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Abstract 

In the general R-matrix theory of nuclear reactions, all measurable quantities 
such as the cross sections O'ee' should be independent of the choice of the boundary 
condition parameters Be although the values of the level parameters E A and Y Ae 

depend on the Be. For applications involving only a finite number of levels A, it is 
not obvious that this is still the case as completeness arguments can no longer be 
used. It is shown here that O'ee' can be made independent of the choice of Be for any 
finite number of levels and any number of channels, and the resulting formulae 
giving the dependence of E A and y Ac on Be are derived. An application is made to 
the pair of 5/2- levels of 7Li near 7 MeV excitation. 

1. INTRODUCTION 

In the R-matrix theory of nuclear reactions (Lane and Thomas 1958) the 
boundary condition parameters Be do not play a very conspicuous role. In many 
applications their values have been chosen more or less arbitrarily. The reason for 
this is presumably that in the general theory, which involves infinite numbers of 
channels c and levels A, all measurable quantities such as the cross sections ace' 
should be independent of the values of the Be (and likewise of the values of the 
channel radii ac). On the other hand, the corresponding values of the level parameters 
(the eigenenergies EJ.. and reduced width amplitudes YJ..c) depend on the values of the 
Bc (and ae), as is evident from their definitions. 

In applications of R-matrix theory, however, the general theory is approxi­
mated by assuming that only a finite number N L of levels of given J7I contribute, 
and arguments based on completeness cannot be used. In this case, whether the 
number N e of channels is finite or infinite, it is not obvious that the same values of 
aec·(E} can be obtained for any choice of the Bc (and it is not true for different choices 
of the ae). A well-known case where it is possible is the one-level approximation 
with A = 1, say, which requires Ylc and El + ~c Bc y~c to be independent of Bc 
(Lane and Thomas 1958). It is also possible in the one-channel case with c = a, say, 
and formulae giving the dependence of E J.. and YJ..a on Ba have been given by Barker, 
Hay, and Treacy (1968) and used by Barker (1969, i971). 

In Section II it is shown that aec,(E} can be made independent of the Be for 
general values of N Land N c, and explicit formulae are given for the resulting de­
pendence of the EJ.. and YJ..e on the Be. These formulae have been used by Barker 
(1972). They are also applied in Section III, in the case N L = 2, to the pair of 5/2-
levels of 7Li near 7 MeV excitation, for which a peculiar behaviour of the YJ..C as 
functions of the Be had previously been obtained (Spiger and Tombrello 1967). 
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II. DEPENDENCE OF LEVEL PARAMETERS ON BOUNDARY CONDITION PARAMETER 

As far as possible, the notation of Lane and Thomas (1958) is used. From 
Lane and Thomas, the collision matrix U for given J1T can be written 

U = gY'!{l-R(L-B)}-l{l-R(2'-B)}gHg 

= g Y'!{(R-l+B)-L}-l{(R-l+B)-2'}Y'-! g, (1) 

where all matrices are in channel space; g, Y', L, and 2' are external functions only; 
the matrix R has elements 

and in matrix notation is written 

R = ~ "f;,xy))(EA-E) , 
A 

(2) 

(3) 

where it is assumed that ,\ runs from 1 to N L; and B is the diagonal matrix with 
elements 

From equation (1) it may be seen that U and therefore all cross sections are indepen­
dent of B provided R-l+B is independent of B. 

Now, in terms of the E A, YAC, and Bc, we wish to find values of the level param­
eters E;\ and YAC (,\ = 1, ... , N L) corresponding to the boundary condition parameters 
B~, such that 

(4) 

for all values of E. For this purpose equation (4) is written in the form 

R' = {l-R(B'-n)}-lR 

and it is assumed (c.f. Chapter IX of Lane and Thomas 1958) that quantities AI" 
exist such that 

R' = ~ (yflxYv)A flV , (5) 

requiring 
flV 

R = {l-R(B' -B)} ~ (y I' X Yv)AflV" (6) 
flV 

We can now substitute the expression (3) for R into equation (6) and then use the 
fact that B' - B is diagonal to write 

where 

This gives 
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which is satisfied if, for all A, v (from 1 to N L), 

(EA-E)AAv - ~ eAI'Al'v = 8Av , 
I' 

and these are the equations for determining the A·Av. 
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(7) 

Consider now a change of notation (for this paragraph only) in which matrix 
notation is used for matrices in level space and the channel labels are written 
explicitly. In this case the A Av are the elements of an N LX N L matrix A, and 
equations (7) can be written 

A = (C-El)-l, (8) 
where C has elements 

(9) 

while (5) can be written 

(10) 

where 1c is a single-column matrix with elements ')lAC. Expressions for the level 
parameters occurring in R~c' are now obtained by reducing C, and therefore A, to 
diagonal form. This may be accomplished by means of a transformation using an 
orthogonal matrix K, since C is real and symmetric, i.e. 

