a system of 108 
particles in a periodic cubic box using the method described by Verlet (1967, 1968). 
A total of 10 liquid-state points and 5 points in the critical region were computed, 
the behaviour of each system being followed for at least 5 X 10-11 seconds. During 
the course of the calculations the total momentum remained close to zero and the 
total energy (kinetic plus potential) was constant to four decimal places. The thermo­
dynamic properties obtained from these configurations were in excellent agreement 
with the Monte Carlo calculations by Barker, Fisher, and Watts (1971), and no sign 
was observed of the systematic differences found between Verlet's (1967, 1968) 
molecular dynamics calculations and McDonald and Singer's (1969) Monte Carlo 
calculations for the Lennard-Jones potential. We conclude from this that our basic 
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molecular dynamics calculations were accurate. The accuracy of the analysis of the 
generated data is discussed in Section III. 

As stated in the Introduction, the transport coefficients can be calculated as 
integrals of time autocorrelation functions. In the present case the molecular dynamics 
calculations were carried out for a set of particles interacting through a two-body 
potential of the form (2) but truncated at 2·5 Rmin to reduce the amount of computa­
tion to a reasonable level, following the precedent set by Rahman (1964) and Verlet 
(1967, 1968). In principle the results given in Section III should be corrected both 
for the effects of this truncation and for the neglect of the threecbody terms. Such 
corrections were carried out by Barker, Fisher, and Watts (1971) for the equilibrium 
results obtained from this potential by using a variant of Zwanzig's (1954) high­
temperature perturbation theory. Two simple versions of this theory have been 
given for transport phenomena, the first by Frisch and Berne (1965) and the second 
by Watts (1971). Unfortunately both of these theories have subsequently been 
shown to lead to erroneous results (Harris 1971; Watts 1972) and although Harris 
(1971) gives the correct form of the theory this does not appear to be computationally 
viable. Consequently it has not been possible for us to include these correction terms . 
.Although this may have some effect on the results, we believe that these (presumably) 
small corrections do not substantially alter the following discussion. 

III. SELF-DIFFUSION COEFFICIENTS 

The expression relating the self-diffusion coefficient to the properties of the 
particles in a system was first derived using intuitive arguments by Einstein (1905) 
in his theory of Brownian motion and has since been rederived by many authors 
(Zwanzig 1965). In the time-integral approach the self-diffusion coefficient D is 
obtained from the velocity autocorrelation function: 

(3) 

where V1(t) is the velocity of particle 1 at time t. In molecular dynamics work, the 
velocity autocorrelation function CD is estimated by averaging over all the particles 
in the system for a large number of initial times: 

N M 
CD(t) = N-1 ~ M-1 ~ Vj(tk) .Vj(tk+t) , (4) 

f=1 k=l 

where tk is the time of the kth step in the molecular dynamics integration, N the 
number of particles in the system; and M the number of initial times used. For the 
present work N was 108 and M was chosen to be 1200. The velocity autocorrelation 
function was calculated for values of t between 0 and 10-12 s at intervals of 5 X 10-14 s 
and between 10-12 and 10-11 s at intervals of 2 X 10-13 s. Values of the self-diffusion 
coefficient were then obtained by integrating equation (3) using Simpson's rule. 
The coefficients calculated in this way from the velocity autocorrelation function 
have been labelled Dva and are listed in Table 1 for corresponding values of molar 
volume VM and temperature T. Zwanzig and Ailawadi (1969) have analysed the 



SELF-DIFFUSION COEFFICIENTS FOR LIQUID ARGON 533 

errors that occur in calculations of the self-diffusion coefficient using equation (3). 
Their analysis indicates that the present results for Dva could contain errors as 
large as 10%, mainly due to the difficulty in obtaining good averages for the tail of 
the autocorrelation function. As this function is small beyond about 2 X 10-12 s for 
the liquid phase, the errors in the tail can become significant. In principle we have 
enough information stored on tape to enable these errors to be reduced to about 4% 
(based on Zwanzig and Ailawadi's formula) but this would require a considerable 
increase in the amount of computation. Since we cannot at present correct for 
three-body and truncation effects, which are probably also significant at this higher 
level of accuracy, we did not attempt the more extensive calculations. As a check 
on the relative accuracy of the results we found that the velocity autocorrelation 
functions were similar to those of Rahman (1964) both for the liquid phase, in which 
negative regions are found, and for the gas phase where the result is close to the 
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Fig. I.-Velocity autocorrelation functions 0 D(t) for both liquid argon (V J.I = 27·04 cm3, 

T = 94·1 K) and dense gaseous argon (VJ.I = 91'92om3, T = 159·1 K). 

exponential decay predicted by the Langevin equation (Rice and Gray 1965). These 
features are shown in Figure l, where 0 D(t) is compared with the Langevin exponential 
decay for the liquid phase (V M = 27·04 cm3, T = 94·1 K) and for the gas phase 
(VM = 91·92 cm3, T = 159·1 K). 

