
REACTION MATRIX APPROACH TO THE INVERSE PROBLEM 

By J. L. COOK* 

[Manuscript received 15 June 1971] 

Abstract 

The problem of inverting the calculation of cross sections to one of determining 
interaction potentials from cross sections is dealt with using the reaction matrix 
approach. The experimentally obtained resonance parameters are utilized to 
calculate constants which are coefficients of expansion of the potential in terms 
of known functions. 

I. INTRODUCTION 

A direct relationship between the scattering phase shift and the potential field 
responsible for the scattering process is of great value in the study of the physics 
of microscopic particles. Early work in this direction by Frodberg (1947) and 
Hylleraas (1948) consisted of expansion for the potential V in terms of s-wave phase 
shifts. Bargmann (1949) illustrated that there exists a class of phase equivalent 
solutions for V, which revealed that the former work lacked uniqueness in the solution, 
and Levinson (1949) showed that the ambiguity is related to the existence of a dis­
crete spectrum. Marchenko (1950, 1952) proved that a sufficient set of parameters 
to determine V is given by the phase shift, the energies of all bound states, and the 
normalization constants. Further work by Holmberg (1952) and Jost and Kohn 
(1952) verified this conclusion. 

A method of direct calculation of V from s-wave data was given by Gel'fand 
and Levitan (1951). Their method is mathematically most involved and does not 
seem to be particularly suited to numerical derivation of the potential. In the present 
paper, techniques are derived for resolving the scattering phase shift into components 
of the Wigner and Eisenbud (1947) matrix and then analysing the scattering problem 
by means of this matrix to obtain the interaction. 

II. REACTION MATRIX 

We shall first consider the one-channel case. The radial wavefunction of the 
particle obeys (Preston 1965) 

d2if;z(r) + 2M(E_ V _1(1+1))". (r) = ° 
dr2 Ii} 2Mr2 'f'l , 

(1) 

where M is the reduced mass of the system, E the total energy, V the interaction 
potential, and 1 the orbital angular momentum. A radius r = a is chosen at which 
V vanishes or is negligibly small. The !?It I function is defined by 

if;l(a) = !?It1(E) a (dif;z/dr)r=a. (2) 
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Omitting the suffix l and putting Ii = 1 we obtain for each partial wave 

,p = 0(1 -SO) , (3) 

where I is the incoming wavefunction, 0 the outgoing wavefunction, and 0 a 
constant. Substitution of (3) into (2) gives 

S = ,Q2(I-L*Bl)/(I-LBl) , ,Q2 = I/O, L = aO'(a)/O(a). (4) 

Equation (1) is then solved across the interior region r < a where it has discrete 
eigenvalues EA when the boundary conditions (see Preston 1965) 

(5) 

are satisfied and the U A(r) form an orthonormal set in the interval 0 ~ r ~ a, that 
is, 

(6) 

The physical solution of (1) across the interior has a continuum of eigenvalues E 
and does not necessarily obey the boundary conditions (5). However, we can use 
the· expansion 

(7) 

together with Green's theorem to show that 

(8) 

and hence that 
Bl = R/(I+BR) , 

with 

(9) 

However, across the same region we can solve (1) for V = 0 with the boundary 
conditions (5) to obtain an orthonormal set of free particle wavefunctions W p(r). 
We then have the equations 

(lOa, b) 

where 

and the Epo are the discrete eigenvalues obtained from WI'" We can thus expand 
U A and V AU A into the Dini series (Erdelyi 1953) 

U A(r) = '2:. B Ap W p(r), 
I' 

VAUA(r) = '2:. VAl' Wp(r). 
I' 

(lla, b) 
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From Green's theorem, it follows that 

W,)a) UA(a) -UA(a) W~(a) +2M(EA-El'o)BAI'-2MVAI' = 0, (12) 

the prime denoting differentiation with respect to r, and so with the boundary 
conditions 

W~(a)JWI'(a) = UA(a)JUA(a) = BJa (13) 
we have 

(EA-El'o)BAI' = VAl" (14) 
or in Dirac notation 

<,\1 V I fk)JO I fk) = EA-El'o· (15) 
More generally 

(E A -El'o)BAI' = VAl' - V~I" (16) 

where V~ is the matrix derived from using a reference potential yo, showing that the 
energy separation in eigenvalues is proportional to the matrix element of the difference 
in interaction potentials taken between the corresponding eigenstates. 