-KCK=D, (ll) 
where 

The DA are the eigenvalues of the matrix C and, for given A, the KAI' are the elements 
of the normalized eigenvector corresponding to D A• Introduction of equations (8) 
and (ll) into (10) with 

~ ~ 

KK=KK=l (12) 
gives 

which is of the required form 

provided 
and (13a, b) 

This demonstrates the possibility of making ucc,(E) independent of Bc and gives the 
relations between the level parameters necessary for this. The essential task involved 
is the standard one of diagonalizing the matrix C defined by (9); then the EA are its 
eigenvalues and the ')lAc are given in terms of its eigenvectors by (13b). 

Similar considerations apply to a reaction in which the system with levels A is 
formed as a product nucleus that then decays. In this case a form for the cross section 
has been proposed (Barker 1967) in which the dependence on Bc is contained in the 
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term 
{l-R(L-B)}-l Q, (14) 

where 

Q = ~ 'fAX gA/(EA-E) , (15) 
A 

gA being a single-column matrix in the space of formation channels x with the feeding 
amplitudes gAx as elements. Since the term (14) can be written as 

{(R-l+B)-L}-l R-l Q 

and R-l+B is independent of B, it is necessary that R-l Q be independent of B, 
that is, 

(R')-l Q' = R-l Q or Q' = R'R-IQ = {l-R(B'-B)}-lQ. 

By the same method as before, it follows that 

Q' = ~ ('f,ux gv)A,uv, 
,uv 

thus leading to the relation between matrices in level space 

(16) 

From equations (13b), (16), and (12), it follows that 

and 

are independent of Be for all c, c', x, and x'. 

III. 5/2- LEVELS OF 7Li 

Spiger and Tombrello (1967) (hereinafter referred to as ST) extracted complex 
phase shifts for 3H+1X scattering from their measurements of 3H(IX, 1X)3H, 3H(IX, n)6Li, 
and 3H(IX,n')6Li*. The f5/2 phase shift indicated 5j2-levels of 7Li at about 6·6 and 
7·5 MeV. ST used the two-level, two-channel R-matrix formulae to fit this phase 
shift. They investigated numerically the variation of the level parameters with 
change of boundary condition parameters, and found their results rather disturbing, 
in that one of the reduced width amplitudes varied by a factor of more than five over 
a small range of Be values. This variation is now studied on the basis of the analytical 
formulae of the preceding section. 

The two levels in the R-matrix formulae are labelled by ,\ = 1 and 2 with 
El ~ E 2 , while the two channels 3H+1X (f-wave) and 6Li+n (p-wave) are labelled by 
c = IX and n (equivalent to e and r in ST). For the particular case Ba = -3 and 
Bn = -1, ST gave values of the Y~e. We use their best values and, without loss of 
generality, assume all YAe ? o. Also ST gave values of the resonance energies E res 

rather than of EJ..- We assume that values of EA may be obtained with sufficient 
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accuracy by taking for each level 

Eil = E res + ~ Y~e{Sc(Eres)-Be}, (17) 
c 

where Se is the shift factor, which may be calculated_ The level parameters for the 
5/2-levels of 7Li obtained in this way are (for Ba = -3 and Bn = -1): 

2 

E res (MeY) 

7-47 
6-64 

E;.(MeY) 

7-65 
10-20 

Y;'a: (MeY!) 

0-155 
1-761 

Y;'n (MeY!) 

1·095 
0·0 

The inversion of the E il values relative to the E res values may be noted. This is due 
to the fact that Boc differs appreciably from Soc over the energy range concerned 
while the Yiloc values of the two levels are very different. ST distinguished the two 
levels as lower or upper (based on E res values), or used spectroscopic notation (2F5/2 
or 4P5/2) based on the reduced widths of the levels, but either nomenclature can lead 
to confusion when the boundary condition parameters are varied. 

From the parameter values given above and the formulae (13) of Section II, 
values of Eil and Yile may be calculated for other values of Be such that exactly the 
same fit is obtained to the f5/2 phase shift. Figure l(a) shows the resulting dependence 
of Eiland Yile on Boc for three fixed values of B n, while Figure l(b) shows the depend­
ence on Bn for fixed B oc. 

The graphs of Figure 1 illustrate some of the results obtained by ST. They 
found that changing Bn did not affect Yiloc' but it is seen that this is true only for 
Boc = -3 (as used by ST) because Y2n == 0 for this value of Boc. Figure 19 of ST shows 
the dependence on Boc that they found for Yiloc (or rather for Ye, which they describe 
as the ex-particle reduced width amplitude of the upper level, or the 4P5/2 state). 
Their figure corresponds to part of the right-hand panel of Figure l(a), in which the 
range of Boc values for which ST were able to find a solution is indicated by the arrows. 
It is seen that their ye corresponds in one part of the range to Yloc and in the other 
part to Y2oc. The correspondence is not exact as it seems that ST did not allow a 
dependence of Yiln on Boc and hence could not find a good fit in the region where Yiln 
is varying rapidly. 