There is an alternative form of equation (3) in which the self-diffusion co­
efficient is related to the mean square displacement of a particle through the formula 
(Egelstaff 1967) 

(5) 

We estimated Dms from this formula in the following way. The mean square dis­
placement at a particular time was obtained by averaging the displacements of all 
lOS particles over 167 initial times separated by 1·5 X 10-13 s. This value was 
calculated for 400 separate times between 1·0 X 10-11 and 1·4 X 10-11 s and the results 
plotted as a function of time. The slope of a line of least squares fit to these data 
points was then equal to 6Dms. The resulting values of Dms for several points in both 
the gas and liquid phases are also given in Table 1. The accuracy of these values was 
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checked at two points, one for the liquid phase (V M = 27 ·04 cm3, T = 94·1 K) and the 
other for the gas phase (VM = 91·92 cm3, T = 159·1 K), by using the same procedure 
to calculate the mean square displacement at times t between 5 X 10-12 and 9 X 10-12 s. 
The results are in good agreement (see Table 1), thus suggesting that the onset of 
hydrodynamic behaviour has occurred by this time. This agrees with the conclusions 
reached by Rahman (1964) and Levesque and Verlet (1971) who obtained good 
values of the self-diffusion coefficient from this region. A comparison of Dva, Dms, 
and the two check values of Dms in Table 1 indicates that the numerical errors in 
Dms are probably smaller than the 10% value assumed for Dva. 

TABLE 1 
SELF-DIFFUSION COEFFICIENTS OF ARGON 

All values of the coefficients are expressed in units of 10-9 m 2 s-l 

VM (cm3) T(K) Dva Dms DLJ Dexp 

26·26 89·6 0·71 0·80 1·01 0·14 
27·04 87·9 1·16 1·28 1·38 0·42 

94·1 1·28 1·37 (1·39)* 1·52 0·28 
105·0 1·46 1·56 1·80 0·19 

27·85 83·6 1·78 1·67 1·65 0·93 
89·7 1·64 1·84 1·82 1·12 

103·2 2·08 2·04 2·19 0·53 
28·73 91·6 2·28 2·30 1·70 

96·5 2·26 2·44 1·50 
108·9 2·72 2·76 2·80 1·65 

57·45 156·9 21·3 20·4 
65·66 168·9 26·3 27·6 
70·71 159·1 25·9 25·8 
76·60 158·7 27·0 25·6 29·0t 27-30t 
91·92 159·1 33·5 29·6 (26·8)* 

* The values in parentheses were calculated from equation (5) for t in the range 5 X 10-12 
to 9 X 10-12 s. They are a check on the accuracy of the Dms values. 

t This value was calculated bY' Bruin (1969) for VM = 75·3 cm3, T = 150 K. 
t This result was given by De Paz (1968) for VM = 75·3 cm3, T = 150 K. 

Table 1 also includes experimental values of the self-diffusion coefficient for 
argon (Dexp) and the results of calculations for the Lennard-Jones potential (DLJ). 
The experimental data were obtained from the measurements of Naghizadeh and 
Rice (1962) for liquid argon. They reported that at a pressure of 135 atm their data 
were reproduced by the interpolation formula 

Dexp = 0·S9x 1O-7 exp(-373jT), (6) 

whilst at 12 atm the formula was 

Dexp = 1·16 X 10-7 exp( -352jT) . (7) 
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On the assumption that lnDexp is a linear function of the pressure we have extrap­
olated from these formulae to obtain the values given in Table l. 

Naghizadeh and Rice's (1962) data did not extend to the critical region, and 
consequently the extrapolation of their formulae cannot be used in this region. The 
final entry for Dexp given in Table 1 was obtained from the work of De Paz (1968) and 
holds for VM = 75·3 cm3, T = 150 K. It is possible that the experimental data 
have quite large error bounds. For example, at T = 84 K equation (7) predicts a 
self-diffusion coefficient of 1· 74 X 10-9 m2 s-1 whereas Oini"Oastagnoli and Ricci 
(1960) using the same method for a pressure of 0 ·92 atm and the same temperature 
obtained a value of 1·53x1O-9 m2 s-1 while Zandeveld et al. (1970) using inelastic 
neutron scattering experiments reported a value of 1·6x1O-9 m2 s-1. 