Equation (16) illustrates that the shift in the location of the free particle pole 
sites when interactions are turned on is directly proportional to the matrix elements 
of the potential taken between the free particle state and the state in the presence of 
the interaction. It will now be shown how this interaction can be found. It follows 
that in order to have uniform convergence of the series (llb) 

(d(VA UA)) = !!.(V U) 
dr a a A A a' 

that is, 

(17) 

III. ALGEBRAIC ANALOGUE OF SCHRODINGER'S EQUATION 

In this section the reaction matrix analogue of Schrodinger's equation is 
derived. Although this equation is unnecessary to prove the validity of the inversion 
procedure, it does illustrate that an algebraic equivalent to Schrodinger's equation 
exists and gives a quantitative picture of how the matrix potential V AI' shifts the 
pole sites in the free particle spectrum to those of the spectrum in the presence of 
interactions. It was felt that this property was sufficiently interesting in itself to 
justify the inclusion of this section. 

The function f!It is defined by 

f!It = RJ(I+BR) = ifJ(a)Jaif/(a) , 

which takes account of the second boundary condition in (5). 
The equation for the scattering state can be written for each eigenstate of l 

(Corinaldesi and Strocchi 1963) in terms of the Bessel functions J.(kr) as 

ifJ(r) = (trrkr)! Jl+t(kr) -2M L"J K(r, r') V(r') ifJ(r') dr' , (18) 
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where, for r' > r, 

r' and r being interchanged for r' < r. The wavefunction if; has asymptotic behaviour 

if; ""' exp(i3) sin(kr-tl7r+3z) (19) 

for large r. It is more convenient to renormalize if; by the relation 

if;(r) = exp(i3) lJI(r)jcos 3 , (20) 

which obeys the same equation as if;(r) and similar expansions to (7) and has kernel 