We now consider the values of the Eil and Yile that should-be fitted in a shell­
model calculation of the levels of7Li. Usually such calculations include states of only 
the lowest shell-model configuration (ls)4(lp)3 so that the shell-model eigenfunctions 
satisfy the same boundary condition at the channel surface as do the eigenstates in 
the internal region in R-matrix theory. Consequently the energies in the shell­
model calculation should be taken as the R-matrix eigenenergies E il' all for the 
same values of Be rather than, say, the resonance energies.* Differences between 
the shell-model energies are probably more reliable than their absolute values. 
Also ratios of reduced width amplitudes for different levels but the same channel, 
say Y2e/Yle, can be calculated from the shell-model wavefunctions without specifying 
the shape of the single-particle radial wavefunctions. Since the energy difference 

* In Barker (1971), shell-model states of different configurations were involved and it was 
appropriate to choose different Be values when determining the properties of the different states. 
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Fig. I.-Dependence of the level parameters E;, and YAe on the boundary condition 
parameters Be required to give the same values of the f5/2 phase shift in 3H+", 
scattering: (a) dependence on Ba for three values of Bn; (b) dependence on Bn for 
three values of Ba. The solid curves refer to ,\ = I. the dashed curves to ,\ = 2. 
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E2-El and the ratios Y2e/Yle depend sensitively on the Be, it is necessary to specify 
the most appropriate values of the Be- One expects the best agreement between the 
shell-model states and the R-matrix internal eigenstates when each Be is set equal to 
a mean value of the shift factor Se in the energy range of interest (see Appendix III of 
Barker, Hay, and Treacy 1968)_ In the present case at excitation energies of 6·64 
and 7 ·47 MeV in 7Li, the values of Sa are -1·85 and -1·61 and of Sn -1·25 and 
-0,88 respectively (for channel radii aa = an = 4'Ofm, as used by ST). 

o (a) ST 

• 
S 
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Fig. 2.-Ratios of a-particle and neutron reduced width amplitudes as functions of eigenenergy 
separation. The curves come from the requirement of the same values of the f5/2 phase shift in 
3H+a scattering, and are for the indicated fixed values of the boundary condition parameters 
Bo< (dashed curves) and Bn (solid curves). The regions in which the Be are close to the corre­
sponding shift factors are shown hatched. The open circles mark the original parameter values 
of ST, while the other points show the values obtained from shell-model calculations by: MU, 
Meshkov and Ufford (1956); S, Soper (1957); Bo, Boyarkina (1964); CK, Cohen and Kurath 

(1965); B, Barker (1966). 

Figure 2 shows the dependences of E2-El and the Y2e/Yle on the Be in a more 
convenient form than Figure 1 by giving in (b) and (d) Y21L/YIIL and -Yln/Y2n as 
functions of E 2-E1 for constant values of BIL and of Bn; Figures 2(a) and 2(c) give 
the inverse ratios. The hatched regions are bounded by the curves BIL = -1·85 and 
-1·61 and Bn = -1·25 and -0,88. In these regions the 6·64 MeV resonance is 
due mainly to levelland the 7 ·47 MeV resonance to level 2, and, as Y2 1L/Yla and 
I Yln/Y2n I are both small, more weight should be attached to values of Ba near 
-1,85 and of Bn near -0·88, i.e. to the upper left-hand corners of the hatched 
areas. Thus in shell-model calculations one should try to fit values of E2-El and 
Y2e/Yle in the hatched areas, and preferably near their left-hand ends. It may be 
noted that the parameter values given by ST (open circles in Figs. 2(a) and (2c)) 
are not suitable for direct comparison with shell-model calculations, as they lie far 
from the hatched areas. Other points marked in Figure 2 give results from some 
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published shell-model calculations. It is seen that several of these, in particular 
those of Soper (1957), lie far from the hatched areas. 

Although only the 5/2-levels of 7Li have been discussed in this section, similar 
considerations apply to the 5/2- levels of 7Be. The present example has been used to 
illustrate the general result that, when R-matrix theory is used to fit experimental 
data, it is not necessary to treat the boundary condition parameters Be as adjustable, 
since any fit to the data with a particular set of Be values can be duplicated exactly 
for any other set of Be values. If, however, the values of the level parameters E A and 
YAe obtained from such a fit are to be compared with values calculated from some 
nuclear model, they should be chosen to correspond to the most appropriate values 
of Be. 
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