The results for the Lennard-J ones potential included in Table 1 are taken from 
Levesque and Verlet (1971), who fitted their data to an interpolation formula of 
the form 

DLJ = ATjp2+B-Cp, (8) 

where A, B, and C are constants. This formula also does not hold for the gaseous 
phase and in addition Levesque and Verlet state that it gives results that are about 
5% high for the liquid region. We have allowed for this when oalculating DLJ for 
Table l. 

In an attempt to smooth the results given in Table 1 they were fitted to the 
interpolation formula (8), which yielded the equation 

From this equation the self-diffusion coefficient at V1II = 29·11 cm3, T = 90 K was 
calculated to be 2 ·50 X 10-9 m 2 s-1. This should be compared with the experimental 
value obtained by Naghizadeh and Rice (1962) of 2 ·43 X 10-9 m2 s-1, which is also the 
result found by Rahman (1964) for the same molar volume and T = 94 K. Although 
the agreement is satisfactory for VM = 29·11 cm3, however, this does not hold for 
lower molar volumes. From the data in Table 1 it can be seen that at smaller V 111 

the experimental diffusion coefficients are much less than the corresponding oalculated 
values, despite the differences that exist between the values calculated for the 
Lennard-Jones potential and our model values oalculated for the Barker-Bobetic 
potential. In particular it appears unlikely that liquid argon would have a self­
diffusion coefficient as low as 0 ·28 X 10-9 m2 S-1 even at a pressure of about 500 atm, 
whioh oorresponds to V1II = 27·04 cm3, T = 94·1 K. Therefore we oonsider that 
the experimental extrapolation is incorrect. Either the raw data are not accurate 
enough for such extrapolations to be made or the assumption that lnDexp is a linear 
function of the pressure does not hold over the whole temperature and density range 
oonsidered here. 

Finally it is worth considering a further qualitative similarity between the 
present results and those obtained by previous workers. In Figure 2 the self-diffusion 
coefficient of the particles has been plotted as a function of time. The curve was 
oalculated from equation (5) for the state VM = 27 ·04 cm3, T = 105 K. It is seen 
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that after an initial sharp increase, the function reaches a maximum at about 
0·15 X 10-12 s and then slowly decreases to reach a steady value after about 5 X 10-12 s. 
It was for this reason that the mean square displacement was computed for times 
greater than 10-11 s when calculating Dms. It is of interest that this behaviour was 
also observed by Alder, Gass, and Wainwright (1970) in their studies of the hard­
sphere system. At lower densities it was found that D(t) approached its final value in 
much the same time as at higher densities, but that it did not exhibit the maximum 
shown in Figure 2. In addition to this feature of the self-diffusion coefficient calcu­
lations, various workers have reported on properties of the velocity autocorrelation 
function. In particular Alder and Wainwright (1970) have shown that this function 
decays to zero as (7]t)-d/2, where d is the dimensionality of the system and 7] the 
viscosity, while Verlet (1971) has developed various approximate expressions for the 
function based on the memory function formalism. We did not have enough data to 
study Alder and Wainwright's (1970) observations for a realistic potential and did 
not feel that the Barker-Bobetic potential was sufficiently different from the Lennard­
Jones potential to enable us to make a significant contribution to the memory function 
approach. 
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Fig. 2.-Self-diffusion coefficient 
of argon as a fWlction of time. 
The curve was calculated from 
equation (5) for the state 
VM = 27·04cm3, T = l05K. 

IV. CONCLUSIONS 

Although the self-diffusion coefficients of argon which have been calculated 
here from the Barker-Bobetic potential are much higher than experimental values 
for small molar volumes, they are in reasonable agreement with results reported for 
the Lennard-Jones potential. In addition the coefficients obtained from the mean 
square displacement of a particle are in acceptable agreement with those obtained by 
integrating the velocity autocorrelation function. The differences could be reduced 
by extending the calculations considerably, although this would not seem to be 
warranted until more accurate experimental data are available. However, the 
present calculations show, firstly, that it is possible to obtain accurate values of the 
self-diffusion coefficient from systems of 108 particles and, secondly, that neglect 
of the long-range and three-body contributions is probably not important at the 
level of accuracy used here, as indicated by the reasonable agreement with the 
results of Levesque and Verlet (1971). 
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