r' > r, 

with rand r' interchanged for r' < r. Assuming that 

~~~ V(r) = 0 and Lim V'() 0 r->a r =; 
we find 

lJI(a) = .9'(a) -~(a) (2Mjk) foa 
.9'(r') V(r') lJI(r') dr' , 

where we use the non-conventional definitions 

and 

Let 

lJI'(a) = .9"(a) -~'(a) (2Mjk) foa 
.9'(r') V(r') lJI(r') dr' . 

f(k) = (2Mjk) La .9'(r') V(r') lJI(r') dr' = tan 3 

be the reactance matrix. Then 

and therefore 

fYI k _ lJI(a) _ .9'(a) -~(a)f(k) 
( ) - alJl'(a) - a{.9"(a) -~'(a)f(k)} 

f(k) = .9'(a) -afYI(k) .9"(a) . 
~(a) -afYI(k)~'(a) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

The quantity on the right is known, since .9' and ~ are given and fYI is determined 
from experiment. However, we now choose 

(27) 

where the b I' and W I' are known and A" and U" unknown. Therefore 

f(k) = (2Mjk)(.9' I Vi lJI) = (2M/k) ~ ~ A"bp<.\1 VlfL). (28) 

" I' 
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From equations (7) and (8) and (9), with 

A" = U,,(a) P'(a) -P(a) UA(a) = (P'(a) _ UA(a)) U,,(a) P(a) 
2M(E,,-Epo) P(a) U,,(a) 2M(E,,-Epo) 

= ~_1_ U ,,(a) P(a) 
aR2ME,,-E 

(29) 

and similarly 

1 1 Wp(a) 
bp = aRo2M Epo-E[I'(a) (30) 

(Ro being the free particle version of (9)), we get the function 

where 

J(k) = ':£(k)/P(a) [I'(a) = }: }: F"p<A I V I p,), 
" p 

(31) 

F __ 1 ___ 1_ U,,(a) Wp(a) 
"p - a2 RRo (2M)2 ""'"'(E=-,,-_-cE=)-'(E=p'-o---=E=r (32) 

Let us evaluate J(k). We have 

J(k) _ [I' -af!ll[l" 1 
~ -afJ«' [1'([1' -~.:£) 

[I' -af!Il [1" 1 

[1'( [I'~' -~ [1") af!ll 
(33) 

However, [I' and ~ satisfy the Wronskian relation 

(34) 
Hence 

1 [1" 
J(k) = kaf!ll - k[l' 

= :a (~ -~J = :a (~ - ~J (35) 

and we find 

that is, 

(36) 

where 

(37) 

Equation (36) is the R-matrix analogue I)f the scattering state equation (18). Its 
algebraic solution tells us the matrix elements <A I V I p,) from which the potential 
can be reconstructed. 
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IV. SOLUTIONS TO R-STATE EQUATION 

By equating poles on the left and right of (36), we find from the residues 

(38) 

where the tilde denotes transposition. However, we note from equation (15) that 
these may be written as 

(39) 

If the functions U A(r) and W,u(r) are to satisfy the closure relations 

then we must have 

and (40) 

It follows that the matrix 

must be unitary and that 

~ U~(a) = ~ W~(a). 
A ,u 

(41) 

One does not require the R-state equation to prove that BA,u IS a unitary 
matrix. If we write 

UA(r) = ~ BA,u W,u(r) , 
,u 

Wp(r) = ~ Gp(J"U(J"(r), 
(J" 

(42a, b) 

where the matrix G is the inverse of B, then multiplying (42a) by W,u,(r) and (42b) 
by U (J",(r), integrating each over the range 0 :(; r :(; a, and using the orthonormality 
conditions, we obtain 

BA,u = fo
a 

UA(r) W,u(r) dr, 

and therefore 

so that the inverse of B is its transpose. Accordingly 

Multiplying both sides by W (J"(r) and using the orthonormality conditions again, 
we find 

that is, 

and B is unitary. 
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The interaction therefore has the character of a rotation which alters a vector 
of components W p(a) to a vector of components U A(a). In the case of a square well, 
the eigenfunctions U A are the same as for the free particle case. In this instance 

and 
(43) 

and only a pole shift Vo occurs, with no rotation of the eigenfunction vector W p(a). 
The numerical technique of solving for V AP with a finite number of poles is as 

follows. (1) First choose the background such that the poles have residues obeying 
(41); the vectors are then of the same length. (2) Define a series of rotations at 
of the type 

and so on, with 

-sin{h· 

cos (h 

I(H1 )t 
cos8t = WH1 f W~ , 

which reduces to the vector 

o 
o 
o 
1 

o 
o 
o 

1 

(3) Then apply a reverse series of rotations nj, 

I(H1 )t 
cosBj = UH1 f U~ , 

cos 82 -sin 82 

sin 82 cos 82 

(44) 

(45) 

which builds up the vector U A' The product of these two sets of rotations is the 
required matrix transformation, giving 

(46) 

and finally, from equations (11), 

VA(r) = (~ VAP Wp(r)) 1 (~BAP Wp(r)) , (47) 
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where for a lamellar potential V,\ = V HI = V H2 .... For an energy-dependent 
potential, V,\ will be a function of ,\ and the correct potential is 

Following the above derivation for the multichannel case, one arrives after much 
tedious manipulation at the scattering R-state equation 

from which the matrix potential that couples the channels can be evaluated. In 
equation (49) we have 

(50) 

Such a reaction matrix makes no contribution to the off-diagonal elements of the 
scattering matrix. 

Bargmann (1949) first showed the lack of uniqueness of the inverse reaction 
problem and this is manifested in the above procedure by the fact that there are 
l(n2-n) spare degrees of freedom in the nxn unitary matrix BJtp' 

V. BASIC GENERATING MATRIX 

To find some simple basic form, we postulate a bilinear expression 

and after substituting into equations (39) and (40) we find that 

A = B = -0 = -D = (~ U~(a) - ~ UJt(a) W Jt(a)r
1

, 

in which case 

and B is a symmetric matrix. It follows that B is a solution of 

B2 = I. (53) 

VI. NUMERICAL AFPROXIMATIONS 

When evaluating potentials from a giveI). set of reaction matrix parameters, 
one is given only a finite number of poles EJt and widths 'YJt that have been evaluated 
by a least squares fit to the phase shifts. A useful device which gives excellent 
approximations to the potential is to assume that the interaction tends to zero for 
energies well away from the region of interest. The method is as follows. 
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(1) Firstly, after calculating the U A(a) one has n such poles and n corresponding 
free particle poles. One assumes 

(54) 

where Ro is the free particle reaction matrix which can be evaluated analytically. 

(2) The parameter r;+1 is calculated as 

which ensures unitarity. En+1 is then found from (54). 

(3) The wavefunctions are then defined as 

lJI = ~ ~ AABAI' WI'(r) +lJIo- ~ ~ A~bl' WI'(r) , 
AI' AI' 

where lJIo is the free particle wavefunction and A~ the free particle equivalent to AA' 

These approximations have been tested successfully. They are necessary 
because one does not know details of the poles which contribute to the background 
constant term in the reaction matrix. 

In programs written for the IBM 360/50 computer at the AAEC, trial sets of 
phase shifts were obtained and used to give a least squares fit to the reaction matrix 
as a sum of poles plus background. The parameters obtained were constrained to 
give a unitary B matrix, with a free particle or square well spectrum of poles outside 
the range examined. The potentials obtained reproduced the phase shifts when the 
Schrodinger equation was integrated, to better than four decimal places. This work 
has been completed, and details of the calculations and computer programs are 
available from the author. In practice, the use of background spectra amounts to 
using an infinite number of the U A and WI" but the sums over the background are 
carried out analytically, as shown above. 

In conclusion, the procedure given here for obtaining the interaction component 
of the wave equation from scattering and reaction data analysed into R-matrix 
components is relatively simple and is easy to apply in numerical determinations 
of the interaction. 
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